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Abstract 

Natural circulation experiments were carried out in a uniform diameter rectangular loop using 
supercritical CO2 and H2O. Steady state data were generated with supercritical CO2 with four 
different orientations of the source and sink. Instability was observed only for the orientation 
with both the source and sink horizontal over a narrow window of power around the 
pseudocritical point with low cooling water flow rate. Hence experiments with water were 
carried out only for this orientation which also showed instability at low coolant flow rates. The 
steady state flow rates obtained were compared with a generalized flow correlation developed 
which showed good agreement with present data as well as those reported in literature. The 
general characteristics of the observed instability are also described in the paper. 
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Introduction 

Thermodynamically supercritical fluids are one of the several coolant options being investigated 
currently for advanced nuclear reactors. Both supercritical CO2 [1,2] and supercritical water [3-
6] are candidate coolants for advanced reactors. The main advantage of supercritical fluids is 
higher thermodynamic efficiency due to the larger operating temperature. Since boiling is 
avoided, the critical heat flux phenomenon is eliminated raising the possibility of higher power 
density. Besides supercritical fluids like water can be directly sent to the turbine eliminating the 
requirement of steam generator, steam-water separator, dryer and pressurizer. Further, most 
supercritical reactor designs proposed are once-through type reducing the number of components 
like pumps. In addition, components like feed water pumps are of significantly lower rating 
compared to their counterparts in the current LWRs of same rating due to the significantly larger 
enthalpy rise across the core. The higher power density could significantly lower the core size 
and hence the vessel size. The foregoing advantages suggest that the supercritical reactor could 
be far more competitive economically compared to the current LWRs. 

However, the supercritical fluids undergo significant property changes in the pseudo-critical 
region. For example, the density changes in supercritical reactors are comparable to or more than 
that in present day BWRs raising the possibility of density wave instability. In view of this, 
several investigators [7-8] have already looked at the instability of supercritical fluids. A few 
investigations were also conducted with supercritical CO2 which is a good simulant fluid for 
water [9-11]. Fluid-to-fluid modeling aspects have been studied by Marcel et al. [12] and found 
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that a 77.5%/22.5% mixture of refrigerants R-32 & R-125 simulates the supercritical water 
(SCW) conditions in HPLWR (High Performance Light Water Reactor). They also found that 
supercritical CO2 cannot accurately simulate the HPLWR conditions with water. In a more recent 
study by the same group Rohde et al. [13], R23 has been proposed as the scaling fluid it has 
more convenient substance properties and is safer to operate. A few studies have been made to 
extend the generalized dimensionless parameters applicable for stability analysis of two-phase 
flows to supercritical fluids [14-15]. Some of these studies were carried out in natural circulation 
systems [9-11 & 16] as it is also a possible option for supercritical reactors [17-18]. However, 
very few experimental studies are reported in the open literature. Lomperski et al. [19] reported 
steady state natural circulation data in a rectangular loop with supercritical CO2 but did not 
observe instability. Holman-Boggs [20] reported only steady state data with supercritical Freon-
12 although they had observed instability. Harden [21] reported both steady state and instability 
data with supercritical Freon-114. Besides Yoshikawa et al. [22] studied the performance of a 
somewhat complex supercritical CO2 loop. Although instability has been reported for 
supercritical fluids by many authors [20, 21 & 23], to our knowledge, the instability 
characteristics of supercritical fluids are not studied in detail. In this context an experimental 
investigation of the steady state and stability behavior has been carried out in a uniform diameter 
rectangular natural circulation loop with supercritical CO2 and water as the working fluids. The 
experiments with supercritical CO2 were carried out with four different loop configurations. 
Instability, however, was observed only for the loop with horizontal heater and horizontal cooler 
at low secondary coolant flow rates over a narrow window of power around the pseudocritical 
point. Hence experiments were repeated with water for the horizontal heater and horizontal 
cooler configuration only. Instability was also observed at low secondary coolant flow rate with 
water around the pseudocritical point. The general characteristics of the observed instability are 
described in the paper and a mechanism for the instability is also proposed. The steady state and 
stability data generated were analyzed using 1-D theory. The results have also been compared 
with that of previously reported studies. 

