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Abstract 

During a postulated severe accident in a nuclear reactor in case of ex-vessel scenario the 
molten corium can be relocated in the containment cavity forming a melt pool. In order to 
arrest further progression of severe accident, complete quenching of the molten corium pool is 
necessary. Most common way to deal with ex-vessel scenario is to flood the melt pool with 
large quantity of water. However, the mechanism of coolability is much more complex 
involving multi-component, multiphase heat, mass and momentum transfer. 

In this paper, a mechanistic model has been presented for the corium coolability under 
top flooding conditions. The model has been validated with the experimental data of 
COMECO test facility available in literature. Simulations have been carried out using the 
model to explore the physics behind the corium coolability with MCCI under top flooding 
condition. Variations in the thermo-physical properties as a result of MCCI have been 
considered and its effect on coolability has been studied. 

Introduction 

During a postulated severe accident, the core can melt, and the melt can fail the reactor vessel. 
Subsequently, the molten corium can be relocated to the containment cavity forming a melt 
pool. During the accident progression, the properties of corium such as the viscosity, the melt 
temperature and thermal conductivity can change drastically due to its interactions with the 
in-vessel and ex-vessel structures and also with the concrete basement. Similarly, the 
Modulus of Elasticity, tensile strength and linear thermal expansion coefficient which are 
some of the key parameters that determine the crack formation during melt quenching, can 
change depending on the amount of structural and concrete materials mixing with corium. 
Ex-vessel melt coolability is one of the most critical issues for the safety of current and future 
light water reactors with respect to stabilization and termination of a postulated severe 
accident. The most convenient accident management strategy is to cool the melt pool by 
flooding it from the top. However, the question that arises is to what extent the water 
ingresses in the corium can melt pool to quench and cool it? When the cavity is flooded with 
water from top, immediately a crust is formed on the upper surface of the melt pool, which is 
found to limit the access of the water over-layer to the melt pool below the crust. Initially, due 
to the intense stirring because of gases liberating during MCCI, the crust will not be stable 
and bulk cooling will take place. But after some time, as the gas flow rate decreases, a stable 
crust will prevail. After the stable crust is formed there may be anchoring of crust to the 
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sidewalls of the vessel which may result in a considerable drop in the heat transfer rate due to 
induced gap in between the crust and the melt pool lying below. Although, the crust limits the 
water inflow, cooling may occur by different mechanisms like mechanical breach of crust due 
to its own weight, volcanic eruptions in the crust and water ingression. Water ingresses 
through the gaps and fissures of the crust enhancing the coolability. Very little information is 
available at present on the knowledge of mechanism of water ingression or why the water 
ingression stops after certain depth is reached. 

A literature review suggests that there are very little efforts on modeling of water ingression 
phenomena, both from top and bottom flooding. Originally, the motivation behind modeling 
of water ingression phenomenon did not aim to study the quenching of molten corium pool 
during a postulated severe accident condition in a LWR. In fact, models were developed for 
simulation of cracking behaviour of hot rocks in geological reservoirs. In this context, Lister 
[1] has done pioneering work in modeling the penetration of water into hot rocks by 
considering the simplest possible one dimensional model based on the concept of crack front 
propagation. While Lister's model considered penetration of water into hot but initially solid 
rock under high pressure condition, Epstein [2] used models of bulk permeability of cracked 
rock and developed a model for water penetration into initially molten, heat generating rock 
like material at low pressure which resembles the water ingression phenomena into molten 
corium pool. In ANL, an integrated model for quenching behaviour (CORQUENCH) [3] 
which allows 1-D or simplified 2-D ablation calculations with detail sources and sink terms 
has been developed. Widmann et al [4] have attempted theoretical modeling of the COMET 
concept by considering porosity formation based on pressure rise due to steam formation 
below the crust in bottom flooding scenario. However, these models incorporate lot of 
empirical correlations for describing various phenomena instead of solving phasic equations. 
There are almost no attempts have been made to derive a complete mechanistic model for 
explaining these phenomena. The purpose of this work is to investigate and clarify the water 
ingression and melt coolability behaviour when the melt pool is flooded from the top in an ex-
vessel situation. Towards this purpose, mechanistic models were developed to simulate 
quenching of top and bottom flooded molten pool. 

