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Abstract 

The analysis code system, DRAWTHREE-LDI has been developed in order to evaluate pipe wall 
thinning due to liquid droplet impingement (LDI). The wall thinning due to LDI is classified into 
two types which are LDI (corrosion) and LDI (erosion). In LDI (corrosion), the dominant 
mechanism to dwindle pipe wall thickness is flow-accelerated corrosion which is a chemical 
process. While in LDI (erosion), it is impact onto wall surfaces due to droplet impingement which is 
a physical process. The comparison between results calculated by DRAWTHREE-LDI and those 
measured at an actual power plant shows good agreements within a factor of two. 

Introduction 

The pipe wall thinning caused due to liquid droplet impingement (LDI) is one of the major concerns 
for nuclear and fossil power plants to improve their capacity factors and to extend their lifetimes. In 
order to evaluate wall thinning due to LDI, an analysis code system DRAWTHREE-LDI has been 
developed, followed by validations on it [1]. 

The purpose of this article to explain the methodology adopted in DRAWTHREE-LDI and to make 
a validation on it. 

In DRAWTHREE-LDI, the wall thinning due to LDI is classified into two types, LDI (erosion) and 
LDI (corrosion) [1]. The evaluation methodology adopted in DRAWTHREE-LDI is explained in 
detail. 

In order to validate DRAW'THREE-LDI, comparisons will be made between the results calculated 
by DRAWTHREE-LDI and those measured in feedwater heater drain systems at an actual power 
plant. 

1. Evaluation procedure for LDI (erosion) and LDI (corrosion) 

Major phenomena regarding pipe wall thinning under single- and two-phase flow conditions are 
shown in Fig. 1. Under a single-phase flow condition, pipe wall thinning is caused due to flow-
accelerated corrosion (FAC), typically observed in the downstream of orifices, valves, and bends 
where turbulence is likely to be generated. Against pipe wall thinning due to FAC, chemical control 
measures have been applied to water cooling systems. Under a two-phase flow condition, on the 
other hand, droplet behaviour play a dominant role in pipe wall thinning. In turbine extraction lines, 
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detail. 

In order to validate DRAWTHREE-LDI, comparisons will be made between the results calculated 
by DRAWTHREE-LDI and those measured in feedwater heater drain systems at an actual power 
plant. 

 

1. Evaluation procedure for LDI (erosion) and LDI (corrosion) 

Major phenomena regarding pipe wall thinning under single- and two-phase flow conditions are 
shown in Fig. 1. Under a single-phase flow condition, pipe wall thinning is caused due to flow-
accelerated corrosion (FAC), typically observed in the downstream of orifices, valves, and bends 
where turbulence is likely to be generated. Against pipe wall thinning due to FAC, chemical control 
measures have been applied to water cooling systems. Under a two-phase flow condition, on the 
other hand, droplet behaviour play a dominant role in pipe wall thinning. In turbine extraction lines, 
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tiger strip pattern corrosion was observed due to droplet periodic collisions onto the pipe wall, as 
shown in Fig. 1. This type of corrosion was mitigated by replacing pipe wall material from carbon 
steel to low alloy steel in which the weight concentration of chromium is greater than 0.2 %. In 
feedwater heater drain systems, shotgun pattern corrosion is observed at bends of piping, as shown 
in Fig. 1. Replacements of piping material were not effective in order to mitigate this type of pipe 
wall thinning. 

This article presents the methodology to evaluate pipe wall thinning due to LDI observed at bends 
in feedwater heater drain systems. The LDI is classified into two categories, that is, LDI (erosion) 
and LDI (corrosion) [1]. 
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Figure 1 Major phenomena of wall thinning under single- and two-phase flow conditions. 