Description of the test facility 

1 

The test facility is a uniform diameter (13.88 mm inside diameter (ID) & 21.34 mm outside 
diameter (OD)) rectangular loop made of type-347 stainless steel. Standard 41.4 MPa (6000 lb) 
rating socket weld type elbows are used at the corners. The loop has two heater and two cooler 
sections so that it can be operated in any one of the four orientations such as Horizontal Heater 
Horizontal Cooler (HHHC), Horizontal Heater Vertical Cooler (HHVC), Vertical Heater 
Horizontal Cooler (VHHC) and Vertical Heater Vertical Cooler (VHVC). The heater was made 
by uniformly winding nichrome wire over a layer of fiber glass insulation. The cooler was tube-
in-tube type with chilled water as the secondary coolant flowing in the annulus. The outer tube 
forming the annulus had 77.9 mm ID and 88.9 mm OD. The loop had a pressuriser located at the 
highest elevation which takes care of the thermal expansion besides accommodating the cover 
gas helium above the carbon dioxide. The safety devices of the loop (i.e. rupture discs RD-1 & 
RD-2) were installed on top of the pressuriser which also had provision for CO2 & He filling. 
The entire loop was insulated with three inches of ceramic mat (k=0.06 W/mK). 
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The loop was instrumented with 44 calibrated K-type mineral insulated thermocouples (1 mm 
diameter) to measure the primary fluid, secondary fluid and heater outside wall temperatures. 
Primary fluid temperatures at each location was measured as the average value indicated by two 
thermocouples inserted diametrically opposite at r/2 (see detail-D in Fig. 1) from the inside wall 
whereas secondary fluid temperatures were measured by a single thermocouple located at the 
tube centre of the inlet and outlet nozzles (see thermocouples T41 to T44 in Fig. 1). This was 
adequate to obtain the average temperature as the temperature rise in the secondary fluid was 
small (< 4 °C). The thermocouples used to measure the heater outside wall temperature (two 
thermocouples installed diametrically opposite at six axial locations) were installed flush with 
the outside surface. The system pressure was measured with the help of two Kellar make 
pressure transducers located on the pressuriser as well as at the vertical heater outlet. The 
pressure drop across the bottom horizontal tube (see detail-B) and the level in the pressuriser 
were measured with the help of two differential pressure transmitters. The power of each heater 
was measured with a Wattmeter. The secondary flow rate was measured with the help of a 
turbine flow meter. All instruments were connected to a data logger with a user selectable 
scanning rate. For all the transient and stability tests the selected scanning rate was 1 second. 
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The loop was instrumented with 44 calibrated K-type mineral insulated thermocouples (1 mm 
diameter) to measure the primary fluid, secondary fluid and heater outside wall temperatures. 
Primary fluid temperatures at each location was measured as the average value indicated by two 
thermocouples inserted diametrically opposite at r/2 (see detail-D in Fig. 1) from the inside wall 
whereas secondary fluid temperatures were measured by a single thermocouple located at the 
tube centre of the inlet and outlet nozzles (see thermocouples T41 to T44 in Fig. 1). This was 
adequate to obtain the average temperature as the temperature rise in the secondary fluid was 
small (< 4 oC). The thermocouples used to measure the heater outside wall temperature (two 
thermocouples installed diametrically opposite at six axial locations) were installed flush with 
the outside surface. The system pressure was measured with the help of two Kellar make 
pressure transducers located on the pressuriser as well as at the vertical heater outlet. The 
pressure drop across the bottom horizontal tube (see detail-B) and the level in the pressuriser 
were measured with the help of two differential pressure transmitters. The power of each heater 
was measured with a Wattmeter. The secondary flow rate was measured with the help of a 
turbine flow meter. All instruments were connected to a data logger with a user selectable 
scanning rate. For all the transient and stability tests the selected scanning rate was 1 second.  
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The accuracy of the thermocouples were within ± 1.5 °C. The accuracy of the pressure and 
differential pressure measurements were respectively ± 0.3 bar and ± 0.18 mm. The accuracy of 
the secondary flow as well as power measurements were ± 0.5 % of the reading. In addition, 
typical fluctuations of each instrument were also recorded during steady state with and without 
power which was practically same. Maximum fluctuation in primary temperature, secondary 
temperature, loop pressure and pressure drop were respectively ± 0.44 °C, ± 0.1 °C, ± 0.28 bar 
and ± 0.21 mm. 

Shakedown Tests 

The purpose of the shakedown tests was to generate heat loss and pressure drop characteristics of 
the loop. The pressure drop characterization tests were carried out under forced flow conditions 
in a separate facility. The pressure drop data for the loop piping and the loss coefficient data for 
the elbows are plotted in Fig. 2. The measured friction factor was somewhat larger than that for 
smooth pipes due to the use of commercial pipes. The correlations fitted to the friction factor and 
loss coefficient data are also shown in Fig. 2. To estimate the heat losses, natural circulation 
experiments were carried out at various powers with water at subcritical conditions (Fig.3). 
Adequacy of the loop instrumentation for estimating the mass flow rate was also tested during 
these experiments [24]. 
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Experiments with supercritical CO2

