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Abstract

It is well known that the one-dimensional equations of motion for two-phase flow are non-
hyperbolic. Non-hyperbolicity can lead to numerical instabilities, destroying the solution.
However, researchers in the last few decades were able to show that inclusion of virtual mass
and/or phase-to-interface pressure differences in the momentum equations successfully render the
equations of motion hyperbolic. In the present paper, the effect of including virtual mass and
phase-to-interface pressure terms in the momentum equations on the hyperbolicity of the two-
phase model in the CATHENA 4 code is discussed. The study is motivated by the fact that the
inclusion of either model has been shown in the open literature to lead to a hyperbolic system
separately. However, no known study exists that examine hyperbolicity in the presence of both
these terms in the momentum equations. In this work, both terms are considered in the model
equations simultaneously and their implications on the hyperbolicity of the two-phase model are
discussed. Specifically, it is shown that in the case of mixed flow, there is a distinct region of
non-hyperbolicity that developers need to be aware of when their equations include both the
virtual mass and the phase-to-interface terms. Selecting the coefficients of phase-to-interface
pressure difference terms properly ensures that the equations are hyperbolic for a wide range of
conditions.

1. Introduction

CATHENA [1] is the primary thermalhydraulic network analysis tool used by Atomic Energy of
Canada Ltd. (AECL) in the design, safety and licensing analysis of power and research reactors
as well as test facilities.

A new version of the code, CATHENA 4 is currently under active development [2]. Although
CATHENA 4 will inherit many of the hydraulic closure laws and heat transfer correlations
from CATHENA 3, there are also significant changes in the numerical integration scheme,
two-phase model, range of application, and language platform. For example, it is planned that
the code will support three-field (continuous vapor, continuous liquid, entrained liquid), two-
phase flow equations as opposed to the present version, which is based on a two-field model.

On the numerical front, the new code integrates the full non-linear set of two-phase field
equations. This ensures that mass, energy, and momentum errors resulting from finite time
discretization are identically zero. Errors resulting from out-of-range variables are corrected
by standard means, that is, they are added back to the originating field. The field equations are
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cast in the Jacobian form and solved iteratively using Newton’s method over the entire
network.

The form of the momentum equations for one-dimensional two-phase flow is an important factor
in the determination of the stability of the corresponding numerical scheme that is used to
integrate them. The averaging operators that are applied to obtain the one-dimensional form
inevitably result in loss of finer details of the flow field. Two such important phenomena are the
virtual mass and the phase-to-interface pressure difference terms.

The virtual mass term is an interphase exchange term in the momentum equations and most
relevant in the bubbly flow regime region. The traction at the interface depends on the geometry
of the interface and the details of the flow field inside and outside of the bubble. However, such
details of motion are lost during the averaging process. Drew et al. [3] has suggested that the
virtual form should be proportional to an appropriate acceleration and derived an objective form
based on principles of frame invariance. This form was expressed in terms of a single parameter
and the relative acceleration of the phases. It forms the basis of the present paper as far as the
effect of virtual mass on hyperbolicity is concerned. The general form for the virtual mass term
suggested by Drew has been the subject of a number of subsequent investigations. For example,
Watanabe et al. [4,5] has shown that using the objective form of the virtual mass with the proper
choice of the virtual mass coefficient, leads to a hyperbolic system.

The second term in the momentum equations that can potentially affect the hyperbolicity of the
field equations is the phase-to-interface pressure differences. This is discussed in detail by
Stuhmiller [6], who proposed an additional term to be added to the momentum equation from
first principles.

In Section 2, the field equations are given in their simplified form, that is, for a two-field model.
Multifield equations of motion for CATHENA 4 can be found in [2].

In Section 3, the characteristic determinant of the system of equations is presented. The
characteristic determinant includes terms arising from the inclusion of virtual mass as well as the
phase-to-interface pressure terms. Section 3 also examines the conditions of hyperbolicity for a
range of conditions in terms of the phase density ratios. These relations are given in the form of
various inequalities that must be satisfied for the equations to remain in the hyperbolic region.

2. Field Equations

The multi-field equations for the one-dimensional two-phase model used in CATHENA 4 are
given in their most general form in [2]. To simplify the analysis, the more often used form for
two-fields is given. In this form, the governing equations for the two-fluid model consist of six
conservation equations, that is, mass, momentum, and energy for each phase. Furthermore, the
energy equations are of no interest in this paper since the characteristic velocities of the energy
equation can be shown to be the same as convective velocities. Thus, only the mass and
momentum equations will be considered in the current analysis. The mass and momentum
equations are given by,
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Mass conservation, phase k
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where, o, , p,, Vv, are the phase volume fraction, density, velocity respectively and m,, is the
volumetric interface mass transfer rate.