1. Model description 

The model considers the heat transfer behaviour in axial and radial directions from the molten 
pool to the overlaying water, crust generation and growth, thermal stresses built-in the crust, 
disintegration of crust into debris by brittle fracture, natural convection heat transfer in debris 
and water ingression into the debris bed. To validate the model, we conducted experiments in 
a facility named as COMECO [5]. The model was used to simulate the quenching behaviour 
of the COMECO tests. 

1.1 Governing equations 

The conservation equations of mass, momentum and energy from the molten pool to the 
overlaying water (Fig. 1) as described below: 
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Molten pool region: In molten pool region, equations are solved for natural convection in the 
melt pool 
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Solid crust region: Heat transfer in solid crust is due to conduction only. The energy equation 
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Solid crust region: Heat transfer in solid crust is due to conduction only. The energy equation 
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Figure 1 Schematic of the melt pool with water overlayer considered in the analysis 

The stream function w is related to the velocity as 
lays lays 
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Equation (9) was substituted in equations (5) to (7) to replace the v,. and vz with 41 . Equations (6) 

and (7) were then solved for w and T. 
The boundary conditions for all the above regions are given in Figure 2. 

Calculation of surface heat transfer coefficient: For calculation of heat transfer from top of the 
debris to the pool of water, appropriate heat transfer correlations are used as described below. If 
surface heat flux is greater then the debris bed dry out flux, combination of radiation and film 
boiling heat transfer is used, i.e. for 
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The radiation heat transfer coefficient correlations is calculated as 
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When the surface heat flux is below the dry out flux, i.e. 
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Nucleate boiling correlation [7] is used 
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Figure 2 Boundary conditions for the governing equations 

The film boiling heat transfer coefficient is calculated using the film boiling model [6] as 
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The dryout heat flux was calculated using the following relationship based on counter current 
flooding limitations (CCFL) as given [8]. 1/2 
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Crust generation rate is calculated from energy balance as given by 
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There need not be heat flux continuity at liquid solid interface, when crust formation is taking place. 
In fact, this heat flux discontinuity is only responsible for crust growth. The left hand side of the 
above equation may be negative also, which implies that crust is dissolving in molten pool. This will 
occur due to high heat generation rate in pool which leads to increase in pool temperature and top 
flooding is unable to take the heat away. 
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The film boiling heat transfer coefficient is calculated using the film boiling model [6] as 
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The dryout heat flux was calculated using the following relationship based on counter current 
flooding limitations (CCFL) as given [8]. 
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Crust generation rate is calculated from energy balance as given by  
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There need not be heat flux continuity at liquid solid interface, when crust formation is taking place. 
In fact, this heat flux discontinuity is only responsible for crust growth. The left hand side of the 
above equation may be negative also, which implies that crust is dissolving in molten pool. This will 
occur due to high heat generation rate in pool which leads to increase in pool temperature and top 
flooding is unable to take the heat away. 
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Stresses in solid crust: As cooling initiates, there will be a temperature distribution in the crust. 
Initially, the crust will be formed only at the melting temperature of the material. Once the crust is 
cooled below its solidus temperature, material tends to shrink. However, depending on thermal 
gradient in the crust and the boundary conditions, material may not shrink; which will develop 
stresses in the crust region.The 2-D axi-symmetric equations for stress developed in solid crust are: 

a 50- 
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(17) 

(18) 

These equations come from force balance in differential element. The boundary conditions are given 
in Figure 3, where u is radial and w is the axial displacement. 
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Figure 3 Boundary conditions for stresses in solids 

Stress strain relationship is given as 
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Now using equation (19) in stress equations (17) and (18), two equations in u and w are obtained. At 
the top of the crust there will be no shear stress and the axial stress due to weight of debris and 
water is negligible. Both equations were discretized in implicit manner and solved with boundary 
conditions as shown in figure above, to obtain stress distribution in crust. 
Criteria for fracture of the solid crust: The solid crust was considered to fracture like brittle 
materials. For fracture initiation, the Ritchie's model [9] was used. In this model, fracture initiation 
occurs only when stress exceeds the critical stress in the region. This region is taken generally order 
of eight-grain sizes. So fracture initiation occurs only when stresses are above critical limits in more 
than eight-grain size area. 