In Fig. 2, FAC/LDI risk zones are depicted with a flow regime pattern. The vertical axis 
corresponds to quality. Upper and lower horizontal axis correspond to steam flow velocity and 
water flow velocity, respectively. The flow regime with a quality of zero corresponds to a single-
phase flow. LDI (corrosion) is likely to occur in the regime with steam flow velocity smaller than 
—100 m/s. In the regime with steam flow velocity greater than —100 m/s, LDI (erosion) is likely to 
occur. 
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tiger strip pattern corrosion was observed due to droplet periodic collisions onto the pipe wall, as 
shown in Fig. 1. This type of corrosion was mitigated by replacing pipe wall material from carbon 
steel to low alloy steel in which the weight concentration of chromium is greater than 0.2 %. In 
feedwater heater drain systems, shotgun pattern corrosion is observed at bends of piping, as shown 
in Fig. 1. Replacements of piping material were not effective in order to mitigate this type of pipe 
wall thinning. 

This article presents the methodology to evaluate pipe wall thinning due to LDI observed at bends 
in feedwater heater drain systems. The LDI is classified into two categories, that is, LDI (erosion) 
and LDI (corrosion) [1].  
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Figure 1   Major phenomena of wall thinning under single- and two-phase flow conditions. 

In Fig. 2, FAC/LDI risk zones are depicted with a flow regime pattern. The vertical axis 
corresponds to quality. Upper and lower horizontal axis correspond to steam flow velocity and 
water flow velocity, respectively. The flow regime with a quality of zero corresponds to a single-
phase flow. LDI (corrosion) is likely to occur in the regime with steam flow velocity smaller than 
~100 m/s. In the regime with steam flow velocity greater than ~100 m/s, LDI (erosion) is likely to 
occur. 
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Figure 2 Conceptual flow regime pattern and FAC/LDI risk zone under single- and two-phase 
flow conditions. 

Schematic diagram of interaction of droplets with pipe wall is shown in Fig. 3. The interactions are 
classified into three categories: 

zone (zone I) with no droplet collisions, 

zone (zone II) with droplet collisions, and 

zone (zone III) with liquid film covering on the pipe wall. 

• • • 
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• • • • 

steam flow 
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Area where droplets collide on 
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• with medium velocity: oxide film rupture 
• with low velocity: local FAC 

Secondary droplet collision/liquid film flow 
• with large mass transfer coefficient 

due to droplet collision enhanced 
liquid film flow: local FAC 

Figure 3 Schematic diagram of interaction of droplets with pipe wall 

In the zone I, there are no damages because there are no droplets impinging on the pipe wall. The 
pipe wall with oxide films generated on the surface remains intact. In the zone II, droplet 
impingements with high velocities cause physical erosion of the pipe wall or oxide films generated 
on the surface, corresponding to LDI (erosion). With low velocities, physical erosion due to droplet 
impingements are not caused, however, wet condition generated by droplets potentially causes local 
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Figure 2   Conceptual flow regime pattern and FAC/LDI risk zone under single- and two-phase 

flow conditions. 

Schematic diagram of interaction of droplets with pipe wall is shown in Fig. 3. The interactions are 
classified into three categories: 

- zone (zone I) with no droplet collisions, 

- zone (zone II) with droplet collisions, and 

- zone (zone III) with liquid film covering on the pipe wall. 
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Figure 3   Schematic diagram of interaction of droplets with pipe wall 

 

In the zone I, there are no damages because there are no droplets impinging on the pipe wall. The 
pipe wall with oxide films generated on the surface remains intact. In the zone II, droplet 
impingements with high velocities cause physical erosion of the pipe wall or oxide films generated 
on the surface, corresponding to LDI (erosion). With low velocities, physical erosion due to droplet 
impingements are not caused, however, wet condition generated by droplets potentially causes local 
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FAC, corresponding to LDI (corrosion). In the zone III, stable liquid film flow on the surface 
generated by droplet collisions potentially enhances local FAC, corresponding to LDI (corrosion). 

In order to identify zones where pipe wall thinning due to LDI is likely to occur, major parameters 
contributing to LDI are identified as shown in Fig. 4. The parameters are classified into four groups: 
flow pattern, corrosive conditions, impingement parameters, and materials, as shown in Fig. 4. The 
necessary conditions for LDI occurrence is designated as overlapping conditions of each LDI risk 
zone. 
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Figure 4 LDI risk zone indicated by major parameters. 

