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Abstract 

Hypothetical Small Break Loss Of Cool ant Acc ident is identified as one of the m ost severe 
transients leading to a potential huge Pressurized Thermal Shock on the Reactor Pressure Vessel 
(RPV). T his m ay result in two-phase fl ow configurations in the co ld legs, according to the 
operating conditions, and to reliably assess t he RPV wall int egrity, advanced two-phase flow 
simulations are required. Related n eeds in de velopment and/ or validation oft hese advanced 
models are important, and the on-going TOPFLOW-PTS experimental program was designed to 
provide a well docum ented data base to m eet th ese needs. This pap er focuses on pre-test 
NEPTUNE_ CFD sim ulations of TOPFLOW -PTS experiments; t hese si mulations were 
performed to (i) help in the definition oft he test matrix and test procedure, and (ii) check t he 
presence of the different key physical phenomena at the mock-up scale. 

1. Introduction 

In the frame of 1 ifetime extension of Pr essurized Water Re actors (PWR), Pressurized Thermal 
Shock (PTS) along the Reactor Pressure Vessel (RPV) wall is one of the most crucial concerns 
with respect t o its i ntegrity. To assess the R PV integrity and ev aluate the li fetime of French 
(PWR type) N uclear Pow er Plants (N PP), ED F an d A REVA ha ye d eveloped a three-step 
methodology including (Figure 1) (i) syst em-code calculations t o define the transients related 
scenarios and associated boundary conditions needed for the furl her step, (i i) coupled "CFD-
Heat conduction" simulations to determine the thermal loads within the RPV wall s, and (iii) a 
subsequent mechanical analysis. 

Related an alyses have shown that one of th e most sev ere loading co nditions is giv en by the 
Small Break Loss Of Cool ant Accidents (SBLOC A). During this type of hypothetical LOCA, 
cold Emergency Core Cooling (ECC) water is injected into the cold leg and partially mixes with 
the h of primary flui d fl ow d own t o t he downcom er, possibly resulting in a large PTS on 
mechanical structures, first of all on the RPV wall. Depending on the accident transient scenario 
- leak size and location for example - and on the operating conditions of the considered NPP, a 
single-phase or two-phase flow configuration can exist in the cold legs. 
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Actually, the current RPV wall int egrity dem onstration has to consi der accident transient s 
resulting in two-phase flow configurations, and further requires dedicated two-phase flow CFD 
simulations. Direct Contact Condensation (DCC), mixing and 11 ow-to-wall heat transfer are of 
prime importance in this situation. These phenomena are strongly influenced by the structure of 
the water-steam interface and by turbulence, and related interfacial transfers (mass, momentum —
including turbulence — and energy) have then to be reliably represented by the CFD simulations. 
It is th us necessary t o develo p an d/or vali date sp ecific m odels, whi ch have t o accurately 
represent (i) the highly turbulent bubbly flow in the ECC impinging jet area, and (ii) the thermal 
stratification of the wat er-steam flow along the cold leg downstream from the ECC noel e, as 
well as (iii) the single-phase flow i n the down comer, including the flow-to-wall heat transfer 
along the cold leg and RPV wall. 

After a fir st R& D work st age be ing per formed for se veral ye ars, a significant extensive 
engineering work devoted to the RPV stru ctural integrity re-assessment for the French 900 and 
1300 MW e PW Rs is in progr ess at EDF and it s French partners ([1] to [3]). Numerous 
developments have been implemented or are i n progress to make sure t he CFD methodology 
reliably represents the flow during a PTS even t. The on-g oing TOPFLOW -PTS experimental 
program [4 ] was desi geed in this frame. It aim s at providing a well documented database to 
further (i) com plement the vali dation o f t he whole CFD m odelling i n PTS t wo-phase 
configurations, (ii) improve the understanding of the involved key physical T/II phenomena, and 
(iii) as far as possible enable the validation and/or development of the related models and closure 
laws. 

