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Abstract 

A 1D two-fluid model for horizontal stratified flow is presented and discussed in the context of 
the Kelvin-Helmholtz instability. The model is well-posed because it includes surface tension. 
However, well-posedness is not sufficient. It is shown that non-linear stability (i.e., bounded 
wave growth) is also a necessary condition for convergence. 

A turbulent viscosity is constituted for the 1D two-fluid model by means of 2D LES using the 
VOF piece-wise linear approach to track the interface. The 1D model Reynolds stress thus 
obtained is used to represent missing physics in 1D associated with viscous dissipation due to 
vorticity. With the added Reynolds stress the 1D numerical model exhibits bounded wave growth 
and it also converges. 

1. Introduction 

The Inviscid Kelvin-Helmholtz (IKH) instability in horizontal stratified flow has been the subject 
of considerable research within the framework of the one-dimensional (1D) two-fluid model. It is 
of particular interest to the analysis of the stability of the model because it is an extreme case that 
produces high frequency waves that are amplified if the model is ill-posed. Taitel and Dukler [1] 
used linear stability theory to predict the flow regime transition from stratified to slug flow when 
the IKH instability occurs. In their simple interpretation the one-dimensional two-fluid model 
becomes ill-posed at the transition. However Ramshaw and Trapp [2] found that adding surface 
tension makes the model well-posed. Previously [5] it was shown through linear and nonlinear 
stability analyses that inclusion of surface tension into a 1D two-fluid model framework does 
render the model well-posed with a critical wavelength near the experimentally reported values. 
It was also shown that the model was capable of predicting the onset of the IKH instability which 
was benchmarked against 2D two-fluid model simulations as well as the experimental data of 
Thorpe [6]. Nevertheless the capillary waves grow unboundedly past the IKH instability point. 

It has been shown by Kreiss and Ystrom [3] that the nonlinear behavior of a system of Burgers 
equations similar to the 1D two-fluid model with a small value of artificial viscosity results in 
dissipative shocks that limit the growth and amplitude of the waves. This theoretical result is 
significant because it shows that the amplitude of the waves in a two-fluid model with first order 
finite difference scheme is limited by the numerical viscosity. The shock steepening and 
formation is analogous to the wavelength cascading results reported by Krishnamurthy and 
Ransom [4]. They analyzed a toroidal stratified flow where a long wavelength disturbance was 
transferred to shorter wavelengths, until the energy was dissipated by numerical viscosity. They 
hypothesized that this process was similar to turbulent eddies cascading down to the 
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Kolmogorov length scale. However, numerical viscosity has several shortcomings: it is not based 
on physics and it varies with mesh size so that the numerical model does not converge. 

The objective of the present work is to use a 2D computational fluid dynamics (CFD) simulation 
of high accuracy to constitute a Reynolds stress term for the 1D two-fluid model based on Kreiss 
and Ystrom's shocks [3]. Such a term should substitute missing physics (voracity, wave 
breaking, etc.) so that the model does not have to rely on inaccurate numerical dissipation to 
limit the growth of the waves. 

2. Description of Thorpe's experiment 

The 1D and 2D numerical simulations are benchmarked against the experiments of S. A. Thorpe 
[6]. In the experiments a glass rectangular channel is filled with two immiscible fluids of 
different densities. The channel is 1.83m long, 3cm tall and 10cm wide which allows for quasi-
2D waves. The fluids are water and commercial paraffin (kerosene) with carbon tetrachloride. 
The paraffin is used in place of air because its density is much closer to that of water. This 
decreases the acceleration of the fluids and extends the data collection time window. The 
properties of the fluids are: pi = 780 kg/m3, p2 = 1000 kg/m3, µ1 = 0.0015 Pa s, µ2 = 0.001 Pa s 
and o= 0.04 N/m. 

1.83 m 

10 cm 
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a(x,t= 0) = 0.5 

= 0.04 N/m 

4.1° 

p,= 780 kg/ms
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Figure 1 Experimental configuration and physical properties of Thorpe [6]. 