The evaluation procedure consists of six steps as shown in Fig. 5. In step 1, 3D flow dynamics 
calculations are made to obtain mass flow velocity and quality in the piping. Under the flow 
conditions calculated in step 1, droplet trajectories are tracked in step 2. In step 3, LDI patterns are 
evaluated based on droplet number density and velocity colliding on the pipe wall which are 
calculated in the previous step 2. In step 4, the occurrences of LDI (erosion) and LDI (corrosion) are 
evaluated. Wall thinning rates are calculated according to each LDI model in step 5. For LDI 
(erosion), wall thinning rates are calculated by means of empirical formula obtained by Heymann 
[2]. For LDI (corrosion), the wall thinning model originally developed for FAC [3-6] is adopted. 
Finally, in step 6, residual lifetime and/or effectiveness of countermeasures are evaluated. 
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FAC, corresponding to LDI (corrosion). In the zone III, stable liquid film flow on the surface 
generated by droplet collisions potentially enhances local FAC, corresponding to LDI (corrosion). 

 

In order to identify zones where pipe wall thinning due to LDI is likely to occur, major parameters 
contributing to LDI are identified as shown in Fig. 4. The parameters are classified into four groups: 
flow pattern, corrosive conditions, impingement parameters, and materials, as shown in Fig. 4. The 
necessary conditions for LDI occurrence is designated as overlapping conditions of each LDI risk 
zone. 
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Figure 4   LDI risk zone indicated by major parameters. 

 

The evaluation procedure consists of six steps as shown in Fig. 5. In step 1, 3D flow dynamics 
calculations are made to obtain mass flow velocity and quality in the piping. Under the flow 
conditions calculated in step 1, droplet trajectories are tracked in step 2. In step 3, LDI patterns are 
evaluated based on droplet number density and velocity colliding on the pipe wall which are 
calculated in the previous step 2. In step 4, the occurrences of LDI (erosion) and LDI (corrosion) are 
evaluated. Wall thinning rates are calculated according to each LDI model in step 5. For LDI 
(erosion), wall thinning rates are calculated by means of empirical formula obtained by Heymann 
[2]. For LDI (corrosion), the wall thinning model originally developed for FAC [3-6] is adopted. 
Finally, in step 6, residual lifetime and/or effectiveness of countermeasures are evaluated. 
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Figure 5 Evaluation steps for LDI. 

The FAC evaluation model applied to LDI (corrosion) is composed of the electrochemistry model 
coupled with the oxide layer growth model, tabulated in Table 1 [2-5]. The electrochemistry model 
provides anodic/cathodic current densities and electrochemical potential (ECP) based on oxide film 
thickness and oxide properties. On the other hand, in the oxide layer growth model, oxide film 
thickness and oxide properties are calculated based on anodic/cathodic current densities and ECP 
which are calculated according to the electrochemistry model. Wall thinning rates due to FAC is 
calculated by means of the models coupled with each other, as listed in Table 1. 

Table 1 Wall thinning rate calculation based on the electrochemistry model coupled with oxide 
layer growth model 

Sub-model Electrochemistry model Oxide layer growth model 

(static model) (dynamic model) 

Input Temperature, [02] , pH, km, 

Mass transfer coefficient (hm) 
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Aili.0016/datilOdId current densities 

ECP05cicicf11-0i0icici*O.; : : :
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Final output Anodic/cathodic current densities 
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Wall thinning rate 

In order to evaluate pressure onto pipe wall generated due to droplet impingement, Moving Particle 
Semi-implicit for All Speed (MPS-AS) method [7] is adopted. Figure 6 shows calculated results of 
pressure transient generated on the pipe wall due to droplet impingements [8-10]. As a typical 
example observed in feedwater heater drain systems, droplet diameter is set to be 50 larn with 
collision velocity of 200 m/s. The existence of liquid film with thickness of 5µm reduces the 
pressure about 2/3 times of that without liquid film. 
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Figure 5   Evaluation steps for LDI. 

