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Abstract

This paper presents the extended forward sensitivity analysis as a method to help uncertainty
qualification. By including time step and potentially spatial step as special sensitivity
parameters, the forward sensitivity method is extended as one method to quantify numerical
errors. Note that by integrating local truncation errors over the whole system through the
forward sensitivity analysis process, the generated time step and spatial step sensitivity
information reflect global numerical errors. The discretization errors can be systematically
compared against uncertainties due to other physical parameters. Two well-defined
benchmark problems with manufactured solutions are utilized to demonstrate the method.

1. Introduction

Verification and validation (V&V) are playing more important roles to quantify uncertainties
and realize high fidelity simulations in engineering system analysis, such as transients
happened in a complex nuclear reactor system. Traditional V&V in system analysis focused
more on the validation part or did not differentiate verification and validation. Progress in
V&V in CFD fields [1] and from broader software engineering fields makes it possible to
obtain high confidence in new high fidelity software. For example, order-of-accuracy
verification in a 3-D CFD code has been performed through method of manufactured solution
(MMS) [2] to verify second order accuracy and identify the existence of any first order errors.
Advances in sensitivity analysis techniques [3][4] can be utilized to quantify uncertainties,
which is meaningful only after rigorous V&V has guaranteed that the numerical errors are
small.

The traditional approach [5] to uncertainty quantification is based on a “black box” approach.
The simulation tool is treated as an unknown signal generator, a distribution of inputs
according to assumed probability density functions is sent in and the distribution of the
outputs is measured and correlated back to the original input distribution. This approach is
usually performed with coarse resolution models in space and time because of the larger
number of simulation runs (say, 59) required to resolve the distribution of inputs. Even with
coarse resolution models, the total computation cost of this method is still high due to the
requirement of many runs.

In contrast to the “black box” method, a more efficient sensitivity approach can take
advantage of intimate knowledge of the simulation code. In this approach, equations for the
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propagation of uncertainty are constructed and the sensitivities are solved for as variables in
the simulation. This can generate similar sensitivity information as the above “black box”
approach with a few runs to cover a large uncertainty region. Because only small numbers of
runs are required, those runs can be done with enough accuracy in space and time ensuring
that the uncertainty of the physical model is being measured and not simply the numerical
error caused by the coarse discretization. Because of the increased efficiency and accuracy of
this method, the uncertainty of many physical models can be measured and ordered according
to uncertainty scales. Given this quantitative measure of uncertainty scales, one can prioritize
the effort of model improvement according to where it will result in the largest reduction of
uncertainty.

Two of the most popular sensitivity analysis methods are the forward sensitivity method [4]
and the adjoint sensitivity method [6][7]. In the forward sensitivity method, the model is
differentiated with respect to each parameter to yield an additional system of the same size as
the original one, the result of which is the solution sensitivity. The sensitivity of any output
variable can then be directly obtained from these sensitivities by applying the chain rule of
differentiation. The forward sensitivity method is most suitable when one needs the sensitivity
information of many outputs with respect to relatively few parameters. In the adjoint method,
the solution sensitivities need not be computed explicitly. Instead, for each output variable of
interest, one forms and solves an additional system, adjoint to the original one, the solution of
which can then be used to evaluate the gradient of the output variable with respect to any set
of model parameters. The adjoint sensitivity method is more practical than the forward
approach when the number of parameters is large and when one needs the sensitivities of only
few output variables. However, if one considers numerical errors important, extended forward
sensitivity method with time step and spatial step as special parameters, which we present in
this paper, can be always applicable even for applications with large set of physical
parameters. The forward sensitivity method is straight forward to derive and can handle both
nonlinear and transient problems well. Adjoint method requires forming Jacobian matrix
through complex mathematical derivation. It stores solutions at each time step, so require
huge storage for long transients. Adjoint methods have been successfully applied for linear
steady state problems. However, huge challenge exists for transient non-linear problems.

This paper focuses on the forward sensitivity analysis method. Two well-defined benchmark
problems are used to show and extend the technique. This work not only applies forward
sensitivity analysis method with the strictest verification, but also extends the technique to
include time step sensitivity and potentially space step sensitivity as one method to quantify
numerical errors. The paper is organized in the following way: section 2 summarizes the basic
forward sensitivity analysis theory; section 3 presents the extension to include time step as a
special sensitivity parameter in the forward sensitivity analysis; section 4 presents the two
benchmark problems — thermal wave problem and nonlinear diffusion problem; and the last
section presents the conclusions.
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2. Forward sensitivity method

General forward sensitivity theory has been discussed in many references [3][4]. For
completeness we summarize the basic ideas below. Consider a nonlinear system of partial
differential equations

oY
—FLY.p)=0, (1)

