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Abstract 

It is well known that the one-dimensional equations of motion for two-phase flow are non-
hyperbolic. Non-hyperbolicity can lead to numerical instabilities, destroying the solution. 
However, researchers in the last few decades were able to show that inclusion of virtual mass 
and/or phase-to-interface pressure differences in the momentum equations successfully render the 
equations of motion hyperbolic. In the present paper, the effect of including virtual mass and 
phase-to-interface pressure terms in the momentum equations on the hyperbolicity of the two-
phase model in the CATHENA 4 code is discussed. The study is motivated by the fact that the 
inclusion of either model has been shown in the open literature to lead to a hyperbolic system 
separately. However, no known study exists that examine hyperbolicity in the presence of both 
these terms in the momentum equations. In this work, both terms are considered in the model 
equations simultaneously and their implications on the hyperbolicity of the two-phase model are 
discussed. Specifically, it is shown that in the case of mixed flow, there is a distinct region of 
non-hyperbolicity that developers need to be aware of when their equations include both the 
virtual mass and the phase-to-interface terms. Selecting the coefficients of phase-to-interface 
pressure difference terms properly ensures that the equations are hyperbolic for a wide range of 
conditions. 

1. Introduction 

CATHENA [1] is the primary thermalhydraulic network analysis tool used by Atomic Energy of 
Canada Ltd. (AECL) in the design, safety and licensing analysis of power and research reactors 
as well as test facilities. 

A new version of the code, CATHENA 4 is currently under active development [2]. Although 
CATHENA 4 will inherit many of the hydraulic closure laws and heat transfer correlations 
from CATHENA 3, there are also significant changes in the numerical integration scheme, 
two-phase model, range of application, and language platform. For example, it is planned that 
the code will support three-field (continuous vapor, continuous liquid, entrained liquid), two-
phase flow equations as opposed to the present version, which is based on a two-field model. 

On the numerical front, the new code integrates the full non-linear set of two-phase field 
equations. This ensures that mass, energy, and momentum errors resulting from finite time 
discretization are identically zero. Errors resulting from out-of-range variables are corrected 
by standard means, that is, they are added back to the originating field. The field equations are 
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cast in the Jacobian form and solved iteratively using Newton's method over the entire 
network. 

The form of the momentum equations for one-dimensional two-phase flow is an important factor 
in the determination of the stability of the corresponding numerical scheme that is used to 
integrate them. The averaging operators that are applied to obtain the one-dimensional form 
inevitably result in loss of finer details of the flow field. Two such important phenomena are the 
virtual mass and the phase-to-interface pressure difference terms. 

The virtual mass term is an interphase exchange term in the momentum equations and most 
relevant in the bubbly flow regime region. The traction at the interface depends on the geometry 
of the interface and the details of the flow field inside and outside of the bubble. However, such 
details of motion are lost during the averaging process. Drew et al. [3] has suggested that the 
virtual form should be proportional to an appropriate acceleration and derived an objective form 
based on principles of frame invariance. This form was expressed in terms of a single parameter 
and the relative acceleration of the phases. It forms the basis of the present paper as far as the 
effect of virtual mass on hyperbolicity is concerned. The general form for the virtual mass term 
suggested by Drew has been the subject of a number of subsequent investigations. For example, 
Watanabe et al. [4,5] has shown that using the objective form of the virtual mass with the proper 
choice of the virtual mass coefficient, leads to a hyperbolic system. 

The second term in the momentum equations that can potentially affect the hyperbolicity of the 
field equations is the phase-to-interface pressure differences. This is discussed in detail by 
Stuhmiller [6], who proposed an additional term to be added to the momentum equation from 
first principles. 

In Section 2, the field equations are given in their simplified form, that is, for a two-field model. 
Multifield equations of motion for CATHENA 4 can be found in [2]. 

In Section 3, the characteristic determinant of the system of equations is presented. The 
characteristic determinant includes terms arising from the inclusion of virtual mass as well as the 
phase-to-interface pressure terms. Section 3 also examines the conditions of hyperbolicity for a 
range of conditions in terms of the phase density ratios. These relations are given in the form of 
various inequalities that must be satisfied for the equations to remain in the hyperbolic region. 

