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Abstract 

The main component that limits the operational life of the (Nuclear Power Plant) NPP is the 
Reactor pressure Vessel (RPV) because of the property of carbon steel material change during 
the operational life due to the different causes: high neutron flux in the welding region, thermal 
aging etc. This results in an increase of RPV embrittlement level that decreases the safety margin 
for the crack propagation in case of transients with fast cooling rate due to the emergency 
systems injection, or increase of secondary side heat exchange. This problem is known as 
Pressurized Thermal Shock (PT S) and constitutes a relevant problem for the safety of the NPP 
that are in operation from several years. 

Nowadays, the scientific community is trying to change the approach to the PTS analysis toward 
a "Best Estimate" (BE) scheme with the aim to remove the excess of conservatism in each step 
of the analysis coming from the limited knowledge of the phenomena in the eighties when the 
problem has been considered in the safety analysis. This change has been pushed from the 
possibility to extend the operational life of some plants and this has been possible due to the 
availability of always more powerful computer and sophisticated computer codes that allows to 
the analyst to perform very detailed analysis with very high degree of precision of the mixing 
phenomena occurring at small scale in the down-comer and to calculate the stress intensity factor 
at crack tip with very refined mesh of millions of nodes. 

This paper describes the main steps of a PTS analysis: system thermal-hydraulic calculation, 
CFD analysis, stress analysis and the Fracture Mechanics analysis for the RPV of a generic 
VVER1000. In particular the paper shows the comparison of the results of the fracture 
mechanics analysis performed with different methodology for the calculation of the stress 
intensity factor at crack tip (KI). 
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1. Introduction 

The present work deals with a MSLB transient for a the PTS analysis in a VVER-1000. The 
analysis has been conducted following a BE approach in the selection of the boundary conditions 
for the transient, and in all the steps of the analysis for the calculation of the stress intensity 
factor at crack tip. 
The integrity of the reactor pressure vessel has to be maintained throughout the plant life since 
there are no feasible provisions which would mitigate a catastrophic vessel failure, therefore 
integrity is ensured by a margin between its load bearing capacity, given by vessel design and 
material properties and the acting loads, which could occur during the plant operation. 
The degradation of material properties by neutron irradiation, thermal ageing and other 
mechanisms, reduce the resistance of the vessel against brittle fracture. 
The loads to be considered in the vessel integrity assessment are mainly related to plant states 
leading to a pressurized thermal shock (PTS) events, characterized by rapid cool-down in the 
primary coolant system usually with high level of primary system pressure. 
The PTS analysis is performed in several consequential steps following the methodology 
developed by UNIPI, see ref. [1] and [2]. The analysis starts with the thermal hydraulic study of 
the NPP using the RELAP5-mod3.3 System Thermal-Hydraulic (SYS TH). RELAP5 provide the 
necessary boundary condition to be used in the following steps. 
Because the transient evolves in single phase, a detailed analysis of the mixing phenomena 
occurring in the down-comer region is performed by mean of the CFD code ANSYS® CFX. 
The result of this step is the time dependent temperature distribution inside the RPV structure. 
The thermal load here calculated is applied to the FE model for the stress analysis using suitable 
MATAB® functions developed for this purpose. Pressure and nodes temperature are the main 
loads of the 3 rd analysis using the ANSYS® mechanical APDL software . 

The objective of the RPV PTS analysis is to demonstrate by a deterministic analysis that there 
will be no initiation of a brittle fracture from the postulated defect. Various methods to calculate 
the stress intensity factor have been proposed in literature. In this paper two of those are 
presented and compared: the J-Integral (JINT) and the Weight Function (WF) methodology and 
the NASGRO software approach. 
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2. TH analysis 

The TH analysis presented here consist in a MSLB transient simulated by means of the 
RELAPS-mod3.3 software code. The Input Deck nodalization has been validated in the 
framework of the agreement between IRR and DIMNP of the University of Pisa: activity 
performed to investigate the peculiarities and or unexpected behavior of the Temelin WWER-
1000 NPP during the MSLB transient, see ref. [3]. 