After a general overview of TOPFLOW-PTS experimental program, this paper is devoted to pre-
test CFD simulations of TOPFLOW-PTS experiments including both air/water and steam/water 
configurations. Such pre-test simulations were carried out with NEPTUNE CFD code to help in 
the definition of the test matrix, and possibly of the test procedure, checking to what extent the 
different key phy sisal phenom ena of interest are pre sent a nd ca n be "c aught" by the 
implemented instrumentation. 
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Figure 1 Chaining computation methodology 
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2. TOPFLOW-PTS experimental setup 

2.1 General 

The TOPFLOW-PTS was designed in 2005 after the identification (within the frame of French 
joint NEPTUNE Project [5]) of pending validation data needs fo r the CFD m odeling of PTS 
Thermal Hydraulics (T/H) concerns in t he two-phase configuration. Actually, these validation 
data needs were related to the local modelling of the afore-mentioned key ph ysical phenomena 
and a priori required separate-effect experiments; however, considering: 

(i) 

(ii) 

these ph enomena are m ostly very tightly coup led and DCC is important in the who le 
process, and 

the need for a well instrumented experiment of the combined phenomena over the whole 
domain o f interest for validation and dem onstration purposes with respect to the actu al 
industrial application, 

it was decided to set up an i ntegral-type exp erimentation — TOPFLOW-PTS - heavily 
instrumented with state-of-the-art local measurement techniques. 

The TOPFLOW-PTS experimental program is based on (i) the 900 MWe CPY NPPs operated in 
France, and (ii) a SB LOCA scenario. It is jo intly operated and/ or fmancially sup ported by 
AREVA (France), Commissariat a l'E nergie A tomique (CEA, Franc e), Electric ite de France 
(EDF, France), S wiss Federal Institute of Technology of Zurich (ETHZ, Swi tzerland), 
Helmholtz-Zentrum Dresden-Ro ssendorf (HZDR - formerly FZ D, Ger many), In stitut de 
Radioprotection et de Sfirete Nucleaire (IRSN, France) and Paul Scherr er Inst itut (PSI, 
Switzerland). 

2.2 Main features 

The PTS test section (Figure 2) models the cold leg with the ECC injection line, a primary pump 
and a part of the downcomer of the reference CPY plant in a 1:2.5 geometrical scale, with some 
simplifications i.e. (i) a straight cold leg, (ii) a flat downcomer representing a 90° segment of the 
reference plant, and (iii) a pum p simulator — actually a vessel 1 ocated upstream from the ECC 
injection nozzle. This pump simulator can be supplied with water at its top and water-drained at 
its lowest point, so that steady-state tests can be achieved with an a ctual thermal stratification 
along the cold leg. 

This test sect ion is connected t o the HZDR TO PFLOW facility and installed in the so-called 
diving tank, which allows test perfo rmance at up to 5 MPa an d 265 °C conditions, at pressure 
equilibrium with the tank nitrogen atmosphere, along with a thin-walled test section design for 
implementation of infra-red thermography. Its is instrumented with: 

(i) 196 thermocouples distributed within the cold leg and downcomer flow, as well as in a so-
called Heat Flux Probe — HFP (it is actually a thick steel bar integrated in the downcomer 
front wall); 
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wire mesh sensors al ong the cold leg (i mpinging jet and stratified flow areas), as well as 
"TC-void probes" (impinging jet area), to provide information on t he bubbly gas phase, 
water level and surface wave structure, and possibly liquid phase velocity; 

a high-speed camera for the observation of the impinging jet area from the back wall of the 
downcomer, and an inf ra-red camera for a ther mography of the cold leg wall and oft he 
downcomer front wall. 

The test program includes (on-going) performance of transient and/or steady-state tests, with and 
without m ass transfer (i .e. with water ECC injection in a steam or a nit rogen en vironment, 
respectively), up toa5 MPa pressure. Test parameters ar e v aried ar ound th e scal ed-down 
reference condition set. 

7 

2 

4 

Figure 2 Test section scheme 

3. NEPTUNE_CFD computer code 

3.1 General features 

1 - cold leg 
2 - pump aimulabr 
3 - downcomer 
4 - ECC Mjecion pipe 
5- outlet water box 
6 - steam supply pipe 
7 - pump aimulabr feed water pipe 
8 - downcomer drainage pipe 
9 - pump aimulabr drainage ripe 