1.2 Solution strategy 

The governing equations in melt pool and solid crust region are discretized using finite difference 
method and solved implicitly using Gauss elimination method to obtain temperature distribution in 
the melt pool. After evaluating the temperatures, the crust growth rate is calculated and 
subsequently the thickness of the solid crust region is updated. In debris region, pressure term is 
eliminated in the momentum equation with the help of stream function approach. Then applying 
Boussinesq approximation we get momentum equation and energy equation in iv and T. Then both 
the equations are solved implicitly. After the temperature distribution has been obtained, the stress 

The 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-14  
Toronto, Ontario, Canada, September 25-30, 2011 
 Stresses in solid crust: As cooling initiates, there will be a temperature distribution in the crust. 
Initially, the crust will be formed only at the melting temperature of the material. Once the crust is 
cooled below its solidus temperature, material tends to shrink. However, depending on thermal 
gradient in the crust and the boundary conditions, material may not shrink; which will develop 
stresses in the crust region.The 2-D axi-symmetric equations for stress developed in solid crust are: 

( ) 0z
rzr

r z
στ ∂∂

⋅ + =
∂ ∂

 (17) 

( ) rz
rr r

r z θ
τσ σ∂∂

⋅ + =
∂ ∂

 (18) 

 
These equations come from force balance in differential element. The boundary conditions are given 
in Figure 3, where u is radial and w is the axial displacement. 

u

w

u =0
w =0

0zσ =0rzτ =

0rzτ = w =0

u =0
0w

r
∂

=
∂

 
Figure 3 Boundary conditions for stresses in solids 

Stress strain relationship is given as 
 

1 0
1 0

1 0(1 )(1 2 )
1 20 0 0

2

r

z

rz

u T
r

u T
E r

w T
z
u w
r z

θ

α
ν ν νσ

ν ν ν ασ
ν ν νσ ν ν αντ

∂⎛ ⎞− ∆⎜ ⎟∂−⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟− − ∆⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ = ⎜ ⎟− ⎜ ⎟⎜ ⎟ ∂+ − ⎜ ⎟⎜ ⎟− ∆⎜ ⎟ −⎜ ⎟⎜ ⎟∂⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠ ∂ ∂⎜ ⎟+
∂ ∂⎝ ⎠

 

(19) 

   

Now using equation (19) in stress equations (17) and (18), two equations in u and w are obtained. At 
the top of the crust there will be no shear stress and the axial stress due to weight of debris and 
water is negligible. Both equations were discretized in implicit manner and solved with boundary 
conditions as shown in figure above, to obtain stress distribution in crust. 
Criteria for fracture of the solid crust: The solid crust was considered to fracture like brittle 
materials. For fracture initiation, the Ritchie’s model [9] was used. In this model, fracture initiation 
occurs only when stress exceeds the critical stress in the region. This region is taken generally order 
of eight-grain sizes. So fracture initiation occurs only when stresses are above critical limits in more 
than eight-grain size area.  

1.2 Solution strategy 
The governing equations in melt pool and solid crust region are discretized using finite difference 
method and solved implicitly using Gauss elimination method to obtain temperature distribution in 
the melt pool. After evaluating the temperatures, the crust growth rate is calculated and 
subsequently the thickness of the solid crust region is updated. In debris region, pressure term is 
eliminated in the momentum equation with the help of stream function approach. Then applying 
Boussinesq approximation we get momentum equation and energy equation in ψ and T. Then both 
the equations are solved implicitly. After the temperature distribution has been obtained, the stress 
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equations are solved implicitly by finite difference technique. With the stresses, the fracture 
conditions are evaluated. If criteria for fracture is satisfied, the fractured grids are merged into 
debris region. The calculation procedure for debris surface heat transfer coefficient has already been 
discussed in equations 11-15. When the surface heat flux falls below the dry out flux, water is 
considered to ingress into debris. 