Before operation with supercritical CO2, the loop was flushed repeatedly with CO2 at low 
pressure including all impulse, drain and vent lines. Subsequently the loop was filled with CO2
up to 50 bar pressure and the chilled water coolant was valved in. This caused condensation of 
CO2 and hence a decrease in loop pressure. The pressure decrease was compensated by admitting 
additional CO2 from the cylinder and again allowed sufficient time for condensation. The process 
of filling and condensation was continued till there was no decrease in pressure. At this point the 
loop pressure was increased to the required value with the help of a helium gas cylinder. Once 
the required supercritical pressure was achieved, the helium cylinder was isolated from the 
pressuriser. Sufficient time was allowed to reach steady state. However, it was found difficult to 
attain completely stagnant conditions with uniform temperature throughout the loop as the higher 
ambient temperature allowed small amount of heat absorption through the insulation into the 
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loop which was rejected at the cooler causing a small circulation rate. Once a steady state was 
achieved, the heater power was switched on and adjusted to the required value. Sufficient time 
was allowed to achieve the steady state. Once the steady state is achieved, power was increased 
and again sufficient time was provided to achieve the steady state. In case the system pressure 
increases beyond the set value by 1 bar, a little helium was vented out to bring back the pressure 
to the original value. Similarly during power decrease if the pressure decreases below the set 
point by one bar, then the loop was pressurized by admitting additional helium into the 
pressurizer. The experiments were repeated for different pressures and different chilled water 
flow rates. Subsequently the experiments were performed for different orientations of the heater 
and cooler. 
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After completion of experiments with CO2, the supercritical pressure natural circulation loop 
(SPNCL) was modified by installing new test sections, pressurizer (designed for 30 MPa), 
Haskel pump and a low voltage high current power supply (25V & 8000A rated 200kW) so that 
uniform heat generation occurs in the heater wall material. The pressuriser with provision for gas 
filling (nitrogen) and the safety devices (rupture discs) was connected to the main loop as shown 
in Fig. 5. The cooler is the same as in CO2 loop albeit cooled with air using a large capacity 
blower (i.e. 45,300 1pm at 20 m head). Besides, the heater instrumentation and the secondary 
system flow measurement of the loop were also modified. Thermocouples were brazed on the 
outside surface of each heater test section, at twelve different axial locations. At each location, 
four thermocouples were provided at 90° angular distance (each at top, bottom and sides) as 
shown in Fig. 4. A total of 124 thermocouples were installed in the water loop compared to 44 
thermocouples in the CO2 loop. This also necessitated the use of a new data logger. An anubar 
was used for the air flow measurement. As fabricated length scales of the modified SPNCL are 
given in Fig. 5. 

Experiments with Supercritical Water 

For experiments under supercritical pressure conditions with water the following operating 
procedure is followed: 
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loop which was rejected at the cooler causing a small circulation rate. Once a steady state was 
achieved, the heater power was switched on and adjusted to the required value. Sufficient time 
was allowed to achieve the steady state. Once the steady state is achieved, power was increased 
and again sufficient time was provided to achieve the steady state. In case the system pressure 
increases beyond the set value by 1 bar, a little helium was vented out to bring back the pressure 
to the original value. Similarly during power decrease if the pressure decreases below the set 
point by one bar, then the loop was pressurized by admitting additional helium into the 
pressurizer. The experiments were repeated for different pressures and different chilled water 
flow rates. Subsequently the experiments were performed for different orientations of the heater 
and cooler. 
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thermocouples in the CO2 loop. This also necessitated the use of a new data logger. An anubar 
was used for the air flow measurement. As fabricated length scales of the modified SPNCL are 
given in Fig. 5.  

 
Experiments with Supercritical Water 

 
For experiments under supercritical pressure conditions with water the following operating 
procedure is followed: 

Fig. 3: Estimated heat loss fraction for various 
orientations during subcritical NC tests with water 

Fig. 4:  Inconel-625 heater test section for 
Supercritical water loop 
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i) The loop is filled up with demineralised water to the required level in the pressurizer. 
ii) Nitrogen is filled at the top of the pressurizer and the loop pressure is increased to 11 MPa. 
iii) Further pressurization to 22 MPa and beyond is achieved by injecting more water at the 
bottom of the pressurizer with the Haskel pump which increases the water level in the 
pressurizer. Then the Haskell pump is isolated. 
iv) Now power is switched on and due to thermal expansion of water, the loop gets pressurized 
above the supercritical pressure. 
v) To get desired pressure at an operating power, water inventory in the pressurizer is changed 
by either injecting water with Haskel pump or draining water from drain line near the outlet of 
Haskel pump. 
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Fig. 5: Schematic of the modified SPNCL 

Steady State Data 

Steady state data on natural circulation flow rate were generated with supercritical CO2 for 
various orientations of the source and sink whereas data with supercritical water was generated 
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iii) Further pressurization to 22 MPa and beyond is achieved by injecting more water at the 
bottom of the pressurizer with the Haskel pump which increases the water level in the 
pressurizer. Then the Haskell pump is isolated. 
iv) Now power is switched on and due to thermal expansion of water, the loop gets pressurized 
above the supercritical pressure. 
v) To get desired pressure at an operating power, water inventory in the pressurizer is changed 
by either injecting water with Haskel pump or draining water from drain line near the outlet of 
Haskel pump. 
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only for the orientation with both the source and sink horizontal. The range of parameters of all 
the steady state data for CO2 and water is given in table-1. 