NEPTUNE CFD is the multi-phase CFD solver of the NEPTUNE software platform [5], jointly 
developed by CEA and EDF with a complementary support of AREVA and IRSN. This platform 
is dedicated t o advanced two-phase flow t hermal-hydraulics, al lowing multi-scale and multi-
disciplinary cal culations m eeting the i ndustrial needs (am ong which PTS i n t wo-phase 
configuration). NEPTUNE_CFD has also b een chosen as a basis for the development of CFD 
tools in the international shared software platform for nuclear therm al-hydraulics developed in 
the European frarn ework, i.e. former NURESIM [6] project and furth er today NURISP proj ect 
(see [7] presented in CFD4NRS conference). 
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The ba sic m odel of N EPTUNE_ CFD is th e classical six-equation two-fluid model (mass, 
momentum and energy for both 1 iquid and gas, with the same pressure for t he two phases), 
coupled to a k-E model for the continuous phases, and (optionally) a transport equation for the 
interfacial area concentration. 

From a numerical point of view, the spatial discretization is based on a co-located finite volume 
approach that ac cepts m eshes with any type of cell (tetrahedral, hex ahedral, prismatic, 
pyramidal, polyhedral...) and any type of grid structure (unstructured, block structured, hybrid, 
conforming or wi th h anging n odes...), whil e the solver alg orithm is an original m ethod 
dedicated to multi-phase systems [8]. 

3.2 PTS-related model developments in NEPTUNE_CFD 

In the frame of NEPTUNE_CFD development for PTS-related application, a special attention is 
paid to th e modelling of ( i) the detectio n o ft he position o f t he gas-liquid i nterface i n the 
stratified flow area, (ii) the turbulence, especially close to the free surface, and (iii) the heat and 
mass transfer close to the free surface at the gas-liquid interface and in the impinging jet area. 

4. NEPTUNE_CFD pre-test simulations 

4.1 Objectives 

Initially, the NEPTUNE_CFD pre-test simulations aimed at refining the test section design and 
helping the definition o f the test m atrix and expe rimental procedure; in this frame, the related 
result analyses checked to what extend the key physical phenomena of the industrial scenario are 
present at the mock-up scale and with the foreseen operating conditions. 

4.2 Geometry and grid 

Figure 3 illustrates the CAD model of the TOPFLOW-PTS test section. 

ECC line 

Pump simulator 

Downcomer simulator 

— 

Cold leg 1 
Heat Flux 

Probe 

Figure 3 CFD model of the TOPFLOW-PTS test section 
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The fluid domain is represented with 431 330 hexagonal cells whereas the HFP solid mesh is 
represented with 58320 tetrahedral cells. 

4.3 Initial and boundary conditions 

The allowed boundary conditions in terms of mass flow rate and temperature are represented in 
Figure 4. There are: 

(i) 3 fluid inlets: the cold water inlet at the ECC injection nozzle, the "hot" feedwater inlet at 
the top of the pump simulator and the gas inlet at the top of the downcomer. Whereas the 
temperature and mass fl ow rate are exp licitly imposed for t he ECC inj ection and pump 
feed water, they step-by-step result from the simulation for the gas inlet at the top of the 
downcomer; 

(ii) 3 fluid outlets: the water outlet at the bottom of the downcomer, the gas outlet at the top of 
the downcomer and the water outlet at the bottom of the pump simulator (to drain the flow 
coming from the cold leg). Note only the latter outlet flowrate is prescribed as an explicit 
boundary condition; the two former ones are based on simulation results at each time step 
to respectively maintain a constant water level in the cold leg and a constant pressure in the 
test section atmosphere. 

Finally, at the beginning of the calculation, the cold leg is (otherwise differently specified) filled 
in water and the water level is decreased (with the ECC injection in operation) down to the cold 
leg mid-plane ("50 % level") during the first step of the simulation; during the subsequent second 
step, it ism aintained at a 50 % value. Sect ion 6.2 devoted to the gas-li quid flow separ ation 
occurrence in the ECC line will point out the importance of this procedure. 

Air/steam 
ir in let 

Air/steam 
o utet 

ECC injection 

Water oulet 

Water + 
in let 

Wafer 
o utet 

Figure 4 Boundary conditions allowed for the TOPFLOW-PTS simulations 

4.4 Physical properties, physical and numerical models 

For wa ter a nd st eam, t he CATHARE water/steam properties (implemented in the 
NEPTUNE CFD code) were u sed to cal culate dens ity, th ermal di ffusivity, specific heat an d 
dynamic viscosity over a large range o f temperature and pressure. For air, the needed properties 
were assumed as constants. 
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the downcomer and the water outlet at the bottom of the pump simulator (to drain the flow 
coming from the cold leg). Note only the latter outlet flowrate is prescribed as an expl icit 
boundary condition; the two former ones are based on simulation results at each time step 
to respectively maintain a constant water level in the cold leg and a constant pressure in the 
test section atmosphere. 