The channel is initially half filled with each fluid and allowed to settle in the horizontal position 
before one end was sharply raised. Video was taken of the counter-current accelerating fluids 
from above and on the side. The angle was varied from 4 — 12° in the experiments. In the 
simulations for which images have been published the angle is such that sin° = 0.072. The time 
of the onset of instability was found to be 1.88 ± 0.07sec which includes half of the time to tilt 
the channel (about 0.25 sec). The measured value of the critical wavelength is 3.3 cm with ± 1 
cm root mean square giving an uncertainty band of 2.4 — 4.4 cm. 

3. One-dimensional model 

The 1D two-fluid model [7] defines the conservation equations with the following simplifying 
assumptions: incompressible, isothermal, wall shear is generally neglected and the convective 
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covariance is unity. The resulting equations of mass and momentum in non-conservative form 
are: 

a a 
—at akPk+—ax04Pkuk = 0 , 

auk auk k 
akPk +akPkuk — —ak 

aP
— a k 1/k auk UkUk a kPkgx M ik • 
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where k = 1, 2 correspond to kerosene and water respectively. The first term on the RHS is 
phasic pressure gradient which, in this form, represents the total force due to mean pressure, 
hydrostatic and surface tension effects. The second term on the RHS represents the viscous and 
Reynolds stresses and the last term represents the interfacial forces. All solution variables 
represent Reynolds averaged, area averaged and void weighted quantities. The role of the 
Reynolds stress term in equation (2) in dissipating wave growth is the object of the present study. 
The turbulent viscosity hypothesis is used to model the Reynolds stress which is the subject of 
section 4. The interfacial momentum contribution has components of drag, virtual mass, Basset 
force, turbulent diffusion and interfacial pressure. Most of the forces can be ignored based on 
their relative contributions. The virtual mass force is neglected based on the assumption of 
separated, stratified flow geometry. Only the component of drag is modelled as 

M il = 21H C DP2 1141 — 1421011 —142 ) • (3) 

The drag coefficient is a power law correlation developed for wavy stratified flow [8]. The effect 
of interfacial pressure is not modelled with the other interfacial forces, but directly accounted for 
in the pressure gradient term. In traditional 1D models, the phasic pressures are assumed to be in 
equilibrium and the term appearing in (2) is the area averaged pressure. Instead, it is assumed 
here that the phases have distinct pressures that are related to a reference pressure with 
contributions from hydrostatic and surface tension forces, as shown in Figure 2. 
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Figure 2 Geometry and transverse pressure distribution for inclined channel flow 

The mean pressure of each phase can be related to its interfacial pressure by 

Pk =Ak ±+HPkgyak 
(3/13) 
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The mean pressure of each phase can be related to its interfacial pressure by  
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for a rectangular channel. The pressure jump at the interface is proportional to the curvature of 
the interface which is approximated by the second derivative of the height of the interface. The 
interfacial pressure of the lighter fluid, pig, is selected as the reference pressure. Therefore, the 
mean pressure of the heavier phase is replaced by 

a2a
2 

P2 = 1011 p2gya 2 
—o-H axe A (5) 

The four independent variables are a l, ui, u2 and pii, with a 2 = 1 - a l. In essence, this model is 
equivalent to the five equation two pressure model of Ramshaw and Trapp [2], incorporated into 
a single pressure framework. 

3.1 Numerical implementation 

The finite difference scheme of the governing equations is relatively simple. A staggered grid is 
used where velocities are stored at cell faces and void fraction, pressure, etc. are stored at the cell 
centroids. Only velocity is implicit in the continuity equation. The implicit velocity terms 
actually represent a velocity-pressure correction term. The continuity equations are solved 
implicitly for the void fraction and pressure in a coupled system and the momentum equations 
are solved explicitly for the velocity with updated pressure and void fraction corrections. The 
momentum convection is discretized with first order upwinding. Pressure, interfacial drag and 
the hydrostatic pressure force are modelled implicitly. Viscous shear is modelled with explicit 
second order central differencing. The third order derivative surface tension term is also explicit, 
second order and centered about the velocity face. face. This term requires two boundary 
conditions at the closed ends, which is satisfied by using two 'ghost' cells to extend the domain. 
These ghost cells mirror the calculated void fraction in the first or last cell. Both fluids are 
assumed to be incompressible. 