The steady state mass flow rate for the experimental conditions were estimated using the 
measured heater power and the enthalpy rise across the heater as 

w  Qh 

iho ihi 

Table-1: Range of parameters for steady state natural circulation data with CO2 and water 

(1) 

Supercntical carbon dioxide data Supercritical water data 
Variables Range Variables Range 
Orientation HHHC, HHVC, VHHC & VHVC Orientation HHHC only 
Pressure 8-9.2 MPa Pressure 22.4-24.1 MPa 
Power 0.1-2.4 kW Power 3.5-8 kW 
Coolant Chilled water Coolant air 
Cold leg temp. 17.5-57.7 °C Cold leg temperature 207 — 403 °C 
Hot leg temp. 19.3-95.9 °C Hot leg temperature 199 - 424 °C 
Coolant flow 29.6-56 1pm (liters per minute) Coolant flow 7712 —14617 1pm 
Coolant inlet 8.2-11.4 °C Coolant inlet 44.3 — 46.5 °C 
Coolant outlet 9.0-12.5 °C Coolant outlet 71.6 — 93 °C 

The enthalpies at the heater inlet and outlet were estimated using the corresponding measured 
temperatures and system pressure. This is a better approach to estimate the experimental flow 
rate since the specific heat variation is significant for supercritical fluids. The estimated flow 
rates were compared with the predictions of the in-house developed computer code NOLSTA 
[25] and the results are presented in Fig. 6a & b. Figure 6a shows the data for three different 
orientations for which data were available at 8.6 MPa. For the VHHC orientation data were 
available only for 9.1 MPa. The data for VHHC and HHHC orientations are compared with 
NOLSTA predictions in Fig. 6b. The data are found to be in reasonable agreement with the code 
predictions. The effect of pressure on the steady state flow rate is presented in Fig. 6c along with 
the predictions by the NOLSTA code. The experimental steady state mass flow rate, heater inlet 
and outlet temperatures versus power for supercritical water at constant secondary side air flow 
rate are shown in Fig. 7a & b respectively. The predictions by NOLSTA code are in close 
agreement with experimental data. 

A generalized steady state flow equation has been derived by Swapnalee et al. [26] based on the 
dimensionless property relationship given by Ambrosini and Sharabi [27, 28]. According to 
Swapnalee et al. [26] the supercritical region can be subdivided in to various regimes as shown 
in figure 8a. The equation given for region 2 (where majority of the steady state data from the 
present tests belong) is reproduced below 

0.364 

Re =1.907 
Grm

NG

7 

(2) 

The	
  14th	
  International	
  Topical	
  Meeting	
  on	
  Nuclear	
  Reactor	
  Thermal	
  Hydraulics	
  (NURETH-­‐14)	
   Log	
  Number:	
  331	
  
Hilton,	
  Toronto	
  Hotel,	
  Toronto,	
  Ontario,	
  Canada,	
  September	
  25-­‐29,	
  2011	
  

7	
  

	
  

only for the orientation with both the source and sink horizontal. The range of parameters of all 
the steady state data for CO2 and water is given in table-1. 
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measured heater power and the enthalpy rise across the heater as 
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temperatures and system pressure. This is a better approach to estimate the experimental flow 
rate since the specific heat variation is significant for supercritical fluids. The estimated flow 
rates were compared with the predictions of the in-house developed computer code NOLSTA 
[25] and the results are presented in Fig. 6a & b. Figure 6a shows the data for three different 
orientations for which data were available at 8.6 MPa. For the VHHC orientation data were 
available only for 9.1 MPa. The data for VHHC and HHHC orientations are compared with 
NOLSTA predictions in Fig. 6b. The data are found to be in reasonable agreement with the code 
predictions. The effect of pressure on the steady state flow rate is presented in Fig. 6c along with 
the predictions by the NOLSTA code. The experimental steady state mass flow rate, heater inlet 
and outlet temperatures versus power for supercritical water at constant secondary side air flow 
rate are shown in Fig. 7a & b respectively. The predictions by NOLSTA code are in close 
agreement with experimental data. 
 
A generalized steady state flow equation has been derived by Swapnalee et al. [26] based on the 
dimensionless property relationship given by Ambrosini and Sharabi [27, 28]. According to 
Swapnalee et al. [26] the supercritical region can be subdivided in to various regimes as shown 
in figure 8a. The equation given for region 2 (where majority of the steady state data from the 
present tests belong) is reproduced below 
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The above dimensionless flow equation is compared with the present steady state supercritical 
pressure natural circulation flow data for CO2 and water in Fig. 8b. Subsequently, the data 
reported by Lomperski et al [19], Harden [20] and Holman-Boggs [21] are also compared with 
the above equation in Fig. 8c. In all cases, reasonable agreement is obtained with the proposed 
flow equation i.e. ± 30%. Since the data is from four different supercritical fluids generated with 
nine different loop configurations, the above equation is expected to hold good for other 
supercritical fluids and loop geometries. 
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The above dimensionless flow equation is compared with the present steady state supercritical 
pressure natural circulation flow data for CO2 and water in Fig. 8b. Subsequently, the data 
reported by Lomperski et al [19], Harden [20] and Holman-Boggs [21] are also compared with 
the above equation in Fig. 8c. In all cases, reasonable agreement is obtained with the proposed 
flow equation i.e. ± 30%. Since the data is from four different supercritical fluids generated with 
nine different loop configurations, the above equation is expected to hold good for other 
supercritical fluids and loop geometries. 
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Instability was observed only for the HHHC orientation. All other orientations were fully stable. 
Even for the HHHC orientation, both the subcritical and the supercritical regions beyond the 
pseudo-critical region were found to be mostly stable. Instability was observed only for a narrow 
window in the pseudo-critical region at low secondary coolant flow rates. Table-2 lists all the 
instability data that was generated with supercritical CO2. Instability was observed in the primary 
loop mass flow rate, heater outlet temperature and in some cases heater inlet temperature also 
during start-up from rest, power raising and step back from stable steady state. 