1.3 Model validation 

The model was used to predict the COMECO tests. Fig. 4 shows transient temperature history of the 
molten pool during quenching, as predicted by the model. Theoretical results also show that 
temperature of top layer falls suddenly in 500 seconds which is closer to measured value. The 
transient temperature history due to quenching is similar as measured in the experiments (Fig. 5). 
Model predicts water ingression of 0.11 m. It is very close to experimental result which was around 
0.1 m. 
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2. Effect of Molten core concrete interaction (MCCI) on coolability of Corium: 
The model was used to predict the coolability of corium in an envisioned scenario following a 
severe accident. A parametric analysis was carried out to study the influence of change in thermo-
physical properties of corium concrete mixture during molten core-concrete interaction. Corium 
mechanical properties vary with concrete as given in [10]. The effect of change in thermal 
expansion coefficient on coolability is given in Fig 6a and 6b. Figure 6a shows the water ingression 
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predicted during corium quenching. It can be seen that water is able to ingress up to a large depth 
into the corium crust. Figure 6b shows that, because of concrete addition, the thermal expansion 
coefficient is reduced which no longer causes water ingression and coolability is limited as shown in 
Fig 7a and b. this can be attributed to the fact that, because of decreased thermal expansion 
coefficient, there are less thermal stresses generated in the corium, which prevents it from fracturing 
thus limiting water ingression. 
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Similar effect is seen when there is increase in corium strength as shown in Fig 8a and b. as the 
strength of corium increases, it is difficult to fracture it and it stops the water ingression. The 
corresponding temperature history is given in Fig 9a and b. 
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Similar effect is seen when there is increase in corium strength as shown in Fig 8a and b. as the 
strength of corium increases, it is difficult to fracture it and it stops the water ingression. The 
corresponding temperature history is given in Fig 9a and b. 
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Since it was observed that, the factors which make the corium difficult to break hinder the coolability. 
It was conceived that, coolability is influenced by a dimensional parameter consisting of different 
parameters which can influence the fracture of corium. One such parameter was thought to be Ea/a 
where E is Young's modulus, a is thermal expansion coefficient and a is strength of corium. Analysis 
was carried out by varying individual parameters but keeping the dimensionless parameter same. It was 
found that, resultant coolability was unaffected as shown by Figs 10 and 11. 
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Since it was observed that, the factors which make the corium difficult to break hinder the coolability. 
It was conceived that, coolability is influenced by a dimensional parameter consisting of different 
parameters which can influence the fracture of corium. One such parameter was thought to be Eα/σ 
where E is Young’s modulus, α is thermal expansion coefficient and σ is strength of corium. Analysis 
was carried out by varying individual parameters but keeping the dimensionless parameter same. It was 
found that, resultant coolability was unaffected as shown by Figs 10 and 11.  
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3. Conclusions: 

In this paper, numerical investigation was carried out to investigate the water ingression phenomena in 
melt pool coolability under top flooding condition. The model includes the heat transfer behaviour in 
axial and radial directions from the molten pool to the overlaying water, crust generation and growth, 
thermal stresses built-in the crust, disintegration of crust into debris, natural convection heat transfer in 
debris and water ingression into the debris bed. To validate the model, experimental data from test 
carried out on a facility named as COMECO (COre MElt COolability) was taken. The model was 
found to simulate the quenching behaviour and depth of water ingression reasonably. Effect of MCCI 
on the change in properties and subsequently on the coolability of the corium was explored. It has been 
found that, the coolability is influenced by a dimensionless parameter Ea/a. Higher is the parameter, 
better is the coolability. 
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melt pool coolability under top flooding condition. The model includes the heat transfer behaviour in 
axial and radial directions from the molten pool to the overlaying water, crust generation and growth, 
thermal stresses built-in the crust, disintegration of crust into debris, natural convection heat transfer in 
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d Particle diameter (m) 

g Gravitational acceleration (m/s2) 
h Latent heat of vaporization (kJ/kg) 
p Pressure (Pa) 
z Axial direction (m) 

Cp Specific heat capacity at constant pressure (J/kg K) 
F Interfacial drag force (N/m3) 
G Mass flux (kg/m2.$) 
J Superficial velocity (m/s) 
K Permeability 

Q Volumetric heat generation (W/m3) 
T Temperature (K) 

Greek letters 

a Void fraction 
6 Bed porosity 

11 Viscosity (Pa.$) 

P Density (kg/m3) 
a Axial Stress (N/m2) 

aST Surface tension (N/m) 

T1 Bed passability 
T Shear stress (N/m2) 
✓ Poisson's ratio 

Subscripts 

g Gas 
i Interfacial 
1 Liquid 
p particle 
✓ radial 
rel Relative 
sat Saturated 
✓ Vapor 
z axial 

4. References 

[1] C. R. B. Lister, "On the Penetration of Water into Hot Rock", Geophys. J. R. Astron. Soc., 39, 
1974, pp 465-509. 

[2] M. Epstein, "Dryout Heat Flux during Penetration of Water into Solidifying Rock", J. Heat 
Transfer, 128, 2006 , pp 847-850. 
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