The FAC evaluation model applied to LDI (corrosion) is composed of the electrochemistry model 
coupled with the oxide layer growth model, tabulated in Table 1 [2-5]. The electrochemistry model 
provides anodic/cathodic current densities and electrochemical potential (ECP) based on oxide film 
thickness and oxide properties. On the other hand, in the oxide layer growth model, oxide film 
thickness and oxide properties are calculated based on anodic/cathodic current densities and ECP 
which are calculated according to the electrochemistry model. Wall thinning rates due to FAC is 
calculated by means of the models coupled with each other, as listed in Table 1. 
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In order to evaluate pressure onto pipe wall generated due to droplet impingement, Moving Particle 
Semi-implicit for All Speed (MPS-AS) method [7] is adopted. Figure 6 shows calculated results of 
pressure transient generated on the pipe wall due to droplet impingements [8-10]. As a typical 
example observed in feedwater heater drain systems, droplet diameter is set to be 50 m with 
collision velocity of 200 m/s. The existence of liquid film with thickness of 5 m reduces the 
pressure about 2/3 times of that without liquid film. 
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Figure 6 Pressure transient on the pipe wall with/without liquid film. 

Empirical or theoretical formulae have been reported for pressure generated on pipe wall due to 
droplet impingements. 

Heymann's formula [11]: 

P = 3ppCoVr for 0.03<Vr/Co<0.3, (1) 

P = PDC0Vr (2±(2k-1)Vr/C0) for Vr>0.3, 

Cook's formula [12]: 

P = PDC0Vr (1+kVr/C0), 

Rochester & Brunton's formula [13]: 
P = 0.7ppCoVr, 

(2) 

(3) 

where the notations are as follows: P:pressure (Pa), pp:droplet density (kg/m3), Co:sound velocity in 
steam (m/s), Vr:droplet collision velocity (m/s), and k:constant (-) (=2.0 for water). 

Comparison of results calculated by means of Eqs. (1)-(3) with those calculated by MPS-AS 
method, as shown in Fig. 7, it is suggested that Heymann's formula can be applied to the estimation 
on the pressure generated on the pipe wall due to droplet impingement. 

C:IUserslhokadaVVNET FINVIC ProjectPublicationsWURETH-14 26sep1 1WURETI1-14_Paper M. Naitoh 429 
Rev.l.doc 

The 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-14  
Toronto, Ontario, Canada, September 25-30, 2011 

C:\Users\hokada\IVNET FINVIC Project\Publications\NURETH-14 26sep11\NURETH-14_Paper_M. Naitoh  429 
Rev.1.doc 

I        

 (4) time elapsed after collision (ns)

pr
es

su
re

(M
Pa

)

droplet diameter：50 m
droplet collision velocity：200 m/s

5 
m

without liquid film with liquid film

400

300

200

100

0
0 10 20 30

delayed time 
due to liquid film

time elapsed after collision (ns)

pr
es

su
re

(M
Pa

)

droplet diameter：50 m
droplet collision velocity：200 m/s

5 
m

without liquid film with liquid film

5 
m

without liquid film with liquid film

400

300

200

100

0

400

300

200

100

0
0 10 20 300 10 20 30

delayed time 
due to liquid film

 
Figure 6   Pressure transient on the pipe wall with/without liquid film. 

 

Empirical or theoretical formulae have been reported for pressure generated on pipe wall due to 
droplet impingements. 

Heymann’s formula [11]: 

P = 3DCoVr       for 0.03<Vr/Co<0.3,  (1) 

P = DCoVr (2+(2k-1)Vr/Co)     for Vr>0.3, 

 
Cook’s formula [12]: 

P = DCoVr (1+kVr/Co),        (2) 
 

Rochester & Brunton’s formula [13]: 
P = 0.7DCoVr,         (3) 

where the notations are as follows: P:pressure (Pa), D:droplet density (kg/m3), C0:sound velocity in 
steam (m/s), Vr:droplet collision velocity (m/s), and k:constant (-) (=2.0 for water). 

Comparison of results calculated by means of Eqs. (1)-(3) with those calculated by MPS-AS 
method, as shown in Fig. 7, it is suggested that Heymann’s formula can be applied to the estimation 
on the pressure generated on the pipe wall due to droplet impingement. 
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Figure 7 Comparison of pressure between the existing formulae and calculated results. 