2. Field Equations 

The multi-field equations for the one-dimensional two-phase model used in CATHENA 4 are 
given in their most general form in [2]. To simplify the analysis, the more often used form for 
two-fields is given. In this form, the governing equations for the two-fluid model consist of six 
conservation equations, that is, mass, momentum, and energy for each phase. Furthermore, the 
energy equations are of no interest in this paper since the characteristic velocities of the energy 
equation can be shown to be the same as convective velocities. Thus, only the mass and 
momentum equations will be considered in the current analysis. The mass and momentum 
equations are given by, 
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Mass conservation, phase k 

0 0 
at akPk Oz akPkvk mki (1) 

where, ak , pk , vk are the phase volume fraction, density, velocity respectively and mk, is the 

volumetric interface mass transfer rate. 

Momentum Balance, phase k 

0   
 akpkvk +

OP
— akpkvkvk +a k k 

r_2k Oak — 
T kw Tid MkiVi — akpkgz ±(-1)kMvm (2) at 0z Oz Oz 

where Pk , Tkw , i and gz are the phase pressure, phase-to-wall friction, interface friction and 

acceleration due to gravity. The virtual mass term Mi,,,, is given by 

M vm = a gp f C vmavm (3) 

In Equation (3), Cym and awn are the virtual mass coefficient and the virtual mass acceleration, 

respectively. The latter is given in objective form by the expression [3], 

a(vg —vf ) 0(vg —v 
awn = +v  f + 

at g Oz 

v Ov 
(A 2)(vg vf ) O g ±(1 A)(vg vf ) 

fOz 

Following [4, 5], in the present work A has been chosen to be 2 so as to obtain agreement 
between analytical and experimental speeds of sound in two-phase flow. 

In the characteristic analysis provided by [4], a simple, one-pressure model was assumed. As a 
result, the analysis of Watanabe excluded the affects of phase-to-interface pressure difference 
terms. In the present work, these terms will be referred to as the "beta" terms, referring to the 

term Ok Oak in Equation (2). The beta terms are defined in the following section. 
Oz 

3. Analysis of the Characteristics 

CATHENA one-dimensional field equations can be arranged in the general form: 

along with the initial condition 

(4) 

AOU +BOU=C (5) 
Ot Oz 

U(0, z) = G(z) (6) 

represent a well-posed initial value problem if and only if the system of first order partial 
differential equations possesses real characteristics. System vector U is defined such that it has 
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the components P,ag,hg,hf,vg,vf , where each components is a function time, and distance. 

The phase enthalpies, hg and hf are associated with the gas and liquid energy equations. The 

characteristics (or eigenvalues), [I, of the system given by Equation (5) can be determined from 
the sixth order polynomial, 

det(Att — B) = 0 

Since the characteristic speeds associated with the energy equations are simply vg and of , the 

energy equations are not considered and the solution vector is reduced to P,ag,vg,vf . Thus 

only four equations need to be considered in the present characteristic analysis. 

The mass conservation equations are: 

where, 

aag ag op agvg 0/3 _ ° "g - + 
Ov 

Pg at ag2 at ag2 Oz " gvg Oz gPg Oz 

Oa f  cxf  op ± f n  f  vf

+ 
Oaf f 

P1 at + 4 at af2 az P az f Pf az 
= mgi

a2 

2 af 

_1 
0 p g 
OP 

-1 
pf l 

OP 

= m gr

(7) 

are the sound speed for gas and liquid phases, respectively. The gas and liquid mass conservation 
equations above are multiplied by vg and of and subtracted from the corresponding momentum 

balance equations to obtain, 

av Ov Oa OP 
g a g 13   = 

gp g + g 
Agog  

 + g OZg 
+ 

g Oz Mvm g

av f av f acx f  + a 
Op 

—M 
afp f Ot f pfvf Oz f az f az vm f

(12) 

(13) 

where c g and Of denote the remaining non-derivative interface mass transfer, friction (wall 

and interface), and the gravity terms that do not affect the hyperbolicity of the system of 
equations. This is because the characteristic speeds are related to the wave propagation properties 
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of the model and involve only the differential terms. The phase to interface pressure difference 
terms are given by the 13g and f3 f terms where, 

,3g =Pg — Pi and = Pf - (14) 

Proceeding with the characteristic analysis of the system given in Equations (8), (9), (12) and 
(13) a fourth order polynomial is obtained. However, considerable simplification can be achieved 
and the eigenvalue problem can be reduced to the solution of a second degree polynomial if the 
system of equations is re-arranged slightly. This involves rearranging the momentum equations 
as described below. 