Start-up from rest 

These tests were performed by switching on the power nearly 3 to 4 hours after valving in the 
chilled water flow. Since the ambient temperature (28-32 °C) was much above the coolant 
temperature (8.2-11.4 °C), complete stagnant conditions could not be achieved as explained 
earlier. Typical instabilities observed for start-up from rest are shown in Fig. 9. At 10 1pm flow, 
stable start-up is not observed in the clockwise flow direction for power greater than 200 W. 
Start-up tests were not performed below this power. However, analysis shows stable start-up at 
very low power. On the other hand if flow initiated in the counter-clockwise direction, it was 
found to be stable. Note that the loop is not completely symmetric (see Fig. 1). Table-2 shows a 
summary of the tests done i.e. Sr. no. 13, 15 and 17. 

Power raised or lowered from stable steady state 

In this case, starting from a stable steady state the power is increased or decreased in small steps. 
These experiments were carried out at different pressures and secondary flow rates. Table-2 
shows a summary of the tests done i.e. Sr. no. 1-3, 5-12 and 16. 

Typical instability observed at 9.1 MPa at various powers is shown in Fig. 10, 11 and 12 
respectively for different secondary flow rates of 10, 15 and 20 1pm. In all cases, the instability 
develops by the oscillation growth mechanism as proposed by Welander [29]. Instability 
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window in the pseudo-critical region at low secondary coolant flow rates. Table-2 lists all the 
instability data that was generated with supercritical CO2. Instability was observed in the primary 
loop mass flow rate, heater outlet temperature and in some cases heater inlet temperature also 
during start-up from rest, power raising and step back from stable steady state. 
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found to be stable. Note that the loop is not completely symmetric (see Fig. 1). Table-2 shows a 
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development from steady state condition by the oscillation growth mechanism was also observed 
in single-phase loops [30]. As seen from figures 10, 11 and 13, the instability dies by a steady 
decrease in oscillation amplitude. Instability was also observed at other pressures as shown in 
Fig. 13. In this case, a complex time series shows a complex oscillatory pattern with repetitive 
oscillation growth and decay. 
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Three tests are listed under this category in table-2 i.e. Sr. no. 4, 14, 18 and 19. In all cases the 
final power was the same and the initial power was different. Further the initial condition was 
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development from steady state condition by the oscillation growth mechanism was also observed 
in single-phase loops [30]. As seen from figures 10, 11 and 13, the instability dies by a steady 
decrease in oscillation amplitude. Instability was also observed at other pressures as shown in 
Fig. 13. In this case, a complex time series shows a complex oscillatory pattern with repetitive 
oscillation growth and decay. 
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8 HHHC_90_10 15/6/09 9.1 40.4- 579
1
790 30 

6 
5- 

70 10.2 12 10.2 40 

Only recorded graphs 

available 

9 HHHC 90 10 15/6/09 9.1 700-500- 
300 

27.1 
37- 
45 

9.8 11.4 10 40 

10 
HHHC 90 10 15/6/09 9.1 300-100 16.7 - 

18.4 
22.7- 

25 
10.3 11.2 10 40 

11 
HHHC 90 20 16/6/09 9.1 500-300- 

100 
22 32-

35 
9.5 10.5 20 40 

12 
HHHC9020 

- - 

16- 

17/6/09 
9.1 300-100 

16.2- 
17 

24.8- 
26.5 

9.6 10.4 20 40 

13 

SR(3)_HHHC_ 

400W_10 
6/7/09 8.1 

0-402.18 45.2- 
76.1 

52- 
112.6 

10.8 12.4 10 34.5 

14 

SR(3)_HHHC_ 

500W10 
7/7/09 8.1 1500-300 

23- 
25 

28.1- 
31.2 

10.2 12 10 34.5 

15 

SR(3)_HHHC_ 

600W10 
8/7/09 7.93 0-601.87 31.5-

65 
44-
92 

10.8 11.6 10 33.5 
High temperature trip at 

10.07am 

16 
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600W_10 
3/8/09 8.13 

600-1000- 
1400 

30.6- 
32.53 

36.3- 
38.9 

9.2 10.4 10.1 35.5 

17 

SR(4)_HHHC_ 

700W_10 
4/8/09 8.1 0-700W 29.4 31-

33 
9.8 10.8 10 34.5 

18 

SR(4)_HHHC_ 

700W_10 
4/8/09 7.7 1900-300 28.4 27-

34 
9.1 9.9 10.2 32.5 

19 

HHHC 500W 
_10_090809 

9/8/09 8.1 1700-300 
7.25 - 

26.2 
27- 
31 

9.2 11.1 10.1 34.5 
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Table-2: Summary of instability data 

 
Sr. 
no. 