The accident is originated by a MSLB occurring in one loop. The Scram occurs in a few seconds 
and the stop signal of the main coolant pump and of the isolation of the Steam Generator (SG) 
follow immediately. The Primary side pressure increases and a pressurizer relief valve is taken 
into operation. Due to the heat exchange between primary and secondary side, the SG pressure 
increases too, and the atmospheric steam dump valve valves are taken into operation. After 30' 
the 100 Ichr procedure starts and secondary side pressure starts to decrease. The emergency feed 
water in the intact SG is activated by the SG level signal. The depressurization of the SG 
improves the heat exchange between the primary and the secondary side preventing the power 
operated relief valve to open. After 40' the primary side feed and bleed procedure starts, and the 
primary side depressurizes up to the value of residual heat removal activation. The whole 
transient evolves without dry out phenomena reaching a stable condition after 4000 sec. 

In this paper the first 1000 sec of the transient has been analyzed, examining the effect of the 
abrupt initial cool down on the structures. Fig. 1 shows the temperature and mass flow rate in the 
for Cold Legs (CL) calculated by RELAP5. 
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Fig. 1: Temperature and mass flow rate in cold legs 
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3. CFD analysis 

The RELAP5-mod3.3 calculate the TH variables magnitude using 1-D nodalization described in 
ref. [3]. Because the transient evolves in single phase a detailed analysis of the mixing 
phenomena occurring in the down-comer region can be performed by mean of CFD codes. In 
this analysis a complete RPV WWER-1000 mesh has been developed using the ANSYS®
Parametric Design Language (APDL) and imported into the CFX environment. The models is 
subdivided in two regions: a solid region representing the RPV structure, and a fluid region 
representing the downcomer flowing fluid. In fig. 2 the fluid region is represented in blue, 
emphasizing in yellow the cold legs inlet and in red the downcomer outlet surfaces. The two 
regions have been modeled using respectively about one and for millions of elements. 

" 

Fig. 2: WWER-1000 CFD model 

The CFD model, has been set-up using the standard ic-c turbulence model and the CHT model to 
calculate the temperature distribution inside the RPV structure illustrated in fig. 3. 
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Fig. 2: WWER-1000 CFD model 

The CFD model,  has been set-up using the standard κ-ε turbulence model and the CHT model to 

calculate the temperature distribution inside the RPV structure illustrated in fig. 3.  
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4. Structural analysis 

The structural stress analysis has been performed within the ANSYS APDL environment using 
the same structural mesh developed for the CFD analysis has been used. The RPV structure has 
been meshed using mainly hexahedral elements. A linear growth factor has been imposed to the 
elements through the thickness to calculate accurately the temperature and stress profile, see fig. 
4. Two material properties has been used modelling the structure: the clad, the thin internal RPV 
layer of austenitic steel with good ductility and toughness and the base materialand the base 
material, in accordance with ref. [1]. 
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Fig. 4: ANSYS® structural mesh model 

The node temperature calculated by CFX at various instant of the transient has been imported as 
body loads into ANSYS® and several runs has been performed. Stresses due to thermal shock 
and internal pressure for two postulated flaw has been recorded and utilized in the successive 
fracture toughness analysis. Fig. 5 and fig. 7 shows the stresses magnitude respectively due to 
internal pressure and thermal shock after 90 sec. in the undamaged RPV structure at the location 
of the postulated defects indicated in fig. 6 as CRICcirc and CRKax. 
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Fig. 6: Cracks location 
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Fig. 5: Stresses due to pressure near the cracks 
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Fig. 7: Stresses due to thermal shock near the cracks at 90 sec 

To perform the toughness assessment using the J-integral methodology a second RPV mesh has 
been developed. New volumes has been defined at the cracks locations and the cracks mesh has 
been developed following ref. [4].The two cracks have been modeled as semi-elliptical surface 
cracks with depth to thickness ratio of 1/4  and depth to length ratio of V3. The CFX temperature 
transfer in this last case results more complicated because each structural node doesn't have a 
corresponding node with the CFX mesh used for the calculus of the temperature field. Suitable 
MATAB® functions have been developed for this purpose performing for each ANSYS® node a 
trimap interpolation using the temperature values at the corner of each CFX hexahedral element, 
see fig. 8 and ref. [5]. Fig. 9 and fig. 10 show the equivalent Von Mises stresses due to the 
operating internal pressure of 16 MPa and the stresses near the two postulated flaws. 
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Fig. 8: Axial crack mesh and temperature transfer for the J-integral calculation 
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Fig. 8: Axial crack mesh and temperature transfer for the J-integral calculation  
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5. Stress intensity factor evaluation 

The Stress Intensity Factor (SIF) has been evaluated with three different methods: 
1. J-integral 
2. Weight Function method 
3. NASGRO software database formula see ref. [6] 