Momentum Balance, phase k
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where R, 7,,, T,; and g, are the phase pressure, phase-to-wall friction, interface friction and
acceleration due to gravity. The virtual mass term M is given by

M = @40 Cindyn @)
In Equation (3), C, and a,are the virtual mass coefficient and the virtual mass acceleration,
respectively. The latter is given in objective form by the expression [3],
o a(vgat Vi) v, a(vg82 Vi) -2, —vf)%ﬂl—)\)(vg _Vf)% %
Following [4, 5], in the present work A has been chosen to be 2 so as to obtain agreement
between analytical and experimental speeds of sound in two-phase flow.

In the characteristic analysis provided by [4], a simple, one-pressure model was assumed. As a
result, the analysis of Watanabe excluded the affects of phase-to-interface pressure difference
terms. In the present work, these terms will be referred to as the “beta” terms, referring to the

term 5, % in Equation (2). The beta terms are defined in the following section.
z

3. Analysis of the Characteristics

CATHENA one-dimensional field equations can be arranged in the general form:

ou ou
A—+B-—=C 5
ot 0z ©)
along with the initial condition
U(@0,2) =G(2) (6)

represent a well-posed initial value problem if and only if the system of first order partial
differential equations possesses real characteristics. System vector U is defined such that it has
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the components P,ay,hy he,vy,ve where each components is a function time, and distance.

The phase enthalpies, h, and h; are associated with the gas and liquid energy equations. The

characteristics (or eigenvalues), y, of the system given by Equation (5) can be determined from
the sixth order polynomial,

det(An—B)=0 (7)

Since the characteristic speeds associated with the energy equations are simply v, and v, , the

energy equations are not considered and the solution vector is reduced to P, Oy, Vg,V Thus
only four equations need to be considered in the present characteristic analysis.

The mass conservation equations are:

% ag@ agvga_P O ov

+-2 v, —>+ —2 =m, 8
"ot "ot & oz v o e ®
Ooy o OP a4V, OP oy ov;
+——+ —+pVy —+ — =—My 9
Pror Ta ot e oz T e M T d ®)
where,
ap, |
2 _| 9Py

a, _[ ap] (10)

2 8lof N
& = 2p (11)

are the sound speed for gas and liquid phases, respectively. The gas and liquid mass conservation
equations above are multiplied by v, and v, and subtracted from the corresponding momentum

balance equations to obtain,

8vg avg 8% OP

“Who T Tt g T T T g T T e R 4
v, v, Doy oP

g Py E“'O‘fpfvf E—i_ﬁf E"‘O‘f E:Mvm_{_@f (13)

where @, and @, denote the remaining non-derivative interface mass transfer, friction (wall

and interface), and the gravity terms that do not affect the hyperbolicity of the system of
equations. This is because the characteristic speeds are related to the wave propagation properties

(4/12)



The 14™ International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) Log Number: 050
Hilton Toronto Hotel, Toronto, Ontario, Canada, September 25-29, 2011.

of the model and involve only the differential terms. The phase to interface pressure difference
terms are given by the B, and 3, terms where,

B, =P, —P and B, =P, —P (14)
Proceeding with the characteristic analysis of the system given in Equations (8), (9), (12) and
(13) a fourth order polynomial is obtained. However, considerable simplification can be achieved
and the eigenvalue problem can be reduced to the solution of a second degree polynomial if the

system of equations is re-arranged slightly. This involves rearranging the momentum equations
as described below.

Adding the gas and momentum equations, the derivatives of the virtual mass term from one of
the equations can be eliminated as follows:

v, ov, v, ov day 0P
E—i_afpf E*‘%Png EJrafPfo E_‘_(/Bg_ﬁf) E+ 520 (15)

QgPq

Next, multiplying the gas momentum equation by o, and the liquid momentum equation by o,
and subtracting them, the pressure term can be eliminated:

v, v,
Y afpg+pfcvm ot — Qg QP +prvm E_F
v,
(1050 a0 oA =Dy, —agp CA =2y — 2= (16)
oV, day,
[afagpf +agprvm(1_)‘)]Vf —Oégpfcvm)\vg E‘f’ Oéfﬁg +Oégﬁf —az =0