Finally, at the beginning of the calculation, the cold leg is (otherwise differently specified) filled 
in water and the water level is decreased (with the ECC injection in operation) down to the cold 
leg mid-plane (“50 % level”) during the first step of the simulation; during the subsequent second 
step, i t i s m aintained at a 50 % value. Sect ion 6.2 devot ed to th e gas-li quid flow separ ation 
occurrence in the ECC line will point out the importance of this procedure. 
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Figure 4   Boundary conditions allowed for the TOPFLOW-PTS simulations 

4.4 Physical properties, physical and numerical models 

For wa ter a nd st eam, t he CATHARE water/steam properties (implemented in the 
NEPTUNE_CFD code) were u sed to cal culate dens ity, th ermal di ffusivity, specific heat an d 
dynamic viscosity over a large range of temperature and pressure. For air, the needed properties 
were assumed as constants. 
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For the solid domain, specific heat and thermal conductivity were dependent on temperature, but 
not density. 

The Large Interface Model [ 9] was used f or the m odeling of the free surface. Heat transfers 
between phases were modeled only for the steam/water cases. Simulations were performed with 
a thermal coupling between the fluid and the solid domains, with a time step computed in order 
to respect a CFL lower than 1. 

5 Results and analysis 

5.1 Pre-test simulation series performed and associated objectives 

Two pre-test simulation series were performed. They were respectively focused on: 

(i) the flow pattern in the ECC injection line, with the possible existence of a gas-liquid flow 
separation. Parametric simulations in air/water and steam/water configurations w ere thus 
carried out in turn, to check the rel ated ECC flowrate threshold, th e exi stence of any 
possible hysteresis phenomenon as well as of any test conditions and procedure impact; 

(ii) the presence of T/H key phenomena in the foreseen experimental tests; one air/water and 
one steam/water configurations (with constant boundary conditions) were considered. The 
qualitative and quantitative analyses were mainly related to the therm al stratification and 
associated gradient amplitude in the cold leg and downcomer, over the transient operation 
till the steady-state achievem ent. A peculi ar at tention w as al so p aid t o th e thermal 
gradients in the Heat Flux Probe, to check to what extend the related measurement results 
would be sufficient for the further analyses. 

Their results are presented below, along with their insights with respect to the test procedure and 
test m atrix d efmition. Note t hat no sensi tivity stu dy (r elated to grid densit y, physi cal and 
numerical models) was perfor med during this pr e-test simulation stage, consid ering its actual 
aims; such sensitivity study will be carried on during the post-test simulation stage. 

5.2 Investigation of gas-liquid flow separation in ECC injection line 

It is very im portant, for bot h th e test m atrix an d pro cedure defmition, and furl her data 
interpretation, to foresee if, according to prescribed conditions, a gas-liquid flow separation may 
occur in the ECC inj ection line. Indeed, such a phenomenon occurrence has a direct impact on 
the outwards ECC jet form, velocity distribution and impulse, which results in a huge influence 
on the m ixing pr ocess in t he im pinging j et area and d ownstream col d 1 eg st ratified area 
(including the free surface behaviour). 

The related pre-t est i nvestigation was carried out thanks to NEPTUNE_CFD sim ulations in 
air/water and steam/water configurations, according to a two-step procedure: 

(i) firstly, a gradual uncovering of the cold leg from an initial water-filled configuration down 
to a 50 % water level , along with an ECC injection at a large eno ugh constant flowrate 
providing a single-phase flow in the injection line; 
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then, a con tenuously t ime-decrease o f EC C flowrate down t o t he flowrate th reshold 
resulting in a clear gas-liquid flow separation along the ECC line, followed by a flowrate 
increase to check for any possible hysteresis. The latter increase was either a co ntinuous 
one or a step-by-step one. 