Adding the gas and momentum equations, the derivatives of the virtual mass term from one of 
the equations can be eliminated as follows: 

av av  as O 
gp g 

at 
 ±afpf 

at
 +a

g 
p

g 
v 

g at 
 +a

f 
p
f vf az

 + (3g f 
az a 

)  g 
p 

+  —0 (15) 

Next, multiplying the gas momentum equation by a f and the liquid momentum equation by ag

and subtracting them, the pressure term can be eliminated: 

g avf
g a f pg pf C vm 

at 
a g ap 

±pfCvm at
 + 

Ov 
[ctfagpg agpfCv„, (A — 1)1 vg — agp fCvm (A — 2)vi.  gz — -

[cc gp f gp A)lv f — gp fCvmAvg 
Ovf 

f 0g g0 f  
az

g =0 

(16) 

The final system of equations is then given by Equations (8), (9), (15), and (16). This leads to 
the matrices A and B in the characteristic polynomial given in Equation (7) as follows: 

A = 

a g
Pg

Pf 

0 

0 

0 

0 (17) 

a2 

o f 

2 af 

0 0 cegpg a fPf 

0 0 cvfagPg + PAP —(cvgafPf + PAP) 
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B = 

v g g 

a
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Recognizing that the phase velocities are much smaller than the phasic sounds speeds, that is, 
a2 >> vg and a2 >> v1, the characteristic polynomial is then given by the determinant, 

0 Pg(P — vg) 
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—1 3 3 f g
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which can be shown to be equivalent to the following second degree polynomial in it : 
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To simplify the algebra, the following transformations will be applied: 

yr = vg — vf

A= pfcn 

B = —(cvA gof ) 
r = A — vg

(18) 

= 0 (19) 

= 0 (20) 

With the above transformations, the quadratic corresponding to Equation (20) is of the form, 

where, 

2
ar +or +c = 

(6/12) 

(21) 

(22) 
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a = (-If2
pg ± a ga f  p f  ± A 

b = [A(2 — A) ± 2agafpf ] v,. 

c = a ga f (p it)? + B) + a gA(1 — A)v,2

It has been shown [4] that the best fit to measurements of sounds speed are obtained when 
A 2 . This is true for measurements of sound speed in air-water as well as steam-water (at 

0.267 MPa, 402 K). 

(23) 

Also, for mixed flow regime, the phase to interphase pressure differences is given by, 

f3k =Cppmv,2 (24) 

where pm = a gpg + a f pf is the mixture density and k= f ,g and C,, is a multiplier to be 

determined. In what follows, it will be shown that selection of C,, must be made with care to 

avoid complex characteristics. It is easy to show that B = —(af(3g +agl3f )=—Cppmv,2 . Thus, 

the coefficients of the quadratic in Equation (22) can be shown to be given by, 

a =ccf2
pg ± ag a f pf +A 

b , 2agaf pfv, 
11

c =[ctgctf (pf — pniC p) — agillV r2

(25) 

For real eigenvalues, the discriminant of the quadratic in Equation (22) must be positive. Thus, 
we have the condition: 

where 

pf2Cvm2 ±af pfCvm(p* 4-Cppm pf )± a f 2 (ctgp f 2 pf p* +Cpp* pm)> 0 

P = a gPf ± a fPg 

(26) 

(27) 

The apparent mass coefficient, Gym and the coefficient of phase-to-interface pressure term, C p , 

must be selected in such a way that inequality (26) must be satisfied for all fluid states. Possible 
range of values for Gym and C,, are discussed for all possible cases below. 

3.1 No virtual mass or phase-to-interphase pressure difference terms 

If Cwn = C p = 0 , both the virtual mass and interface pressure terms will vanish. In this case, 

inequality (26) can be shown to reduce to: 
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It has been shown [4] that the best fit to measurements of sounds speed are obtained when 

2 . This is true for measurements of sound speed in air-water as well as steam-water (at 

~ 0.267 MPa, 402 K). 