3.2 Consequences of the model 

Linear analyses and non-linear simulations of a 1D two-fluid model for stratified flow beyond 
the KH limit were performed [5]. The most important results are summarized below. The 
conditions used for the analysis are: p2 = 1000 kg/m3, pi = 780 kg/m3, u2 = 0.1 m/s, ui = 0.5 m/s, 

= 0.5, a= 0.04 N/m, H= 3 cm and the flow is horizontal, gx = 0. 
• The most basic 1D two-fluid model (i.e., neglecting interfacial drag, viscous stress, 

hydrostatic pressure and surface tension) is ill-posed when the relative velocity exceeds the 
inviscid Kelvin-Helmholtz instability criterion. As the wavelength of a disturbance decreases 
to zero, the growth rate increases to infinity. 

• Interfacial drag has a stabilizing effect but does not alter the characteristics because the drag 
model is algebraic. The hydrostatic pressure force also has a slight stabilizing effect but does 
not change the ill-posed nature of the equations. 

• Inclusion of a viscous stress term results in a finite growth rate for a zero wavelength 
disturbance [14]. Strictly speaking the model is well-posed, however the maximum growth 
rate occurs at the zero wavelength disturbance. This is physically incorrect because it is not 
infinitesimally small disturbances that dominate the observed wave growth. Additionally a 
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numerical model of this equation set would be non-convergent as the critical wavelength 
would be directly tied to the grid size. 

• The model becomes fully well-posed, that is the growth rate of zero wavelength disturbances 
is zero, when a diffusion term is added to the continuity equation, but this is incorrect in 
terms of the two-fluid model. Incidentally, this is the reason why a first order upwind scheme 
stabilizes the two-fluid model. However, the numerical viscosity depends on the mesh size 
and the numerical model does not converge. 

• When the third order surface tension term is considered the model becomes fully well-posed 
[2] for the right physical reason. There exists a cutoff wavelength (-1.8 cm) below which the 
growth rate is zero. The critical wavelength is approximately 2.5 cm. 

• A Von Neumann stability analysis confirms the results of the dispersion analysis if the finite 
difference equations are consistent with the differential model. For the case with surface 
tension the cutoff wavelength is relatively unchanged and the critical wavelength is 
approximately 3 cm. 

• Finally, a nonlinear simulation was carried out by solving the numerical model for a single 
wave with amplitude of 5% imposed on the baseline 0.5 void fraction. The growth of the 
wave was simulated over the first 200 iterations for different wavelengths confirming the 
previous analysis that the cutoff wavelength is approximately 2cm and the critical 
wavelength is shifted slightly to 4 cm. 

• The results of a second hypothetical case are shown in Figure 3 where a short wavelength 
(1 cm) disturbance of 0.5% amplitude is superimposed on a long wavelength (10 cm) 
disturbance of 5% amplitude. The high frequency wave is below the cutoff frequency 
predicted by the linear analysis. As predicted, Figure 3 clearly shows this wavelength is 
damped out while the large wave evolves. On the other hand, when surface tension is not 
included, the high frequency wave has a larger growth rate and dominates the solution. This 
is a good illustration of ill-posed behaviour. 

• The long wavelength perturbation grows and begins to develop a steep, shock like formation. 
Wave growth is bounded by the viscous dissipation at the shock. So the role of the viscous 
stress is to stabilize the model in a non-linear sense. 

Including the surface tension force into the 1D two-fluid model produced a system that is both 
more physically correct and well-posed. However, the model was found to have some 
shortcomings. The first problem that was noticed is that when the model is used to simulate the 
inclined channel experiment of Thorpe [6], the time of the onset of instability was significantly 
delayed from both the experimental data and the 2D simulations. Also the amplitude of the 
waves was significantly larger than the 2D model. It was determined that the first order nature of 
the finite difference equations made the model too stable if the interface was initially perfectly 
smooth. When a small amplitude disturbance in the void fraction was imposed, the initiation of 
wave growth matched the data. The most troublesome shortcoming of the model was its failure 
to converge on a solution as the mesh is refined. As the mesh size is reduced, higher frequency 
components of the solution appeared. It is hypothesized that the non-convergence issue and the 
large wave amplitude are both related to the fact that the dissipation is purely numerical. 
Although surface tension can make the model well-posed, it has a dispersive and not dissipative 
effect. There should be a dissipation mechanism in the model other than axial viscous dissipation 
that can retard the wave growth rate rather than relying on the numerical dissipation from the 
first order nature of the fmite difference equations. In order to quantify the mechanism of 
dissipation by vorticity we rely on 2D CFD simulations of Thome's experiment [6]. 
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Figure 3: Evolution of a long and short wavelength disturbance with surface tension (a) and 
without (b), number of iterations are 0, 100, and 200 (left to right). 