For both air/ water and steam /water co nfigurations, this CFD- based investigation showed th at 
during the ECC flo wrate decrease stage (Figure 5) (i) a first gas "b ubble" appears at the upper 
circumferential location of the ECC line orifice (onset of flow separation) and (ii) the gas phase 
upstream propagates al ong the upp er secti on of the ECC li ne after a slight additional ECC 
flowrate decrease. The flo wrate threshold providing a cl ear gas-liquid flow sep aration in the 
ECC line is very similar for the two fluid configurations, but it slightly depends on the initial 
configuration of the cold leg: if the ECC injection starts while the cold leg is already (partially) 
uncovered instead of being water-filled, the flo wrate threshold resulting in the gas-liquid flow 
separation in the ECC li ne might be higher than previously-obtained one, depending on initial 
ECC flowrate. 

For the subsequent ECC flowrate increase stage, the investigation demonstrated the existence of 
a hysteresis phenomenon (with respect to the flow separation in the cold leg), much higher for 
the air/water configuration than for the steam /water one. Actually with the same ECC 11 owrate 
range, water-filled ECC line was not recovered in the former configuration whereas it was in the 
latter one, wi th a higher flowrate than the afore-computed threshold; furthermore note that the 
hysteresis amplitude d epends o n t he c haracteristics oft he flo wrate increase evolution: t he 
continuously t ime-increase evolution has result ed i n a higher "r ecovering flowrate" than the 
step-by-step one. 

These different insights resulted in recommendations for both: 

(i) the test m atria deli nition, which t ook care of the ant icipated ECC fl owrate th reshold 
values, and planned dedicated tests with respect to this ECC line flow separation concern; 

(ii) the test procedure. Tests are to be performed with an initially water-filled cold leg. 

void fraction 
I.00 
0.75 
0.50 

0.00 

(a) (b) (c) 

Figure 5 Flow pattern in the ECC injection line: (a) single-phase flow, (b) gas "bubble" at the 
ECC line orifice, and (c) gas-liquid flow separation along the ECC line 
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5.3 Check of the representation of the key physical phenomena 

5.3.1 Operation of the pump simulator 

As p reviously i ndicated (§ 2.2), hot wat er is supplied at th e top of the pump simulator to 
establish a counter-current flow along the cold leg upstream from the ECC injection orifice (and 
also to allow a faster steady state achievement), whereas water can be drained at its lowest point 
to avoid unphysical accumulation of hot water upstream from the ECC line. 

A very first pre-test simulation of an air/water configuration indicated that the joint water supply 
and drainage of the pump simulator resulted in the form ation of an u ndesired circulation loop 
(Figure 6). The injected hot water does not penetrate much into the cold leg and rather tends to 
directly flow into the pump simulator to be further drained. The formation of this loop prevents 
from reaching the foreseen goal, and it was decided that the air /water steady-state experimental 
tests would be performed without any drainage of the pump simulator. 

V 

Figure 6 Flow loop in the pump simulator 

5.3.2 Investigation of the thermal stratification in the cold leg 

(i Air water configuration (Figure 7) 

By b uoyancy and dynamic effects, ECC co ld water from the injection li ne flows to wards the 
bottom of the cold leg, initially filled with hot water. After a few seconds, it reaches the cold leg 
wall on the opposite side of the ECC line orifice, leading to a strong mixing and cooling in the 
impinging jet area. Th e cold water flows upstream towards the pump and downstream towards 
the downcomer while forming a thermal stra tification; therefore, a reverse flow of ho t wat er 
appears in the upper part of the cold leg. 

Since there is a hot water injection upstream from the impinging jet area (coming from the water 
feeding the pump simulator), a thermal stratification is observed in the upstream part of the cold 
leg. Downstream from the impinging jet area, the thermal stratification weakens with time since 
there is no hot sour ce to maintain the stratification, and finally, a perfect mixing is obt aired. 
Figure 7 which represents the liquid temperature T evolution in the cold leg illustrates this final 
state and TEcc are respectively the initial cold leg temperature and ECC temperature). 
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5.3.2 Investigation of the thermal stratification in the cold leg 

(i) Air water configuration (Figure 7) 

By b uoyancy an d dyn amic effects,  ECC co ld water from  th e i njection li ne fl ows to wards t he 
bottom of the cold leg, initially filled with hot water. After a few seconds, it reaches the cold leg 
wall on the opposite side of the ECC line orifice, leading to a str ong mixing and cooling in the 
impinging jet area. Th e cold water flo ws upstream towards t he pump and downstream towards 
the downcomer while f orming a thermal stra tification; therefore, a reverse flow of ho t wat er 
appears in the upper part of the cold leg.  