 

Also, for mixed flow regime, the phase to interphase pressure differences is given by, 

 

 2

k p m rC v  (24) 

 

where m g g f f  is the mixture density and ,k f g  and PC  is a multiplier to be 

determined. In what follows, it will be shown that selection of PC  must be made with care to 

avoid complex characteristics. It is easy to show that 2)( f g g f p m rB C v .  Thus, 

the coefficients of the quadratic in Equation (22) can be shown to be given by, 
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For real eigenvalues, the discriminant of the quadratic in Equation (22) must be positive. Thus, 

we have the condition: 
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The apparent mass coefficient, vmC  and the coefficient of phase-to-interface pressure term, pC , 

must be selected in such a way that inequality (26) must be satisfied for all fluid states. Possible 

range of values for vmC  and PC  are discussed for all possible cases below. 

3.1 No virtual mass or phase-to-interphase pressure difference terms 

If 0vm pC C , both the virtual mass and interface pressure terms will vanish. In this case, 

inequality (26) can be shown to reduce to: 



The le International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) Log Number: 050 
Hilton Toronto Hotel, Toronto, Ontario, Canada, September 25-29, 2011. 

> a +a (28) g g f 
Pf 

Clearly, this condition can never be satisfied. As a result, for this case, the equations are always 
ill-posed (complex characteristics). 

3.2 Non-zero phase-to-interphase pressure difference terms 

If Cy„, = 0 and C p # 0 , then, for real characteristics Cp must be chosen such that, 

-1 1 

Cp > ag [1— /(H ag {1+ ag [1— 11- ] (29) 
Pf Pf 

In Figure 1 the lower bound to Equation (29) has been plotted for pressures ranging between 0.1 
MPa to 10 MPa. It is observed that in the absence of virtual mass term, interface-to-phase 
pressure terms can still render the equations well-posed as long as Cp remains above the curve 

corresponding to 10 MPa (assuming a typical CANDU simulation). In implementation, the 
inequality sign in Equation (29) would have to replaced with the equality sign. The current value 
used in CATHENA 3 is Cp = 0.17 . 
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P=0.1 MPa 
P=1.0 MPa 
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P=5.0 MPa 

P=10.0 MPa 
CATHENA 3 

0.2 

0 

STABLE 

0 0.2 0.4 0.6 0.8 1 
Void Fraction (-) 

Figure 1 Phase-to-interface pressure multiplier for Cv„, = 0 from Eqn. (29). 

3.3 Non-zero virtual mass coefficient 

If C, = 0 and Cy„, # 0 , then, for real characteristics Ci,„, must be chosen such that, 
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Clearly, this condition can never be satisfied. As a result, for this case, the equations are always 

ill-posed (complex characteristics). 

3.2 Non-zero phase-to-interphase pressure difference terms 

If 0vmC  and 0pC , then, for real characteristics pC  must be chosen such that, 
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In Figure 1 the lower bound to Equation (29) has been plotted for pressures ranging between 0.1 

MPa to 10 MPa. It is observed that in the absence of virtual mass term, interface-to-phase 

pressure terms can still render the equations well-posed as long as pC  remains above the curve 

corresponding to 10 MPa (assuming a typical CANDU simulation). In implementation, the 

inequality sign in  Equation (29) would have to replaced with the equality sign. The current value 

used in CATHENA 3 is 0.17pC . 

 

 
Figure 1 Phase-to-interface pressure multiplier for 0vmC  from Eqn. (29). 

