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Abstract 

An experimental and theoretical study is performed for the steam condensation in a vertical 
tube bundle passive condenser simulating PCCS condenser in the ESBWR. Four condenser tubes 
are submerged in a water pool where the heat from the condenser tube is removed through 
boiling heat transfer. Condenser tubes with a full length/diameter scale are used to obtain the 
condensation data with various process parameters. The comparison of tube bundle experimental 
data with the single tube data by both the experiments and models shows that the single tube 
secondary heat transfer coefficient (HTC) is between 25% - 35% less than what was recorded for 
the tube bundle, and the tube bundle condensation rates are slightly higher than the data from the 
single tube test sections due to turbulent mixing effect which increases the condensation heat 
removal. The turbulent mixing on the secondary side decreases the AT between pool water and 
condenser tube outer wall, causing an increase in secondary HTC. This increase in secondary 
HTC thus results in higher condensate mass flow rates. Tube bundle boundary layer model and 
heat and mass analogy model were then developed for the prediction of the filmwise steam 
condensation with noncondensable (NC) gas in a vertical tube bundle. The predictions from the 
models are compared with the experimental data for various complete condensation and through 
flow conditions and the agreement is satisfactory. The local parameters predicted by the 
boundary layer model and heat and mass analogy model with tube bundle pool boiling can also 
be predicted with the axial distance from entrance for different NC gas fractions and system 
pressures. 

Keywords: Tube bundle, boundary layer model, heat and mass analogy model, condensation, 
pool boiling. 

1. Introduction 

Condensation is an important mode of heat transfer that is widely applicable in the power 
industry due to its ability to achieve high heat transfer coefficients. General Electric's economic 
simplified boiling water reactor (ESBWR) includes a passive heat exchanger to depressurize the 
containment by condensing steam in vertical tubes through a pool of water [1]. This heat 
exchanger is called a passive containment cooling system (PCCS). The PCCS condenser must 
provide enough heat removal to keep the pressure in the containment less than the design 
pressure after a design basis accident, such as a loss of coolant accident (LOCA). A detailed 
knowledge of the PCCS heat transfer capabilities is necessary in predicting the containment 
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pressure following a design basis accident. The PCCS condenser has three modes of operation: 
through flow, cyclic venting, and complete condensation mode [2]. 

Experiments have been carried out by several researchers on condensation with and without 
the presence of NC gas in a vertical tube [3-11]. Most of these experiments use forced 
convection for the heat removal mechanism. However, the PCCS condenser uses pool boiling as 
the method for heat removal. Kim and No [7] did use pool boiling, but in a large rectangular 
tank and the experiments did not involve the presence of NC gas. Oh and Revankar [9,10] 
carried out tests with a single condensing tube using pool boiling in a cylindrical secondary pool 
and the presence of air as the NC gas. A new multi-tube test facility was designed and 
constructed to extend work of Oh and Revankar [9, 10] as well as to investigate the tube bundle 
effect on PCCS heat removal capabilities by Revankar et al [12]. The comparison of tube bundle 
experimental data with the single tube data by both the experiments and models shows that based 
on a linear fit for the trends, the single tube secondary HTC is between 25% - 35% less than what 
was recorded for the tube bundle, and the tube bundle condensation rates are slightly higher than 
the data from the single tube test sections [13]. In Fig. 1, data of the secondary HTC for tube 
bundle [13] and single tube tests [9, 10] are shown along with pool boiling HTC. 
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Figure 1. Comparison of Single Tube and Tube Bundle Secondary HTC 

Similarly, in order to elucidate boiling heat transfer characteristics for each tube for tube 
bundles, Fujita and Hidaka [14] performed an experimental investigation of pool and flow 
boiling of Freon-113 at 0.1 MPa using two typical tube arrangements for horizontal tube bundles. 
It was found in this study that the boiling heat transfer coefficient (HTC) of each tube in a bundle 
was higher than that for an isolated single tube in pool boiling. 

For vertical tube bundle in the PCCS, the bubbles are generated and rise up through the 
narrow clearance between tubes, induce turbulence and cause turbulence mixing. Such two-phase 
flow may impose certain influences on tubes in its passage. Its overall effect on heat transfer 
depends on various parameters such as bundle arrangement, tube pitch, tube location, thermal 
and hydrodynamic conditions, and system pressure. The larger secondary HTC is a result of 
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turbulent mixing of two phase flow in the secondary water pool. This increases the secondary 
pool temperature, which decreases the temperature difference between the outer wall of the 
condensing tubes and the secondary pool water. A decrease in the temperature difference will 
cause the secondary HTC to be larger. This increase in secondary HTC is enough to make the 
condensate mass flow rates higher than for a single tube. This effect could cause a better heat 
removal capability. The tube bundle effect thus affects the secondary pool boiling and then the 
in-tube condensation. 