Here Y is the state vector, t time, F the vector of the functions, and p a parameter that the
solution depends upon. The parameter sensitivity reflects how much the parameter change
affects the solution, or in equation form

dy
= — 2
dp b ( )

Here s is the sensitivity of the solution Y with respect to the parameter p (we define s, as p
parameter sensitivity). By differentiating Eq. 1 with the parameter p, the equation for the
time evolution of the sensitivity s can be obtained as:

& _oF  oF 5
ot oY op
Define residual functions:
oY
f(Y)=—-F(tY,p), 4)
ot
os 8F OF
e 5
g(s) = P o (3)
We will solve the nonlinear system of equations
f(Y
[ ( )} o, ©)
g(s)

using Newton’s method

J ofdy f(Y)
~ =~ ’ (7)
0 J| 8 g(s)
Eq. 7 will be iterated until the residuals of Eq. 6 are small. Here J is the normal Jacobian
matrix for the physical Eq. 1 and can be directly constructed:
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or can be avoided with the Jacobian free method [4]:

(Y +&-v)-f(Y)
g b

G

-V

)

6_Fs+8_FzF(t,Y+0'-s,p+0')—F(t,Y—O'-s,p—0')’ (10)
oY op 20

Where € and o are small perturbations and v a Krylov vector.

Note that the sensitivity equation (3) is linear. It means that less CPU time is needed to solve
the sensitivity equation than the physical equation. If the Jacobian matrix is formed during the
solution procedure for the physical equation, the matrix can be reused to solve the sensitivity
equation. For this type of sensitivity problems, special algorithms could result in magnitude of
computation saving than directly solving the physical problem twice to generate the
sensitivity information [8][9]. For more general system with parameters,

Ft,Y,Y',p)=0, Y0)=Y,, (11)

various algorithms are available for different problems [3][4] This paper only focuses on the
type of problem as shown in Eq. 1 and will not discuss further on how to take advantage of
the linear nature of the sensitivity equation to save computation time.

Once we have solved for Y and s we can now plot the solution Y with uncertainty bars based
on an uncertainty range in p defined as Ap,

Y+zYi?j—§Ap=YisAp, (12)

There is an important assumption in using Eq. 12. This analysis requires that the truncation
error in the solution method is small so that one is analyzing the physical model and not the
numerical error. For this analysis the first step is to verify that the solution is not sensitive to
the grid spacing AX or time step At. This can be done through two methods: the conventional
time step and spatial step convergence study or taking AXx and At as special sensitivity
parameters to calculate sensitivities of the solution with respect to them. The later method
could be more efficient than conventional convergence study since they only require one run
instead of the series runs required for a convergence study. We will derive the method to
calculate At sensitivity in the next section.

3. Time step sensitivity

For the solution sensitivities with respect to the time step and the spatial step, one can not
directly derive the sensitivity equations from the original PDEs (Partial Differential Equation)
since the time and spatial steps are discrete quantities that depend on the discretization
method. Let’s consider the time step sensitivity. When we discretize a PDE, the actual
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discrete equation to be solved is the original PDE with added local truncation error (LTE). If
we subtract the local truncation error term in the discretized PDE, the modified discretized
equation will give us a higher order solution. The LTE is a function of the time step.
Therefore, we can derive the time step sensitivity from the modified equation:

%Y—F(t,y, p) - LTE(At)=0, (13)

The forward sensitivity residual function for the time step is,

aSAt _a_FSAt _ 8I?mod , (14)
ot Ay M a(AY)

g(S At) =
The corresponding modified F function for the time step sensitivity problem should be:
F..tY,p,At)=F(t,Y, p) + LTE(At), (15)

The second term in the right hind side of Eq. 14 can be approximated by the following
equation:

a_FSMzF(X,t,Y+0-sAt)—F(X,t,Y—O'-sAt)’ (16)
oY 20

where F is the original function in Eq. 1 without adding the local time step truncation term;
the third term in the right hind side of Eq. 14 can be analytically derived if the analytical form
of LTE is available. Sometimes it is not easy to derive the analytical form of the LTE for
complex time integration methods. In such case, we can use a numerical method to derive

Fuod The LTE has the following form:

a(At)
LTE(At) = (At)* -,y » (17)

where q is the order of the time discretization scheme and fyrg a function not depending on
At. The LTE can also be approximated by the difference of the current lower order scheme
residual and a next higher order scheme residual:

LTE(At) = res,, —res,,, (18)

where resy o is the current lower order scheme residual and resyo a higher order scheme residual.
According to Egs. 17 and 18, we can derive
OFa _ T€S;o —TeSy,

a(at) At ’

mod

(19)
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Within each time step iteration we first converge the physical solution and then we calculate
the parameter sensitivities. Therefore by the time we use Eq. 19, the lower order scheme
residual is already converged and is very close to zero. So we can further simplify Eq. 19 to