The wall thinning rate is evaluated by the empirical formula proposed by Heymann, which is shown 
in Eq. (4). 

log(Re ) = 4.81og(Vr) — log(NER) — 16.65 + 0.67 log(dp) + 0.57J — 0.22K, (4) 

where the notations are as follows: Re: rationalized erosion rate (m3-eroded materials/m3-collided 
droplet), NER: erosion resistance number , dp: droplet diameter (m), J: constant (-) (0 for liquid 
droplet impingement), and K: constant of geometry (-) (0 for plane surface, 1 for curvature). The 
wall thinning rates evaluated by Eq. (4) are plotted as a function of droplet collision velocity in Fig. 
8. Generally, wall thinning due to LDI (erosion) dominates in the region with droplet velocities 
greater than 150 m/s. 
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Figure 8 Wall thinning rate evaluated by Heymann's formula. 

The wall thinning rates due to LDI (corrosion) are plotted as a function of mass transfer coefficient 
in Fig. 9. The mass transfer coefficients are evaluated by flow dynamics calculations in step 1 
shown in Fig. 5. Raising values of pH reduces wall thinning rates though the oxygen concentration 
is quite low. 
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Figure 7   Comparison of pressure between the existing formulae and calculated results. 

 
The wall thinning rate is evaluated by the empirical formula proposed by Heymann, which is shown 
in Eq. (4). 

log(Re ) = 4.8log(Vr) − log(NER) − 16.65 + 0.67 log(dp) + 0.57J − 0.22K, (4) 

where the notations are as follows: Re: rationalized erosion rate (m3-eroded materials/m3-collided 
droplet), NER: erosion resistance number , dp: droplet diameter (m), J: constant (-) (0 for liquid 
droplet impingement), and K: constant of geometry (-) (0 for plane surface, 1 for curvature). The 
wall thinning rates evaluated by Eq. (4) are plotted as a function of droplet collision velocity in Fig. 
8. Generally, wall thinning due to LDI (erosion) dominates in the region with droplet velocities 
greater than 150 m/s. 
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Figure 8   Wall thinning rate evaluated by Heymann’s formula. 

 

The wall thinning rates due to LDI (corrosion) are plotted as a function of mass transfer coefficient 
in Fig. 9. The mass transfer coefficients are evaluated by flow dynamics calculations in step 1 
shown in Fig. 5. Raising values of pH reduces wall thinning rates though the oxygen concentration 
is quite low. 
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The wall thinning rates due to LDI are plotted as a function of steam velocity in Fig. 10. In the 
region with low steam velocities, wall thinning rates are determined by LDI (corrosion). As steam 
velocities rises, the contribution by LDI (erosion) increases and becomes greater than that by LDI 
(corrosion) in the high steam velocity region. LDI (corrosion) is affected by the environmental 
factors, i.e., pH and oxygen concentration in the water. The major parameters affecting LDI 
(erosion) are droplet diameter and density colliding on the pipe wall. In the region with the steam 
velocity greater than —150 m/s, LDI (erosion) is dominant to cause pipe wall thinning. 
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Figure 10 Schematic diagram of wall thinning rate due to LDI (corrosion) and LDI (erosion) as a 
function of steam velocity. 

2. Evaluation on wall thinning rates 

In order to validate DRAWTHREE-LDI, comparisons are made between the results calculated by 
means of DRAWTHREE-LDI and those measured in the feedwater heater drain systems at an actual 
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Figure 9   Wall thinning rate calculated due to LDI (corrosion) as a function of mass transfer 

coefficient. 

The wall thinning rates due to LDI are plotted as a function of steam velocity in Fig. 10. In the 
region with low steam velocities, wall thinning rates are determined by LDI (corrosion). As steam 
velocities rises, the contribution by LDI (erosion) increases and becomes greater than that by LDI 
(corrosion) in the high steam velocity region. LDI (corrosion) is affected by the environmental 
factors, i.e., pH and oxygen concentration in the water. The major parameters affecting LDI 
(erosion) are droplet diameter and density colliding on the pipe wall. In the region with the steam 
velocity greater than ~150 m/s, LDI (erosion) is dominant to cause pipe wall thinning.  
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Figure 10   Schematic diagram of wall thinning rate due to LDI (corrosion) and LDI (erosion) as a 
function of steam velocity. 