However, from the literature review conducted before, there is no such consideration in all 
the boundary layer models and the heat and mass analogy models. Here in this work we 
improved the existing boundary layer models on tube condensation by considering the tube 
bundle effects and the induced secondary heat transfer coefficient and condensate rate 
enhancement. 

2. Tube Bundle Model 

It is postulated that in pool boiling systems, two basic mechanisms take part in the heat 
transfer process for the pool boiling of saturated fluids: the ordinary convective mechanism of 
heat transfer, and the nucleate boiling mechanism associated with bubble nucleation and growth 
as proposed by Chen [15,16] for flow boiling. It is further postulated that these two mechanisms 
are additive in their contributions to total heat transfer. 

Considering first the convective mechanism, it was recognized that at the two limits of 0 and 
100% quality, the convective heat transfer should be described by the Dittus-Boelter type of 
correlation. It was then postulated that in the two-phase region where both liquid and vapor are 
present, the convective heat transfer should still be described by a modified form of the Dittus-
Boelter equation. 

knac = 0.023 Re" p r 0.4 (k p) (1) 

In this equation, the Prandtl and the Reynolds numbers and the thermal conductivity represent 
effective values associated with the two-phase fluid. We may define three parameters as ratios of 
these quantities divided by the liquid quantities. 

= Pr/PrL

y=k/kL (2) 

F = (Re/ReL 
)

o.8

In the case of ordinary fluids, the Prandtl numbers of the liquid and of the vapor are normally 
of the same magnitude. The Prandtl number of the two-phase fluid should therefore also be of the 
same magnitude. Furthermore, since the heat is transferred through an annular film of liquid 
adhering to the wall, it is expected that the liquid properties would have the dominant effect. For 
these reasons it is reasonable to assume that 9 and y may be taken to be unity as a first 
approximation. Equation 1 may then be rewritten as 

knac= 0.023( ReL 
)0.8 ( pr„ )0.4 (k„

The function ReL in Equation 3, the liquid Reynolds number of two phase flow, can be 

described as below: 

(3) 
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ReL = 

(1— x)G  A D 
AL

PL 
(4) 

where 
x = g , is the steam quality of the two phase flow; 

Gg = m / A, is the steam mass flux, which can be calculated as mass flow per unit area; 

q"= »Mfg = m = q" / hfg . m , mass flow can be calculated using heat flux divided by latent heat; 

G = p LAA1 / A = p LA1 , is the two phase mass flux, which can be calculated using the secondary 

side water level change with time ( A/ ) multiplied by liquid density; 
A , is the effective two phase flow area, and AL , is the effective liquid phase flow area given as 
[17], 

(1— x)GA 

AL _  PL  (1— x)pv 
A — (1— x)GA xGA (1— x)Pv + xP L 

PL P, 
and D , is the hydraulic diameter. 

(5) 

The function F in Equation 3, the ratio of the two-phase Reynolds number to the liquid 
Reynolds number, is based on the liquid fraction. This ratio is strictly a parameter by analogy to 
momentum transfer in two-phase flow. It may be assumed that F is a function of the Martinelli 
parameter, X. . 
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(7) 

The analysis of Forster and Zuber [18] was taken as a basis for the formulation of a nucleate 
boiling mechanism of heat transfer with effective AT and Ap . 

k0.790.45 0.49 0.25 \ 

= 0.00122 mac „. 
L ""pL PL c / 

OK 
) 0.24 (Ape )0.75 

(8) 0.5 „ 0.29 0.24 0.24 
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Then a suppression factor, S, was defined as proposed by Chen [15,16]: 

S = (AT; 
/AT)

o.24 (Ape /Ap)°35 (9) 
Combining with Equation 4, we then obtain an expression for nucleate boiling coefficient in 
terms of the suppression factor and the total superheat. 
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Then a suppression factor, S, was defined as proposed by Chen [15,16]: 

( ) ( )0.24 0.75
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Combining with Equation 4, we then obtain an expression for nucleate boiling coefficient in 
terms of the suppression factor and the total superheat. 
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The suppression factor, S, approaches unity at zero flow rate and zero at infinite flow rate. It 
was postulated, subject to experimental verification, that in all ranges of flow S can be 
represented as a function of the local two-phase Reynolds number. 

The total heat transfer coefficient is then obtained as the sum 

h = knic +11,nac (11) 

3. Tube Bundle Boundary Layer Model Results 

Using our experimental conditions, test facility geometries and the above equations for pool 
boiling, we can calculate the nucleate boiling, convective and overall heat transfer coefficients 
for tube bundle pool boiling, and then calculate condensation heat flux and condensation HTC 
for the predictions using boundary layer model [9,10,19]. 