Data folder 
name 

Date P 
MPa  

Power 
(W) 

Thi - 
oC 

Tho - 
oC 

Tsi- 
oC 

Tso- 
oC 

Ws 
(lpm) 

TPC 
oC 

Remarks 

1 HHHC_90_15 12/6/09 9.1 198-400-
200 

22.3-
34.2 

30.3-
54.6 9.9 11 15.1 40 Only recorded graphs 

available  

2 HHHC_90_15 13/6/09 9.1 200-400-
600 

25.5-
37.5 

30-
58 9.9 11 15 40 Pressure raised at 3.20 

hrs 

3 HHHC_90_15 13/6/09 9.1 600-800-
1000 31 35-

43 9.8 10.9 15 40  

4 HHHC_90_15 13-
14/6/09 9.1 

1692.73-
200-

1716.7 
56 96.5-

99.7 10.3 11.1 15.1 40 Only recorded graphs 
available 

5 HHHC_90_15 14/6/09 9.1 925-700-
500 31 34-

45 9.8 11.2 15.5 40  

6 HHHC_90_15 14/6/09 9.1 500-300-
100 

45-
75 

59-
111 9.8 10.7 15.1 40 At 9.50 temp reached 

170 and then start falling 

7 HHHC_90_10 14/6/09 9.1 Unknown-
200-400 

40-
65 

50-
100 10.2 11.6 10.2 40 

Only recorded graphs 
available 

8 HHHC_90_10 15/6/09 9.1 401.4-
579-790 30 65-

70 10.2 12 10.2 40 
Only recorded graphs 
available 

9 HHHC_90_10 15/6/09 9.1 700-500-
300 27.1 37-

45 9.8 11.4 10 40  

10 
HHHC_90_10 15/6/09 9.1 300-100 16.7-

18.4 
22.7-

25 10.3 11.2 10 40  

11 
HHHC_90_20 16/6/09 9.1 500-300-

100 22 32-
35 9.5 10.5 20 40  

12 
HHHC_90_20 16-

17/6/09 9.1 300-100 16.2-
17 

24.8-
26.5 9.6 10.4 20 40  

13 
SR(3)_HHHC_

400W_10 
6/7/09 8.1 0-402.18 45.2-

76.1 
52-

112.6 10.8 12.4 10 34.5  

14 
SR(3)_HHHC_

500W_10 
7/7/09 8.1 1500-300 23-

25 
28.1-
31.2 10.2 12 10 34.5  

15 
SR(3)_HHHC_

600W_10 
8/7/09 7.93 0-601.87 31.5-

65 
44-
92 10.8 11.6 10 33.5 High temperature trip at 

10.07am  

16 
SR(4)_HHHC_

600W_10 
3/8/09 8.13 600-1000-

1400 
30.6-
32.53 

36.3-
38.9 9.2 10.4 10.1 35.5  

17 
SR(4)_HHHC_

700W_10 
4/8/09 8.1 0-700W 29.4 31-

33 9.8 10.8 10 34.5  

18 
SR(4)_HHHC_

700W_10 
4/8/09 7.7 1900-300 28.4 27-

34 9.1 9.9 10.2 32.5  

19 
HHHC_500W
_10_090809 

9/8/09 8.1 1700-300 25.7-
26.2 

27-
31 9.2 11.1 10.1 34.5  
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Fig. 14: Large power decrease from different initial powers 

Instability with supercritical water 

c) From 1500 W to 300 W 

A stability investigation with water is on-going. Already a few cases of instability are observed 
with water. In all cases, the instability appeared in the pseudo-critical region with low coolant 
flow rates. Typical examples are shown in Fig. 15. 
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Fig. 15: Instability with supercritical water 

General Characteristics of the observed instability 

The amount of instability data generated in the present test facility is clearly inadequate 
compared to the extensive instability data that exists for single-phase and two-phase loops. The 
data generated is also inadequate to confirm certain characteristics of the instability like 
hysteresis though its existence is suspected. Further, the instability thresholds have not been 
successfully identified. Nevertheless several interesting characteristics have been revealed by the 
limited unstable data generated in the facility as brought out below. 