3.3 Non-zero virtual mass coefficient 

If 0pC  and 0vmC , then, for real characteristics vmC  must be chosen such that, 
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1/2 

Cv„, = 1 - a 1- ±- cu f3 cuf (1- ) + 4 Pg — 
2 f

2  p 1 P
2 

pf 2 P f Pf 

(30) 

which is a lower bound since the inequality has been replaced by the equality sign. In Figure 2 
Equation (30) has been plotted for pressures ranging between 0.1 MPa to 10 MPa. It is observed 
that in the absence of the interface-to-phase pressure terms, the equations can still be rendered 
well-posed for a wide range of pressures if Cym is chosen such that it remains above the values 

determined from Equation (30). It is noted that the dependence of this equation on the density 
ratio is very weak. Taking advantage of this property, if the density ratio in Equation (30) is set to 
zero, the following simple relation is obtained for the lower bound virtual mass coefficient: 

0.8 

0.6 

2 
> 
0 

0.4 

0.2 

Gym = (1- ag )2

P=0.1 mi5a. 
P=1.0 MPa  
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P=5.0 MPa  

P=10.0 MPa ----
Pg/Pf=0 - -- -. 

STABLE 

I I 
0.2 0.4 0.6 0.8 

Void Fraction (-) 

(31) 

Figure 2 Virtual mass coefficient for C,, = 0 from Eqn. (30) and (31). 

Equation (31) is also plotted in Figure 2; as expected it is indistinguishable from the plots given 
by the more general expression given in Equation(30). This is remarkable and it suggests that the 
equations can be rendered well-posed if the coefficient of virtual mass is given by Equation (31) 
for the case A, = 2 in Drew's objective form for the virtual mass, given in Equation (4). 

3.4 Non-zero virtual mass and phase-to-interface pressure difference terms 

The most general case is when Cy. # 0 and C,, # 0 . Under these conditions, using the inequality 

in Equation (26) it can be shown that the virtual mass coefficient, Cy„, , is given by, 
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which is a lower bound since the inequality has been replaced by the equality sign. In Figure 2 

Equation (30) has been plotted for pressures ranging between 0.1 MPa to 10 MPa. It is observed 

that in the absence of the interface-to-phase pressure terms, the equations can still be rendered 

well-posed for a wide range of pressures if vmC  is chosen such that it remains above the values 

determined from Equation (30). It is noted that the dependence of this equation on the density 

ratio is very weak. Taking advantage of this property, if the density ratio in Equation (30) is set to 

zero, the following simple relation is obtained for the lower bound virtual mass coefficient: 

 

 2(1 )vm gC  (31) 

 

 

Figure 2 Virtual mass coefficient for 0pC from Eqn. (30) and (31). 

Equation (31) is also plotted in Figure 2; as expected it is indistinguishable from the plots given 

by the more general expression given in Equation(30). This is remarkable and it suggests that the 

equations can be rendered well-posed if the coefficient of virtual mass is given by Equation (31) 

for the case 2  in Drew's objective form for the virtual mass, given in Equation (4). 

3.4 Non-zero virtual mass and phase-to-interface pressure difference terms 

The most general case is when 0vmC  and 0pC . Under these conditions, using the inequality 

in Equation (26) it can be shown that the virtual mass coefficient, vmC , is given by, 
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Since the ratio Pm can be shown to be equal to ag + af , it is observed that Ci,„, is a function 
Pf Pf 

(32) 

of void fraction and the density ratio (or pressure) only. 
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Figure 3 Phase-to-interface pressure multiplier from Eqn. (34). 

Equation (32) provides the most general form for the virtual mass coefficient but it must be noted 
that at this point, Cp still is indeterminate. The restrictions imposed on C p can easily be stated 

since complex as well as negative values for Ci,„, must be excluded. Thus, the portion of 

Equation (32) that is under the square root must be non-negative. This imposes the following 
condition on the phase-to-interface pressure coefficient, Cp : 

af (1— A) — 
Pf Pf 

2 

—4 CP P  —af A 
Pf Pf Pf 

> 0 (33) 

Solving for C,, and replacing a f with 1— a g , the following relation is obtained, 
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Since the ratio m

f

 can be shown to be equal to 
g
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, it is observed that vmC  is a function 

of void fraction and the density ratio (or pressure) only. 

 

 
Figure 3 Phase-to-interface pressure multiplier from Eqn. (34). 

 

Equation (32) provides the most general form for the virtual mass coefficient but it must be noted 

that at this point, pC  still is indeterminate. The restrictions imposed on pC  can easily be stated 

since complex as well as negative values for vmC  must be excluded. Thus, the portion of 

Equation (32) that is under the square root must be non-negative. This imposes the following 

condition on the phase-to-interface pressure coefficient, pC : 
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Solving for pC  and replacing f  with 1 g , the following relation is obtained, 
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Cp > 2 
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- (1 - a g )(1 - A) - _ 7i( g
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1 - a g (1 - A) 
P 1 

(34) 

Equation (34) gives the lower bound on C,, which is consistent with the definition of Cy„, . 