OF .4 resy,
mod , 20
a(At) At 20)

Eq. 20 defines a general method which is suitable for any time step schemes. We call this
method the residual difference method. For any time step discretization schemes, LTEs can be

either analytically derived or ZTZ‘E‘; can be calculated with the residual difference method.
So the discussed time step sensitivity method is a generic method to consider time step errors.
The time step sensitivity here reflects the accumulated time step error instead of LTEs. The
accumulated time step error (global error) usually cannot be obtained except for special cases
with analytical solutions. The spatial step sensitivity equation can be derived with a similar
method.

4. Examples

We will use the thermal wave problem [10] and non-linear diffusion problem as two simple
examples to show the extended forward sensitivity method. Both problems have analytical
solutions for the problems themselves and all the parameter sensitivities so that the numerical
algorithms can be accurately verified.

4.1 Thermal wave problem

The following is the equation for the thermal wave problem:

6T o°T
o o @69, 2D

for xe(-ow,4+0), and t>0. We assume an exact solution which describes a thermal wave
moving with a constant velocity ¢ and with a constant wave width & :

T(x,t,¢,8) = %(1 - tanh(x ;CtD, 22)

In Eq. 21, f(T,c,5) is the source term for the manufactured solution, which can be calculated
by substituting the assumed solution T (Eq. 22) into the left hind side (LHS) of Eq. 21:

2T(1-T)(co —2+4T)

F(T.c,6)= = (23)
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The reference values for ¢ and & are: c=2, §=1. In the numerical analysis, we will limit the
computation domain to [-10, 10]. The boundary conditions and initial condition will be
directly derived from the analytical solution. So are for the solution sensitivity with respect to
parameter c, and the solution sensitivity with respect to the parameter & . Figure 1 shows the
analytical solution T(x,t,c,5).

=0.5

Figure 1 Analytical solution for the thermal wave problem.

Now we will discuss the modified equation for the first order backward Euler scheme (BE)
and the associated analytical solution for the time step sensitivity. The local truncation error is

LTE, = e (24)
and the modified equation is

ot ox* 2 ot?

f(T), (25)

The analytical solution for Eq. 25 with the reference values of c=2, §=1 can be derived [11]:

X— 2t

TMEA(x,t,At):% | — tanh| — Y1 =24 Vll‘zm : (26)

V1 -2At

Comparing this equation with Eq. 22, one can see that this solution represents a thermal wave
with the width 1/4/1-2At and speed 2/+1-2At . The first order temporal error is equivalent
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to simultaneously perturbing “c” and “& ” by dividing +1-2At . According to Eq. 26, we can
derive an analytical solution for time step sensitivity for the 1* order backward Euler scheme:

x(l — (tanh(xv1— 24t - 2t))2)
241-2At ’

Eq. 27 will be used as the analytical solution to check the accuracy of the numerical method.
Fig. 2 shows s, (x.t,At) for three different times with a fixed time step. The solution

sensitivity with respect to the time step increases with time and reflects the accumulation of
local truncation error over time. The non-intuitive result of nonzero s, at time zero comes

S, (X, 1, AL) = (27)

from the dependence on the local truncation error as shown in Eq. 25 and the unsteady state
2;
initial condition. If T is constant before time zero, aat—z would equal to zero in Eq. 25 and s,

at time zero would be zero.

=0.01

Time step sensitivity for dt:

Figure 2 Analytical solution for the sensitivity S for different times.

Both time and spatial steps convergence studies for the physical problem, parameter
sensitivities, and time step sensitivity were performed. The numerical results verify correct
convergence speeds for all the problems.

The extended forward sensitivity analysis provides a systematic method to evaluate the
parameter sensitivity effects on solution, along with time and space convergence information.
Fig. 3 compares sensitivity effects from time step, the thermal wave speed, and the thermal
wave width parameters for a very small spatial step (1/32) and both a large time step (0.1)
and.a small time step (0.001) in the left and right. From the left figure, we can readily notice
that the solution is still very sensitive to the time step, which means the solution is not well
converged. The uncertainty bar from the time step is much larger than the uncertainty bar
from the thermal wave width parameter and is at the same order with the uncertainty bar from
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the thermal wave speed parameter. Therefore, the solution along with the sensitivity analysis
is not reliable. One should use a smaller time step in order to obtain accurate solution and
sensitivity analysis results. The right figure shows the similar results for a very small time
step (0.001) and the same small spatial step (1/32). In this case, the solution is not sensitive to
the time step anymore; therefore the solution and sensitivity results are reliable. These
comparisons show how important it is to consider numerical errors when performing
uncertainty and sensitivity analysis. In conventional Monte Carlo type of uncertainty analysis,
one tends to use large time steps and coarse grids in order to perform large amount of
calculations, without considering numerical errors. The sensitivity results from such practices
often contain large error and even the trends are wrong. Including the time step and the grid

size as special sensitivity parameters provides a new method to avoid such pitfalls and
improves both accuracy and efficiency.