The J -integral, introduced by ref. [7] and [8], is defined as: 

hn = I'm + K)n,„ — cru nl auz]dr n
P-)13 r•E 

• W = cry • Eu is the stress-work density 
1 

• K = —
2

. p utui is the and kinetic energy density 

• p is the density, o-ij are stresses and eij the strains 

• ut and 
aui

are displacements and displacement gradients 
ax„, 

• nm are components of the unit normal vector to the J integral contour r 

r integrals are performed along contours surrounding the crack tip. Ref. [8] shows that for small-
scale yielding the stress energy release rate G is equal to the J and the SIF can be obtained by: 

KI2
G = J = E. KI = 11"1 

• E* = E for plane stress and E* = 1 V 2 for plane strain 
— 

The J integral and related KI values is evaluated by ANSYS® by means of the CINT APDL 
function. In the ANSYS® calculation a plane strain condition has been assumed. Fig. 11 and fig. 
12 illustrate the SIF due to thermal shock result at various time instant calculated with the J-
Integral methodology respectively for the circumferential and axial crack. 
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Another classic approach discussed in this paper is the Weight Function method developed by 
Bueckner, it simplifies the determination of stress intensity factor considerably. A weight 
function exists for any crack problem specified by the geometry of the component and crack 
type. If this function, in the following defined h, is known, the stress intensity factor can be 
obtained by simply multiplying this function by the stress distribution of the un-cracked 
component and integrating it along the crack length a, as: 

a 

K1 = a (x) • h(x, a) dx 

The integration in the previous formula has to be performed along the crack length from x=0 at 
the surface until x=a • The weight function h(x, a) depends only on the geometry of the 
component. 

Fig. 13: Weight function integral 

Ref. [9] express the weight function h taking into account tensile and bending stresses for a 
circumferential internal crack inside a cylinder as: 
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• a— — = -R R — r 

• a crack depth, r cylinder inner diameter and R cylinder outer diameter 
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In a similar way the weight function h for an axial internal crack inside a cylinder is obtained by: 

h= 
F p 

Ica111 0
+ 110 /1 + Bi(1 — P)3/21 

15 r/ 7 \ 
• 

B° =
4 2

- 2a — 9

• B1 = T,315 (Yo  Y1) +335 

Where the geometric parameter Y„ (a,(3) is obtained by: 

Y = 
n Apv / r)P au +n 

16.933 —126.67 293.43 —123.665 

(1 — a)3/2 

2.2069 
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—184.51 

—604.97 
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n = 0 
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—20.829 
13.643 

140.291 
—93.90 

—299.00 
193.80 

138.24 
—84.69 

n = 1 

0.0065 —3.0148 20.716 —41.575 17.312 

Finally the NASGRO software database formula proposed in ref. [6] has been evaluated for the 
case of study. NASGRO® is a fracture mechanics and fatigue crack growth analysis software 
Originally developed at the NASA Johnson Space Center and now developed by the Southwest 
Research Institute® (SwRI®), San Antonio, Texas. It provides stress intensity factor equations 
and tables for the crack front angle of 0 and 90 deg for various type of cracks and loading cases 
in term of: 

KI 
FP = 

fx 0-017.1 

[1 + 1.464x1.65H for x < 1 
• fx — 

[1 + 1.464x-1.65]- 1 for x > 1 

• x = a/c crack depth to crack length ratio 

Fig. 14 compare the KI calculated with the three methods before introduced vs. Time, while fig. 
15 compare the KI values due to the internal pressure respectively for the axial and 
circumferential flaw. 
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Fig. 15: SW due to RPV internal pressure for the axial and the circumferential postulated defect 

6. Conclusion 

This paper describes all the steps needed to calculate the stress intensity factor in a PTS analysis: 
system thermal-hydraulic calculation, CFD analysis, stress analysis and the Fracture Mechanics 
analysis for the RPV of a generic VVER1000. In particular the paper has compared the results of 
the fracture mechanics analysis (ICI) performed with three different methodology: J-integral, 
Weight Function and the NASGRO software database formula. Two semi-elliptical defect has 
been postulated: an axial and a circumferential flaw. The SIF due to the internal operating 
pressure of 16 MPa and to the thermal shock consequent a SMLB has been reported using three 
different methodology. A good agreement has been verified between the three different 
methodology for both pressure and thermal shock loading cases. 
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