4. Two-dimensional CFD modelling 

4.1 Numerical model 

The commercial code FLUENT is used to solve the incompressible, isothermal, 2D unsteady 
flow field. Due to the isothermal assumption the energy equation is not solved and mass transfer 
is hence neglected. The volume of fluid (VOF) approach is well suited to model the phase 
distribution of the two immiscible fluids. In this approach, it is assumed that a computational cell 
is occupied wholly by either phase or contains the interface. The velocity field is solved via a 
Large Eddy Simulation (LES). The justification for using an LES approach is given in section 
4.2. The LES approach is not discussed in detail here, for reference see [10] or [11]. In general, 
the Navier-Stokes equations are filtered in either Fourier or physical space to remove the motion 
of small eddies below some cut-off or filter size. The subgrid scale stress (SGS), or eddy motion 
that has been filtered out, is modelled with the turbulent viscosity hypothesis. For the finite 
difference numerical implementation, the filtering is implicitly provided by the computational 
cell [11]. The governing equations are: 
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Figure 3: Evolution of a long and short wavelength disturbance with surface tension (a) and 
without (b), number of iterations are 0, 100, and 200 (left to right). 

4. Two-dimensional CFD modelling  

4.1 Numerical model 
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is occupied wholly by either phase or contains the interface. The velocity field is solved via a 
Large Eddy Simulation (LES). The justification for using an LES approach is given in section 
4.2. The LES approach is not discussed in detail here, for reference see [10] or [11]. In general, 
the Navier-Stokes equations are filtered in either Fourier or physical space to remove the motion 
of small eddies below some cut-off or filter size. The subgrid scale stress (SGS), or eddy motion 
that has been filtered out, is modelled with the turbulent viscosity hypothesis. For the finite 
difference numerical implementation, the filtering is implicitly provided by the computational 
cell [11]. The governing equations are: 
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  (7) 

  (8) 
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where over-bars signify filtering. In (8) the density and viscosity are the void weighted average 
values if the interface is present in a cell. The only momentum force included in the analysis is 
surface tension force by using the continuum surface force [11]. The rate of strain tensor for the 
resolved scales is 

au. t-ia f ) 
S.. + 

2 ax ax 

and the SGS is defined by and modelled as 

SGS 
Tii = —212sGsSy 

The SGS viscosity is determined with the Smagorinsky model [11] as 

4USGS = P C A 2 S 

(9) 

(10) 

where 0 is the grid filter length and S is the modulus of the resolved rate of strain tensor, (9). 

The Smagorinsky constant C. is determined dynamically. When the filtered equations are re-
filtered with a larger test filter, an expression for C, can be derived based on a relationship 
between the grid scale filtered rate of strain and the test filtered rate of strain, see [10] or [11]. 

Time advancement of continuity, (7), is explicit for the purpose of using the highest accuracy 
representation of the interface. This is accomplished by the geometric reconstruction scheme, 
where the void fraction is assumed to vary linearly within each cell and uses this linear shape to 
calculate the advection of the fluids through the cell faces. The Pressure-Implicit with Splitting 
Operators (PISO) scheme is used for the pressure-velocity coupling. The spatial discrimination is 
second order bounded central difference with pressure staggering option (PRESTO!). Since the 
central difference scheme can be unstable, the time step is limited to ensure CFL < 1. Time 
advancement of the momentum equations is restricted to first order implicit. Ideally, second 
order accuracy is desired for LES but, unfortunately, that option is currently incompatible with 
explicit time advancement of the continuity equations (which is required for the high order 
accuracy interface treatment). 