Oscillatory Behaviour of Heater Inlet and Outlet temperatures 

The minimum and maximum of the observed heater inlet and outlet temperature oscillations for 
all the CO2 instability data at 8.1 and 9.1 MPa are shown in Fig. 16a and b respectively. Except 
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Instability with supercritical water 
 

A stability investigation with water is on-going. Already a few cases of instability are observed 
with water. In all cases, the instability appeared in the pseudo-critical region with low coolant 
flow rates. Typical examples are shown in Fig. 15. 
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for the start-up at 400 W, all other instability data is found to be either in the pseudocritical 
region or close to it. Thus it appears that operation in or around the pseudocritical region is prone 
to instability for supercritical fluids. However, the start-up instability is not necessarily a 
characteristic of supercritical fluids. Instability during start-up has also been observed earlier for 
single-phase natural circulation loops [30]. Thus apart from the instability around the 
pseudocritical region, SPNCLs are also susceptible to other instability mechanisms of natural 
circulation. 

Another interesting feature of the oscillations is that the inlet temperature remains almost 
constant and only outlet temperature is oscillating (see Fig. 17 & 18). This, however, is not the 
case with the instability observed with large power decrease as well as start-up (see also Fig. 
17d). Fig. 19 confirms the same for water. 
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Fin. 16: Inlet and outlet temperatures for the instability data at different pressures 
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region or close to it. Thus it appears that operation in or around the pseudocritical region is prone 
to instability for supercritical fluids. However, the start-up instability is not necessarily a 
characteristic of supercritical fluids. Instability during start-up has also been observed earlier for 
single-phase natural circulation loops [30]. Thus apart from the instability around the 
pseudocritical region, SPNCLs are also susceptible to other instability mechanisms of natural 
circulation. 
 
Another interesting feature of the oscillations is that the inlet temperature remains almost 
constant and only outlet temperature is oscillating (see Fig. 17 & 18). This, however, is not the 
case with the instability observed with large power decrease as well as start-up (see also Fig. 
17d). Fig. 19 confirms the same for water. 
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Fig. 16: Inlet and outlet temperatures for the instability data at different pressures 
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Fig. 17: Typical inlet and outlet temperature oscillations for instability at different powers 
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Fig. 19: Typical inlet and outlet temperature oscillations for instability with SCW 
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(a) ∆p   (b) Thi and Tho          (c) ∆Th           (d) Phase plot 
Fig. 20: Time series and phase plot for the instability shown in Fig. 11a 

(a) ∆p   (b) Thi and Tho          (c) ∆Th           (d) Phase plot 
Fig.18: Time series and phase plot for the instability shown in Fig. 10 

      c) Temperature transient for test in Fig. 15b          d) Temperature transient for test in Fig. 15a 
Fig. 19: Typical inlet and outlet temperature oscillations for instability with SCW 

(a) ∆p   (b) Thi and Tho          (c) ∆Th           (d) Phase plot 
Fig. 21 Time series and phase plot for the instability shown in Fig. 11b 
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Time Series and Phase Plots 

Analyses of the test data neglecting the initial transients often reveal many interesting 
characteristics of the instability. Figures 18, 20, 21 & 22 show the time series of measured Ap 
(pressure drop across the bottom horizontal pipe), Thj & Tho (inlet and outlet temperatures of the 
heater) and the ATh (temperature rise across the heater) for one thousand seconds after neglecting 
the initial transients. As can be seen, the phase plot (shown for only one cycle) shows a simple 
closed curve for the test data at 500 W (see Fig. 18d) which is markedly different from that 
shown in figures 20d and 21d. From the time series given in Fig. 21 and 22, it is easily seen that 
a near period doubling occurs between 500 W and 700 W. In general, the period is expected to 
decrease with increase in power if the oscillatory mode remains the same. Switching of the 
oscillatory mode as shown by the phase plots results in sudden period change. Periodic 
oscillations depict a single closed phase plot. Both the oscillatory modes characterized by the 
phase plots in Fig. 18 and 20 or 21 are only nearly periodic as shown by the long duration phase 
plots in Fig. 22 and 23. Figures 22 and 23 also illustrates that the shape of the phase plots 
depends on the parameter spaces chosen (Lingade 31]). 
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Fig. 22: Phase plots in various parameters for instability at 500 W, 9.1 MPa, 10 Ipm and 9.8 °C 
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Fig. 23: Phase plots in various parameters for instability at 700 W, 9.1 MPa, 15.5 Ipm and 9.8 °C 

In the present experiments, instability with supercritical CO2 and water was observed only at low 
coolant flow rates. Hence the effect of the secondary coolant flow rate on the stability of the CO2
loop was studied with the nonlinear stability analysis code NOLSTA [25]. The code solves the 1-
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Time Series and Phase Plots 

 
Analyses of the test data neglecting the initial transients often reveal many interesting 
characteristics of the instability. Figures 18, 20, 21 & 22 show the time series of measured ∆p 
(pressure drop across the bottom horizontal pipe), Thi & Tho (inlet and outlet temperatures of the 
heater) and the ∆Th (temperature rise across the heater) for one thousand seconds after neglecting 
the initial transients. As can be seen, the phase plot (shown for only one cycle) shows a simple 
closed curve for the test data at 500 W (see Fig. 18d) which is markedly different from that 
shown in figures 20d and 21d. From the time series given in Fig. 21 and 22, it is easily seen that 
a near period doubling occurs between 500 W and 700 W. In general, the period is expected to 
decrease with increase in power if the oscillatory mode remains the same. Switching of the 
oscillatory mode as shown by the phase plots results in sudden period change. Periodic 
oscillations depict a single closed phase plot. Both the oscillatory modes characterized by the 
phase plots in Fig. 18 and 20 or 21 are only nearly periodic as shown by the long duration phase 
plots in Fig. 22 and 23. Figures 22 and 23 also illustrates that the shape of the phase plots 
depends on the parameter spaces chosen (Lingade [31]). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Stability Analysis 
 