Equation (34) is plotted at 20 MPa in Figure 3, showing its relation to the limiting cases that 
were presented earlier in Figure 1. The plotting range has been extended to cover up to 20 MPa 
to provide guidance for code developers who work on supercritical water reactor applications. It 
is observed that the form of C !  that is consistent with the definition of Cym is the curve that 

bounds all other curves. Therefore, if a formulation of two-phase flow where both virtual mass 
and phase-to-interface pressure terms are present is used, Equation (34) provides a limiting 
envelope and all formulations of Cp must lie above this curve. In implementation, the developers 

are advised to use Equation (34) in its equality form which will then provide for a formulation 
dependent on density ratio (i.e. pressure) and void fraction. 

Substituting C,, given in Equation (34) in Equation (32) and taking the lower bounding curve 

(that is, changing the `>' operator to `=' operator), the most general form of the virtual mass 
coefficient which satisfies Drew's objectivity condition can be obtained: 

I 
Cy. — (1 — CV g ) (1 — i CV g )(1 — 

—P g
) — 

2 Pf
1+ A + ag 0 - A)] -2 Fvg

Pf P f } 
Equation (35) is plotted in Figure 4 for various pressures, up to supercritical conditions. 
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Figure 4 Virtual mass coefficient from Eqn. (35). 
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Equation (34) gives the lower bound on pC  which is consistent with the definition of vmC . 

Equation (34) is plotted at 20 MPa in Figure 3, showing its relation to the limiting cases that 

were presented earlier in Figure 1. The plotting range has been extended to cover up to 20 MPa 

to provide guidance for code developers who work on supercritical water reactor applications. It 

is observed that the form of pC  that is consistent with the definition of vmC  is the curve that 

bounds all other curves. Therefore, if a formulation of two-phase flow where both virtual mass 

and phase-to-interface pressure terms are present is used, Equation (34) provides a limiting 

envelope and all formulations of pC  must lie above this curve. In implementation, the developers 

are advised to use Equation (34) in its equality form which will then provide for a formulation 

dependent on density ratio (i.e. pressure) and void fraction. 

 

Substituting pC  given in Equation (34) in Equation (32) and taking the lower bounding curve 

(that is, changing the „>‟ operator to „=‟ operator), the most general form of the virtual mass 

coefficient which satisfies Drew's objectivity condition can be obtained: 
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Equation (35) is plotted in Figure 4 for various pressures, up to supercritical conditions. 

 

 
Figure 4 Virtual mass coefficient from Eqn.  (35). 
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It is observed that the restriction on Gym becomes tighter as pressure decreases. In application, is 

it recommended that Equation (35) is implemented and the density ratio is kept as one of the 
model parameters. It is also observed that in the presence of phase-to-interface pressure 
difference terms, virtual mass coefficient can take lower values (compare with Figure 2) and still 
render the system of equations hyperbolic. The only condition is that the coefficient of phase-to-
interface pressure difference, Cp must obey the inequality (34). In implementation, this 

inequality must be converted to an equality, providing the lower bound for Cp . Equation (35) can 

then be used to ensure that the two models do not interfere with each other as far as the 
hyperbolicity of the partial differential equations is concerned. 

4. Conclusion 

An important conclusion of the present analysis is that, models for virtual mass coefficient and 
the phase-to-interface pressure difference coefficients may not be specified independently. 
Drew's law of objectivity given in Equation (4) leads to the most general form of Cym given in 

Equation (32) as a function of C p . However, this form places its own restrictions on C p , which 

leads to the only admissible form of C,, given in Equation (34). It turns out that this form of C,, 

is also the curve that bounds all cases that were obtained for the simple case Cy. = 0 . The most 

general formulation of Gym consistent with the formulation of phase-to-interface pressure 

difference terms is given in Equation (35). As part of future work, the implications of the present 
analysis should be investigated on the discretised form of the governing equations. 
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