Currently only one computational grid is used where Ax = Ay = 1 mm. In the future a 
convergence analysis will need to be performed. Here it is assumed that the mesh gives 
reasonably converged solution based on the work of [13] where Thorpe's case was studied with a 
VOF model and the same grid size was found to give a converged solution for the critical 
wavelength. All walls have no slip boundary conditions when the simulation is compared to 
Thorpe's data. Free slip conditions are used on the top and bottom walls to calculate the 
dissipation results. This was necessary to ensure that the calculated Reynolds stresses and 
dissipation were products of the wave motion and not from wall induced shear. The extra 
dissipation of the no slip walls at the ends of the channel does not affect the results due to the 
averaging domain discussed below. The initial condition is stagnant flow with the interface 
situated at the half channel height. The gravity vector points in the angle of channel tilt. 
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between the grid scale filtered rate of strain and the test filtered rate of strain, see [10] or [11].  

Time advancement of continuity, (7), is explicit for the purpose of using the highest accuracy 
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where the void fraction is assumed to vary linearly within each cell and uses this linear shape to 
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second order bounded central difference with pressure staggering option (PRESTO!). Since the 
central difference scheme can be unstable, the time step is limited to ensure . Time 
advancement of the momentum equations is restricted to first order implicit. Ideally, second 
order accuracy is desired for LES but, unfortunately, that option is currently incompatible with 
explicit time advancement of the continuity equations (which is required for the high order 
accuracy interface treatment).  

Currently only one computational grid is used where Δx = Δy = 1mm. In the future a 
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reasonably converged solution based on the work of [13] where Thorpe’s case was studied with a 
VOF model and the same grid size was found to give a converged solution for the critical 
wavelength. All walls have no slip boundary conditions when the simulation is compared to 
Thorpe’s data. Free slip conditions are used on the top and bottom walls to calculate the 
dissipation results. This was necessary to ensure that the calculated Reynolds stresses and 
dissipation were products of the wave motion and not from wall induced shear. The extra 
dissipation of the no slip walls at the ends of the channel does not affect the results due to the 
averaging domain discussed below. The initial condition is stagnant flow with the interface 
situated at the half channel height. The gravity vector points in the angle of channel tilt.  
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4.2 1D Reynolds stress 

It is proposed to constitute a 1D Reynolds stress term that will produce the same amount of 
dissipation as the 2D Reynolds stresses obtained with LES. The 1D Reynolds stress should be 
constituted in terms of a turbulent viscosity and the covariance between the 2D and 1D strain rate 
tensors. The dissipation induced by turbulence will be accounted for by using the turbulent 
viscosity hypothesis [10] to relate the Reynolds stresses to the mean strain rate tensor. Ideally 
such a term would come directly from a simple Reynolds-averaged Navier-Stokes (RANS) 
formulation of the 2D model, (i.e. with either a k-e or k-co type turbulence model). However it 
was observed that such an approach cannot be applied to Thome's case. RANS turbulence 
models developed for fully turbulent flow did not simulate accurately Thome's experiments 
because they are initially laminar and the turbulence in the shear layer never reaches a fully 
developed condition. Adding to the difficulty is the fact that the turbulence is initiated by the 
IKH instability. Therefore it was decided to perform an LES instead where the filtered, 
fluctuating velocity field is solved directly. Averaging of the fields to calculate the Reynolds 
stresses and the mean velocity gradients is necessary to 'back-calculate' the turbulent viscosity. 
Application of LES to quasi-2D seems counterintuitive due to the 3D nature of turbulence 
phenomena. However, it was verified independently by performing 2D LES of a single phase 
mixing layer (for which experimental turbulence data is readily available) that such an approach 
produces acceptable Reynolds stresses. Similar results for 2D LES of a mixing layer have also 
been obtained by Yang et. al. [12] 

The space-time domain that is used to average the velocity fluctuations and the mean velocity 
gradients is x E[0.6,1.2]m (the central one-third of the whole domain) and t E[2.0,3.0]sec (after 

the formation of waves and before significant wave breaking). Averaging is performed for each 
time step along lines of constant y (Fig. 2) to obtain profiles for (ir ') , a (k )/ax., etc., with 

brackets signifying x-averages. The turbulent viscosity hypothesis 

= (a(k),a*))
axe ax;