Complete Condensation 

Using Equations 3, 10 and 11, we can calculate the convective, nucleate boiling, and the overall 
HTCs with different pressures. The results are plotted as shown in Figure 2, and compared with 
the experimental overall HTCs. From the figure, we can see the modeling results using Equations 
3, 10 and 11 have a good agreement with the experimental results compared to the results using 
single tube model [9, 13,19]. 
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Then the Equations 3, 10 and 11 were put into the boundary layer model to replace the 
existing secondary pool boiling correlation, and the results using tube bundle pool boiling 
correlation were obtained [19]. The model condensate mass flows and condensation HTCs were 
compared with the experimental data [13, 20] as shown in Figures 3 and 4. Good agreement 
between the model results with experimental results was obtained. 

Through Flow 

Using Equations 3, 10 and 11, we can calculate the convective, nucleate boiling, and the 
overall HTCs with different noncondensable gas fractions, inlet steam flow rates and system 
pressures. The results are plotted as shown in Figure 5, and compared with the experimental 
overall HTCs. From the figure, we can see the model results using Equations 3, 10 and 11 have a 
good agreement with the experimental results compared to the results using single tube model. 
For through flow, there are noncondensable gas fraction, system pressure and inlet steam flow 
rate which affect condensation. So, we compared the experimental and model secondary HTCs 
for through flow, which is different from what we plotted for complete condensation. 

Then the Equations 3, 10 and 11 were put into the boundary layer model [9, 19] to replace the 
existing secondary pool boiling correlation, and the results using tube bundle pool boiling 
correlation were obtained. The modeling condensate mass flows and condensation HTCs were 
compared with the experimental ones as shown in Figures 6-7. Good agreement of modeling 
results with experimental results was obtained. 
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correlation were obtained. The modeling condensate mass flows and condensation HTCs were 
compared with the experimental ones as shown in Figures 6-7. Good agreement of modeling 
results with experimental results was obtained. 
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Experimentally it is almost impossible to measure the condensate mass flow rate at different 
axial points, and the axial profile for condensation HTC could not be directly computed. To 
estimate the local condensation HTC, the boundary layer model [19] with tube bundle pool 
boiling was used to predict the axial condensate mass flow rates. 
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Experimentally it is almost impossible to measure the condensate mass flow rate at different 
axial points, and the axial profile for condensation HTC could not be directly computed.  To 
estimate the local condensation HTC, the boundary layer model [19] with tube bundle pool 
boiling was used to predict the axial condensate mass flow rates.   
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Figures 8 - 11 show the axial profiles of the condensate film thickness and HTC from the 
entrance under the conditions of system pressure 260 kPa and inlet steam mass flow rate 0.8 
grams/sec for four tube bundle case. Figure 8 shows that the condensate film thickness increases 
with the axial distance from the tube entrance, and decreases with the increasing NC gas mass 
fraction at a fixed inlet steam flow rate and a fixed system pressure. The thickness increases 
rapidly initially, and then slowly as the axial distance from the entrance. Figure 9 shows that the 
average heat flux drops rapidly at first, and then decreases slowly as the axial distance from the 
entrance increases. The average heat flux decreases with increase in NC gas mass fraction. 
Figure 10 shows that the condensation mass flow rate has the same trends with the distance from 
the entrance and NC gas mass fraction as the average heat flux shown in Fig. 9. Figure 11 shows 
that the local condensation HTC drops rapidly at first, and then decreases slowly as the axial 
distance from the entrance increases. The condensation HTC decreased with increase in NC gas 
mass fraction and impact of NC gas mass fraction is significant at the entrance region where 
condensation is efficient. 
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4. Conclusion 

The comparison of tube bundle experimental data with the single tube data by both the 
experiments and models shows that based on a linear fit for the trends, the single tube secondary 
HTC is between 25% - 35% less than what was recorded for the tube bundle, and the tube bundle 
condensation rates are slightly higher than the data from the single tube test sections due to 
turbulent mixing effect. 

Tube bundle boundary layer model was then developed for the prediction of the filmwise 
steam condensation with noncondensable gas in a vertical tube bundle. The predictions from the 
model are compared with the experimental data. Secondary pool boiling heat transfer 
coefficients, condensation heat fluxes and heat transfer coefficients for various complete 
condensation and through flow tube bundle experimental data are compared and the agreement is 
satisfactory. The tube bundle model predictions of the condensation HTCs and condensate rates 
are within a range of ± 10-15%, while the single tube model predictions are within a range of 
± 25%. So, the tube bundle model has a better prediction than the single tube model for the tube 
bundle experimental data. The local parameters predicted by the boundary layer model and heat 
and mass analogy model with tube bundle pool boiling can also be plotted with the axial distance 
from entrance for different noncondensable gas fractions and system pressures. 
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