Since there is a hot water injection upstream from the impinging jet area (coming from the water 
feeding the pump simulator), a thermal stratification is observed in the upstream part of the cold 
leg. Downstream from the impinging jet area, the thermal stratification weakens with time since 
there is no hot sour ce to maintain the stratification, and finally, a perfect mixing is obt ained. 
Figure 7 which represents the liquid temperature T evolution in the cold leg illustrates this final 
state (Tmax and TECC are respectively the initial cold leg temperature and ECC temperature). 
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Figure 7 Air/water configuration. Stratification in cold leg 

As a n important res ult, o nly th e in itial tra nsient st age of a it/water co nfiguration tests is 
interesting and can provide valuabl e information regarding TOPFLOW-PTS program purposes; 
there is defmitely no relevant use of the fmal steady-state operation. 

(ii) Steam/water configuration (Figure 8) 

The same physical phenomena as those described for the air/water configuration are observed in 
the steam/water configuration. 

But direct cont act condensation of steam along the free surface allows to maintain a thermal 
stratification on bo th sides of th e ECC nozzl e, and to e ventually ac hieve a fi nal st eady-state 
stratification along the cold leg, with very valuable measurement results for the assessment and 
validation of the involved CFD models. Figure 8 illustrates this fmal state with the stratification 
and its thermal gradient all along the cold leg (Tsat is the initial temperature of water and steam in 
the cold leg). 
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(ii) Steam/water configuration (Figure 8) 

The same physical phenomena as those described for the air/water configuration are observed in 
the steam/water configuration.  

But di rect cont act co ndensation of steam  al ong the free surface allows to maintain a thermal 
stratification on bo th sid es of th e ECC nozzl e, and to e ventually ac hieve a fi nal st eady-state 
stratification along the cold leg, with very valuable measurement results for the assessment and 
validation of the involved CFD models. Figure 8 illustrates this final state with the stratification 
and its thermal gradient all along the cold leg (Tsat is the initial temperature of water and steam in 
the cold leg). 
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Figure 8 Steam/water configuration. Stratification in cold leg 

5.3.3 Investigation of the temperature gradient in the Heat Flux Probe 

For the afore-presented steam/water configuration simulation, the time-evolution of the wall 
temperature d istribution i n the h eat flux probe is plotted at the 1 ocation of the immersed 
thermocouple (Figure 9). 

It shows that the related thermocouple measurements within the as-designed HFP can result in 
significant temperature differences along a transient PTS-type test, and will be very useful to 
a assessm ent oft he wh ole modeling i nvolved i n t he cou pled "CFD-heat 
conduction" simulation of a PTS scenario. 
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Figure 9 Temperature evolution in the Heat Flux Probe for one elevation and five depths 

6 Conclusion 

TOPFLOW-PTS Experimental Program is an integral-type program related to the CFD modeling 
of a PTS two-phase flow configuration. The purpose is to provide a well documented database to 
perform the vali dation of CFD m odds in t wo-phase flow confi gurations, and to improve the 
knowledge and the understanding of the in volved key physical phenomena. In this frame, pre-
test simulations were carried out with NEPTUNE_CFD code to help in the definition of the test 
matrix, and possibly of the test procedure, making sure the different key physical phenomena of 
interest are actually present and can be "caught" by the implemented instrumentation. 

These pre-test simulations have pointed out the following main insights: 

(i) a gas-liquid flow separation occurs in the ECC inj ection line when the flowrate becomes 
lower than a th reshold value. It is an actual con cern to be accounted for since it strongly 
modifies the mixing phenomena in the impinging j et area and do wnstream stratified cold 
leg area; 
no relevant steady-state can be ach ieved in an air/water configuration, op posite t o the 
steam/water configuration for which a st eady-state stratification can be m aintained all 
along the cold leg thanks to the direct contact condensation of steam; 

for relevant PTS transient tests, the temperature measurements within the implemented 
Heat Flux Probe should allow a assessment of the whole coupled "CFD-Heat conduction" 
simulations. 
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