(12) 

is employed at each time step to obtain a y-dependent turbulent viscosity which is averaged to 
determine a value that can be implemented into the 1D model. The time history of the area 
averaged turbulent kinematic viscosity is shown in Figure 4a. Ideally the turbulent viscosity 
would scale with the area averaged relative velocity so that a model based on relative velocity as 
calculated by the 1D model could be implemented. Unfortunately it was determined that no such 
scale exists; therefore a constant turbulent viscosity is required. Ideally an asymptotic value 
could be selected, however for the present case the flow is continually developing. As the waves 
develop the viscosity increases until a point is reached where the wave breaking effect becomes 
more violent which disperses one phase into the other. In order to neglect this regime, the 
maximum turbulent viscosity from Figure 4 is selected, which is approximately vt = 1.29.10-5
I11

2
S

-1
. Contributions of the SGS viscosity have not been transported into the 1D model because 

the area averaged values are lower than the molecular viscosity. 
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is employed at each time step to obtain a y-dependent turbulent viscosity which is averaged to 
determine a value that can be implemented into the 1D model. The time history of the area 
averaged turbulent kinematic viscosity is shown in Figure 4a. Ideally the turbulent viscosity 
would scale with the area averaged relative velocity so that a model based on relative velocity as 
calculated by the 1D model could be implemented. Unfortunately it was determined that no such 
scale exists; therefore a constant turbulent viscosity is required. Ideally an asymptotic value 
could be selected, however for the present case the flow is continually developing. As the waves 
develop the viscosity increases until a point is reached where the wave breaking effect becomes 
more violent which disperses one phase into the other. In order to neglect this regime, the 
maximum turbulent viscosity from Figure 4 is selected, which is approximately νt = 1.29·10-5 
m2s-1. Contributions of the SGS viscosity have not been transported into the 1D model because 
the area averaged values are lower than the molecular viscosity.  
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Figure 4: Turbulent viscosity (a) and 2D-1D dissipation (b) for use in the 1D model. 

4.3 Dissipation covariance 

Determining how to model the covariance term is equally as challenging due to shear stress 
being a tensor in 2D and a scalar in 1D. This is compounded by the fact that the axial diffusion is 
much smaller than the transverse components which do not exist in 1D. To remedy these 
challenges the total dissipation (sum of mean flow dissipation and turbulent dissipation) 

E = 2v (SuSii (13) 

is used, which is a scalar in any dimension. Then the dissipation covariance from 2D to 1D is 

—2 —2 — — —2 —2 \ 

—
au +—av + 2 

au av + au 
+ 2 —av 

ax ax ay ax ay ay / 

\ 2  ax 

(14) 

where double brackets indicate x, and y averaging over the domain. Figure 4b shows the time 
history of (14) with void weighting over the calculated time. The constant covariance is chosen 
at the same instant that the turbulent viscosity was selected above, just over 2.9s. At this time the 
covariance is approximately 8.1 for both phases. Combining the results of (12) and (14) gives the 
effective viscosity that is used in (2): 

P elf = p PE (v +v (15) 

5. Comparison of 1D, 2D and data 

The results of the 1D and 2D models are compared to the data in Figure 5 for four 
characteristic wave development stages. Note that these stages do not occur at the same time 
for each case. The 1D model exhibits wave growth to a point where sharp void gradients 
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The results of the 1D and 2D models are compared to the data in Figure 5 for four 
characteristic wave development stages. Note that these stages do not occur at the same time 
for each case. The 1D model exhibits wave growth to a point where sharp void gradients 
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similar to shocks appear on the windward side of the waves. These highly dissipative regions 
are responsible for limiting the growth in the 1D model (see Figure 4). The shock steepening 
and formation has been analysed by Kreiss and Ystrom [3]. Clearly the 2D results which 
show wave breaking and vortices are more physical. These vortices were identified 
experimentally by Banner and Phillips [15] who observed their formation on the forward face 
of the waves as the water tumbles forward without necessarily having discontinuities in the 
slope. Initially all of the vorticity is concentrated in a thin layer surrounding the interface as 
the phases accelerate counter-currently. As the KH instability develops and the waves break 
the vortex sheet stretches and folds resulting in a significant increase in viscous dissipation. 
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Figure 5: Water level profiles for the 1D, 2D models compared to the experimental data of 
Thorpe [6] (Permission granted by Cambridge University Press). 