The final system of equations is then given by Equations (8), (9), (15), and (16). This leads to
the matrices A and B in the characteristic polynomial given in Equation (7) as follows:

Qg
2 Py 0 0
a
g
Ay
A== —p; 0 0 a7
a
0 agpg Qg Pg
0 0 aagpg+ pae —(agaips + pyp)
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Recognizing that the phase velocities are much smaller than the phasic sounds speeds, that is,
a; >>v, and af >>v, , the characteristic polynomial is then given by the determinant,

0 Py (1 —Vy) —Qy Py 0

0 —ps (L—V¢) 0 —¢ P

_1 ﬁf_ﬁg agpg(:u’_vg) afpf(:u’_vf) :O (19)
ap, +p:C —V — o, ps +p:C,, —V

0 —(Oéfﬁg +agﬁf) fPg T Ps (1 g) tP+ T Pt (n—Vvy)
_prvm(/\_z)(Vg _Vf) +pfcvm)‘(vg _Vf)

which can be shown to be equivalent to the following second degree polynomial in u:

pe (1 —=Vy) —Qy Py 0
—pe (L—Vy) 0 P
o o) |afpg+pfcvm (uv@l | Py +p(Cp (uvf)} =0 (20)
—pCn(A=2)(v, —V,) +pCon AV V)

To simplify the algebra, the following transformations will be applied:

Vr :Vg —Vf

A:pfcvm (21)
B :_(Oéfﬁg +agﬁf)

r=XA-v,

With the above transformations, the quadratic corresponding to Equation (20) is of the form,

ar®+br+c=0 (22)

where,
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a = afng +ogapp +A
b =[AQ2—X\)+2a,0,p;], (23)
¢ =a,a(psV,” +B)+a, AlL—A)V,?
It has been shown [4] that the best fit to measurements of sounds speed are obtained when
A — 2. This is true for measurements of sound speed in air-water as well as steam-water (at
~0.267 MPa, 402 K).

Also, for mixed flow regime, the phase to interphase pressure differences is given by,
ﬁk = CppmVr2 (24)

where p, = o, p, + o, p; is the mixture density and k = f,g and C, is a multiplier to be
determined. In what follows, it will be shown that selection of C, must be made with care to
avoid complex characteristics. It is easy to show that B = —(ot; B, + o, B¢ ) = —Cppmvr2 . Thus,
the coefficients of the quadratic in Equation (22) can be shown to be given by,

a :afng +agafpf +A
b =2aa.p.v, (25)
c :[agaf (pf _pm(:p)_()ég'a\]vr2

For real eigenvalues, the discriminant of the quadratic in Equation (22) must be positive. Thus,
we have the condition:

Pi°Con” +pCo (0" +Cpopp — pi) +a* (g —pip” +Cop py) >0 (26)
where
p = Qypr Qg (27)

The apparent mass coefficient, C,, and the coefficient of phase-to-interface pressure term, C,

must be selected in such a way that inequality (26) must be satisfied for all fluid states. Possible
range of values for C,, and C, are discussed for all possible cases below.

3.1 No virtual mass or phase-to-interphase pressure difference terms

If C,, =C, =0, both the virtual mass and interface pressure terms will vanish. In this case,
inequality (26) can be shown to reduce to:
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Qg > oy + oy Ps (28)
P
Clearly, this condition can never be satisfied. As a result, for this case, the equations are always
ill-posed (complex characteristics).

3.2 Non-zero phase-to-interphase pressure difference terms

If C,, =0 and C =0, then, for real characteristics C, must be chosen such that,

} (29)

In Figure 1 the lower bound to Equation (29) has been plotted for pressures ranging between 0.1
MPa to 10 MPa. It is observed that in the absence of virtual mass term, interface-to-phase
pressure terms can still render the equations well-posed as long as C remains above the curve

corresponding to 10 MPa (assuming a typical CANDU simulation). In implementation, the
inequality sign in Equation (29) would have to replaced with the equality sign. The current value
used in CATHENA 3is C, =0.17.

1-2
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Figure 1 Phase-to-interface pressure multiplier forC,, =0 from Eqgn. (29).