In the present experiments, instability with supercritical CO2 and water was observed only at low 
coolant flow rates. Hence the effect of the secondary coolant flow rate on the stability of the CO2 
loop was studied with the nonlinear stability analysis code NOLSTA [25]. The code solves the 1-
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D mass, momentum and energy conservation equations numerically in time domain. The code 
models the cooler with an overall heat transfer coefficient. Also, the pipes are considered 
adiabatic and their thermal capacitance effect is also neglected. The predicted stability map 
shows a lower and an upper instability threshold as observed in the experiments for a given 
secondary coolant mass flow rate as shown in Fig. 24. However, the predicted unstable zone is 
significantly larger than that was observed in the experiments. For example, no instability was 
observed beyond 30 1pm secondary flow rate during the experiments. This is attributed to the 
neglect of multi-dimensional effects, wall conduction and heat losses in the calculations. 
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Steady state and stability experiments were carried out with supercritical CO2 and H2O. The 
steady state flow rate data obtained were compared with the predictions of 1-D code NOLSTA 
which showed good agreement. The generalized steady state flow equation is able to predict the 
experimental flow rates within ± 30%. Instability was observed in the loop in a narrow window 
around the pseudo critical region with low coolant flow rate for the HIATIC orientation with both 
CO2 and H2O. One of the interesting feature of instability observed in most cases is that the 
heater outlet temperature is oscillating whereas heater inlet temperature is practically constant. 
All orientations of heater and cooler except HIATIC were found to be stable over the range of 
parameters studied. NOLSTA code predicts a lower and an upper stability threshold which is in 
qualitative agreement with the experimental data. 

Nomenclature 

A Flow area (m2) 
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D mass, momentum and energy conservation equations numerically in time domain. The code 
models the cooler with an overall heat transfer coefficient. Also, the pipes are considered 
adiabatic and their thermal capacitance effect is also neglected. The predicted stability map 
shows a lower and an upper instability threshold as observed in the experiments for a given 
secondary coolant mass flow rate as shown in Fig. 24. However, the predicted unstable zone is 
significantly larger than that was observed in the experiments. For example, no instability was 
observed beyond 30 lpm secondary flow rate during the experiments. This is attributed to the 
neglect of multi-dimensional effects, wall conduction and heat losses in the calculations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Concluding Remarks 
 
Steady state and stability experiments were carried out with supercritical CO2 and H2O. The 
steady state flow rate data obtained were compared with the predictions of 1-D code NOLSTA 
which showed good agreement. The generalized steady state flow equation is able to predict the 
experimental flow rates within ± 30%. Instability was observed in the loop in a narrow window 
around the pseudo critical region with low coolant flow rate for the HHHC orientation with both 
CO2 and H2O. One of the interesting feature of instability observed in most cases is that the 
heater outlet temperature is oscillating whereas heater inlet temperature is practically constant.  
All orientations of heater and cooler except HHHC were found to be stable over the range of 
parameters studied. NOLSTA code predicts a lower and an upper stability threshold which is in 
qualitative agreement with the experimental data. 
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D Hydraulic diameter (m) 
f Friction factor 
g Acceleration due to gravity (m/s2) 

Grm 
Modified Grashoff Number, [D3P„Pmfi g Qh HI 

Aµ3 

i Enthalpy (j/kg/k) 
Qh Heater Power (W) 
Re Reynolds number (WD/Aµ) 
T Temperature (°C) 
W Mass flow rate (kg/s) 
H Loop height (m) 

Greek 

P Density (kg/m3) 

fi Volumetric expansion coefficient (1(1) 

p Dynamic viscosity (Pa-s) 

Subscripts 

h heater 
ho Heater outlet 
hi Heater inlet 
m mean 
pc Pseudo-critical 
si Secondary inlet 
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 D Hydraulic diameter (m) 
 f Friction factor 
g Acceleration due to gravity (m/s2) 
 
Grm Modified Grashoff Number,  

i Enthalpy (j/kg/k) 
Qh Heater Power (W) 
Re Reynolds number (WD/Aµ)  
T Temperature (oC) 
W Mass flow rate (kg/s) 
H Loop height (m) 

 
 
Greek 
 
ρ Density (kg/m3) 
β Volumetric expansion coefficient (k-1) 
µ Dynamic viscosity (Pa-s) 

 
Subscripts 
 
h heater 
ho Heater outlet 
hi Heater inlet 
m mean 
pc Pseudo-critical 
si Secondary inlet 
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