To compensate for the time lag in the onset of instability in the 1D model, a 10cm wavelength 
perturbation of amplitude 0.01 cm is imposed on the initial condition. This wave decays due 
to the initially subcritical relative velocity. However at a time of 1.7-1.8 sec this decay is 
halted and wave growth is observed. In the 2D model with an initially smooth interface, 
disturbances are first seen at 1.55 sec and wave growth is occurs at 1.8-1.9 sec. Both results 
agree well with the experimental observation of 1.88 sec. 

The critical wavelength is measured by a fast Fourier transformation (FFT) of the interface 
location. In the 1D model, the FFT shows a single peak at 10 cm before the IKH transition 
due to the perturbed initial condition. After the onset of the instability, at 2.0 sec, there is a 
shift with the maximum wavelength being centred about 5 cm. There is also a secondary peak 
at 3 cm. Unfortunately the peak at 10 cm from the initial condition does not vanish. A short 
wavelength initial perturbation was tested in an attempt to destabilize to flow with a wave 
number outside of the range of interest. Such initial perturbations were completely damped 
out by the time of IKH. The FFT of the 2D interface shows a relatively broad 'peak' 
stretching from 2.5 to 4.5 cm at 2 sec, close to the onset. Later at 2.5 sec, a distinctive peak 
exists at 5.6cm. Both the 1D and 2D simulations slightly over predict the critical wavelength 
of the experimental data, 2.4 - 4.4 cm. 
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6. Convergence 

Convergence was tested by using the effective viscosity for the sample problem of a single void 
wave in comment channel flow. The geometry is the same as Thorpe's experiment and the 
relative velocity is 0.3m/s. It is clear from Figure 6a that without turbulent viscosity, only 
numerical viscosity plays a role and the model is non-convergent. As the mesh is refined higher 
and higher frequency components appear. This is due to the reduction in numerical viscosity and 
the dependence on the number of shocks to the inverse of viscosity [3]. Conversely Figure 6b 
shows that convergence can be reached when the numerical viscosity becomes insignificant 
compared to the turbulent viscosity. For the current implementation, when convergence is 
reached the smallest representable wavelength is 0.2 mm. mesh size Previously, it was shown 
that the cut off wavelength should be about 20 mm. This indicates that a higher order numerical 
method is required to bring the nonlinear cut off wavelength up to the scale predicted by the 
linear analysis. 
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Figure 6: Evolution a single void wave for different meshes without considering Reynolds 
stresses (a) and with 5x the effective viscosity calculated for Thorpe's case (b). 

7. Conclusion 

A non-linear stability analysis demonstrates the need of a Reynolds stress term in the 1D two-
fluid model to limit the growth of the waves in case of a Kelvin-Helmholtz instability. In order to 
constitute a dissipative mechanism, a two-dimensional CFD analysis of Thorpe's experiment [6] 
was used to derive a turbulent viscosity and a dissipation covariance. The combination of these 
two results into an effective viscosity was used to model the physical mechanism of the 
Reynolds stress dissipation of turbulence in a 1D two-fluid model. It was shown that when a 
physical turbulent viscosity is used, instead of relying on numerical viscosity, the numerical 
model becomes convergent. 

In practice a Reynolds stress is seldom included in 1D two-fluid models and numerical viscosity 
is used instead. Mathematically a physical viscous stress term is superior to numerical viscosity 
because numerical viscosity is mesh size dependent and the numerical model does not converge. 
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An important consequence of this non-linear stability analysis is that a viscous stress term is 
needed if a second or higher order numerical scheme is desired in cases where wave growth is 
expected (i.e., a high fidelity numerical 1D two-fluid model of a two-phase flow instability). 
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An important consequence of this non-linear stability analysis is that a viscous stress term is 
needed if a second or higher order numerical scheme is desired in cases where wave growth is 
expected (i.e., a high fidelity numerical 1D two-fluid model of a two-phase flow instability).  
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