3.3 Non-zero virtual mass coefficient

If C,=0and C,, #0, then, for real characteristics C,, must be chosen such that,
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which is a lower bound since the inequality has been replaced by the equality sign. In Figure 2
Equation (30) has been plotted for pressures ranging between 0.1 MPa to 10 MPa. It is observed
that in the absence of the interface-to-phase pressure terms, the equations can still be rendered
well-posed for a wide range of pressures if C, . is chosen such that it remains above the values
determined from Equation (30). It is noted that the dependence of this equation on the density

ratio is very weak. Taking advantage of this property, if the density ratio in Equation (30) is set to
zero, the following simple relation is obtained for the lower bound virtual mass coefficient:

Ay (1_p_g)2 +4[0_g
P P

Cvm :%afz[ _p_g
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Figure 2 Virtual mass coefficient for C, =0 from Eqn. (30) and (31).

Equation (31) is also plotted in Figure 2; as expected it is indistinguishable from the plots given
by the more general expression given in Equation(30). This is remarkable and it suggests that the
equations can be rendered well-posed if the coefficient of virtual mass is given by Equation (31)
for the case A =2 in Drew's objective form for the virtual mass, given in Equation (4).

3.4 Non-zero virtual mass and phase-to-interface pressure difference terms

The most general case is when C,, #0 and C, # 0. Under these conditions, using the inequality

in Equation (26) it can be shown that the virtual mass coefficient, C,. , is given by,

vm !
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Since the ratio 2 can be shown to be equal to o, &+ o, , itis observed that C,, is a function
Py P+

of void fraction and the density ratio (or pressure) only.

P=20.0 MPa ---:-
Equation (34) at 20 MPa_-- -~ -- -

CP (-)

.
.....
............

Void Fraction (-)
Figure 3 Phase-to-interface pressure multiplier from Eqn. (34).

Equation (32) provides the most general form for the virtual mass coefficient but it must be noted
that at this point, C still is indeterminate. The restrictions imposed on C can easily be stated

since complex as well as negative values for C,, must be excluded. Thus, the portion of

Equation (32) that is under the square root must be non-negative. This imposes the following
condition on the phase-to-interface pressure coefficient, C

2

p* IOm pg
c, 2 Ll

DRt

Pt Pt Ps

o 1-L2y_c Lo >0 (33)

Ps Ps

—4

Solving for C and replacing o; with 1—a, the following relation is obtained,
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Equation (34) gives the lower bound on C which is consistent with the definition of C, .

Equation (34) is plotted at 20 MPa in Figure 3, showing its relation to the limiting cases that
were presented earlier in Figure 1. The plotting range has been extended to cover up to 20 MPa
to provide guidance for code developers who work on supercritical water reactor applications. It
is observed that the form of C that is consistent with the definition of C, is the curve that

bounds all other curves. Therefore, if a formulation of two-phase flow where both virtual mass
and phase-to-interface pressure terms are present is used, Equation (34) provides a limiting
envelope and all formulations of C; must lie above this curve. In implementation, the developers

are advised to use Equation (34) in its equality form which will then provide for a formulation
dependent on density ratio (i.e. pressure) and void fraction.

Substituting C,, given in Equation (34) in Equation (32) and taking the lower bounding curve

(that is, changing the >’ operator to ‘=" operator), the most general form of the virtual mass
coefficient which satisfies Drew's objectivity condition can be obtained:
1+p—g+ag(1p—9]24/agj (35)
Pt Pt

Equation (35) is plotted in Figure 4 for various pressures, up to supercritical conditions.
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Figure 4 Virtual mass coefficient from Eqgn. (35).
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It is observed that the restriction on C, becomes tighter as pressure decreases. In application, is

it recommended that Equation (35) is implemented and the density ratio is kept as one of the
model parameters. It is also observed that in the presence of phase-to-interface pressure
difference terms, virtual mass coefficient can take lower values (compare with Figure 2) and still
render the system of equations hyperbolic. The only condition is that the coefficient of phase-to-
interface pressure difference, C, must obey the inequality (34). In implementation, this
inequality must be converted to an equality, providing the lower bound for C . Equation (35) can

then be used to ensure that the two models do not interfere with each other as far as the
hyperbolicity of the partial differential equations is concerned.

4. Conclusion

An important conclusion of the present analysis is that, models for virtual mass coefficient and
the phase-to-interface pressure difference coefficients may not be specified independently.
Drew's law of objectivity given in Equation (4) leads to the most general form of C,, given in

Equation (32) as a function of C . However, this form places its own restrictions on C, which
leads to the only admissible form of C given in Equation (34). It turns out that this form of C,
is also the curve that bounds all cases that were obtained for the simple case C,, =0. The most
general formulation of C, consistent with the formulation of phase-to-interface pressure

difference terms is given in Equation (35). As part of future work, the implications of the present
analysis should be investigated on the discretised form of the governing equations.
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