T T T T T ———/—— 1
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Figure 3 Comparisons of sensitivity effects from time step, wave speed, and wave width for the
thermal wave problem, T=2, backward Euler scheme, Ax=1/32

4.2 Nonlinear diffusion problem

The following is the equation for the nonlinear diffusion problem:

oT (X,t,a) —ELT(x,t,a)“ iT(x,t,a)] =mms(x,t,a), (28)
ot oX OX

for xe[0,1], and t>0. In Eq. 28 « is a constant parameter which does not change with
time, mms(X,t,«) the source term for the manufactured solution depending on the assumed
analytical solution, which can be calculated by substituting an assumed solution T(X,t,a)

into the LHS. With the analytical solution available, the numerical errors can be accurately
measured. The problem meets the boundary conditions: T(0,t,)=a, T(lL,t,a)=b, where

a=1, and b=0.1. The initial condition can be obtained from the constructed analytical solution

which should be a smooth function with time, space, and the nonlinearity index o« . Assume
the following analytical solution:
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T(x,t,a)=1-0.9x“"", (29)

Substitute Eq. 29 into the LHS of Eq. 28, we obtain:

mms(x,t, @) = 0.9 - X" - In x—0.81ar - (1-0.9x“*

+0.9a-(1-0.9x“H f . x* -t (-t +1)

et

This test problem provides the flexibility to adjust the nonlinearity and observe the sensitivity

=2—T. Figure 4 shows the analytical
a

solution (Eq. 29) for the case of o =7. From the figure, we notice that the nonlinearity
increases with time by starting as a linear problem. This problem provides a good test
covering both linear and nonlinear problems.

of the solution with the nonlinearity index «: S

a

1 T T T T URREEEE S T T T
I -
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0.8 4
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Figure 4  Strong nonlinear diffusion problem analytical solution as function of time.

The local truncation error term for the first order backward Euler scheme is same as Eq. 24.
For this problem, we do not have an analytical solution for time step sensitivity s, . Therefore

0 initial condition for S, is used. The correctness of the calculated s,, is checked according

to the convergence rates in space and time and against the results from direct runs with
different time steps.
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Figure 5 compares sensitivity effects from time step and o parameter for two time steps
(At=0.01, and 0.001) at time equal to 1. From the left figure, the solution is more sensitive to
the physical parameter o than the time step in majority of the computational domain.
However, the time step uncertainty bar has same order of width as the physical parameter o
uncertainty bar in a small region close to the right boundary, where exists large numerical
error. The local numerical error has been correctly captured by the time step sensitivity
analysis. Actually, the -90% At bar corrects the numerical error so successfully that the lower
time step uncertainty bar is very close to the analytical solution. The right figure shows
similar result at time equal to 1 for a small time step (At=0.001). In this case, the solution is
not sensitive to the time step; therefore the solution and sensitivity results are reliable.

dx=1/640,d1=0.01, time=1, Backward Euler dr=1i640:06=11.001, tiroie=], Biekvaird Bulee

1.1 ; ; —_—
1 09
1 08
] 0.7

=05
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0.4}~ |e o reference: di=1, alpha=7

= 0.6/
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Figure 5 Comparisons of sensitivity effects from time step and a in the strong nonlinear diffusion
problem, t=1, backward Euler scheme, AX=1/640.

5. Conclusions

By extending the forward sensitivity method to include time and spatial steps as special
parameters, global numerical errors can be quantified against uncertainties from other
physical parameters. This extension makes the forward sensitivity method a much more
powerful tool to help uncertainty qualification. By knowing the relative sensitivity of time
and space steps with other interested physical parameters, simulations are allowed to run at
appropriate time and space steps without affecting the confidence to the physical parameter
sensitivity results.

The two well defined benchmark problems are utilized to demonstrate the extended forward
sensitivity analysis. All the physical solutions, parameter sensitivity solutions, even time step
sensitivity, have analytical forms, which allows the verification to be done in the strictest
sense. While V&V has been widely recognized as indispensable to high fidelity simulation,
very few of practical works have been pursued to quantify numerical error sensitivity along
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with physical parameter sensitivities. The extended forward sensitivity method can potentially
fill the gap.
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