 

2. Evaluation on wall thinning rates 

In order to validate DRAWTHREE-LDI, comparisons are made between the results calculated by 
means of DRAWTHREE-LDI and those measured in the feedwater heater drain systems at an actual 
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power plant. The piping configuration and detailed calculation results are discussed in Ref. [14]. In 
this article, the comparisons are shown briefly. 

The comparisons are made in the region where LDI (erosion) or LDI (corrosion) is dominant in the 
wall thinning of the piping. Each comparison is shown in Fig. 11(a) and (b). Their standard 
deviations are shown with the error bars. Figure 11 shows that the results calculated almost agree 
with those measured within a factor of two. 

(a) 

A • 

I i i 

I I 

I--IIII--I 

- I

I 111-1 

0  
i 
mi 

0.05 0.10 0.15 

Measured values (Arbitrary unit) 

0.20 

(b) 

 1 

[ 

Elbow bend straight 
A-1 + + 
A-2 
B-1 + 
C-1 + + 
C-2 

0.05 0.10 0.15 

Measured values (Arbitrary unit) 

0.20 

Figure 11 Comparison of values calculated with those measured at an actual plant for (a) LDI 
(erosion), and (b) LDI (corrosion). 

3. Conclusion 

In order to evaluate wall thinning due to LDI, the analysis code system DRAWTHREE-LDI was 
developed and validated through the comparison of results calculated with those measured at an 
actual power plant. 

In DRAWTHREE-LDI, the wall thinning phenomena due to LDI is classified into LDI (erosion) 
and LDI (corrosion). The wall thinning rate due to LDI (erosion) is evaluated by means of the 
formula proposed by Heymann. The wall thinning rate due to LDI (corrosion) is evaluated by the 
electrochemistry model coupled with oxide layer growth model, which is applied to the wall 
thinning due to FAC. In DRAWTHREE-LDI, wall thinning is evaluated by the procedure composed 
of six steps. 

As a validation on DRAWTHREE-LDI, the comparison was made between the results calculated by 
DRAWTHREE-LDI and those measured in the feedwater heater drain system at the actual power 
plant. The comparison shows that the both results almost agree within a factor of two. 

The development of the analysis model was supported by the Innovative and Viable Nuclear Energy 
Technology Development Project of the Ministry of Economy, Trade and Industry (2005-2007). The 
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power plant. The piping configuration and detailed calculation results are discussed in Ref.[14]. In 
this article, the comparisons are shown briefly.  

The comparisons are made in the region where LDI (erosion) or LDI (corrosion) is dominant in the 
wall thinning of the piping. Each comparison is shown in Fig. 11(a) and (b). Their standard 
deviations are shown with the error bars. Figure 11 shows that the results calculated almost agree 
with those measured within a factor of two. 
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Figure 11   Comparison of values calculated with those measured at an actual plant for (a) LDI 
(erosion), and (b) LDI (corrosion). 

 

3. Conclusion 

In order to evaluate wall thinning due to LDI, the analysis code system DRAWTHREE-LDI was 
developed and validated through the comparison of results calculated with those measured at an 
actual power plant. 

In DRAWTHREE-LDI, the wall thinning phenomena due to LDI is classified into LDI (erosion) 
and LDI (corrosion). The wall thinning rate due to LDI (erosion) is evaluated by means of the 
formula proposed by Heymann. The wall thinning rate due to LDI (corrosion) is evaluated by the 
electrochemistry model coupled with oxide layer growth model, which is applied to the wall 
thinning due to FAC. In DRAWTHREE-LDI, wall thinning is evaluated by the procedure composed 
of six steps. 

As a validation on DRAWTHREE-LDI, the comparison was made between the results calculated by 
DRAWTHREE-LDI and those measured in the feedwater heater drain system at the actual power 
plant. The comparison shows that the both results almost agree within a factor of two. 

The development of the analysis model was supported by the Innovative and Viable Nuclear Energy 
Technology Development Project of the Ministry of Economy, Trade and Industry (2005-2007). The 
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evaluation of the model was partially carried out under the project sponsored by the Nuclear and 
Industrial Safety Agency (NISA). The authors express their sincere thanks to the owners group of 
electric power plants in Japan for supplying plant data for the evaluation. 
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