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Abstract 

Thermal-hydraulic instabilities and oscillations are unwanted effects which can result in severe damages 
of two phase flow systems. The most common dynamic two-phase flow instability, namely density wave 
oscillations, is studied. The stability influence of external parameters such as the inertia of the subcooled 
liquid before the heated channel and the inertia of the fluid after the heated channel are analyzed. Non-
dimensional stability maps, as a function of the subcooling and the phase-change numbers are constructed. 
The influence of the inertia components on the stability boundaries is studied and characterized. The study 
is performed by modeling a single boiling channel using a homogeneous model. A compressible transient 
model describes the evolution of the flow and pressure in the non-heated regions. Finally the problem is 
solved using a high-order method, allowing to describe the involved phenomena with high accuracy and 
avoiding the numerical diffusivity, characteristic of low order methods. The implementation of wavelet 
decomposition in the analysis of the simulation results is also described. 

1. Introduction 

The occurrence of oscillations and instabilities may cause severe damages in many industrial systems, 
such as heat exchangers, nuclear reactors, re-boilers, steam generators, thermal-siphons, etc. These phe-
nomena induced in boiling flows are of relevance for the design and operation of two-phase systems. Con-
sequently the stability in thenno-hydraulic variables such as mass flux, pressure and temperature should be 
studied in detail to better understand and characterize the conditions for the occurrence of these phenomena. 

A theoretical description of density waves oscillations (DWO) can be found in [7, 12, 15]. Nevertheless 
these works seem to differ in the description of high-order DWO. In one hand, [15] describes experimentally 
the occurrence of high-order and normal DWO, while in the other hand [7] and subsequent works do not 
observe high-order oscillations in experiments or analytical descriptions. Moreover in [3, 10, 9, 1, 8] several 
aspects of the classical description and the modeling of DWO are critically discussed. The nature of the 
phenomena that influence the occurrence of DWO for different regimes is thoroughly analyzed. Nevertheless 
none high-order DWO are described in these last works either. 

The purpose of this work is to analyze the influence of the inertia in the different parts a boiling system. 
A non-dimensional stability analysis is presented. The behavior of the system for different regions and 
different parameter is studied. The conditions for the occurrence of high-order DWO is also analyzed. 

2. Model 

The thenno-hydraulic system used to study this kind of instabilities consists of two constant pressure 
tanks, two valves, a heated section and two pipe lines, as shown in Figure 1. In this model the pressure 
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Abstract

Thermal-hydraulic instabilities and oscillations are unwanted effects which can result in severe damages
of two phase flow systems. The most common dynamic two-phase flow instability, namely density wave
oscillations, is studied. The stability influence of external parameters such as the inertia of the subcooled
liquid before the heated channel and the inertia of the fluid after the heated channel are analyzed. Non-
dimensional stability maps, as a function of the subcoolingand the phase-change numbers are constructed.
The influence of the inertia components on the stability boundaries is studied and characterized. The study
is performed by modeling a single boiling channel using a homogeneous model. A compressible transient
model describes the evolution of the flow and pressure in the non-heated regions. Finally the problem is
solved using a high-order method, allowing to describe the involved phenomena with high accuracy and
avoiding the numerical diffusivity, characteristic of loworder methods. The implementation of wavelet
decomposition in the analysis of the simulation results is also described.

1. Introduction

The occurrence of oscillations and instabilities may causesevere damages in many industrial systems,
such as heat exchangers, nuclear reactors, re-boilers, steam generators, thermal-siphons, etc. These phe-
nomena induced in boiling flows are of relevance for the design and operation of two-phase systems. Con-
sequently the stability in thermo-hydraulic variables such as mass flux, pressure and temperature should be
studied in detail to better understand and characterize theconditions for the occurrence of these phenomena.

A theoretical description of density waves oscillations (DWO) can be found in [7, 12, 15]. Nevertheless
these works seem to differ in the description of high-order DWO. In one hand, [15] describes experimentally
the occurrence of high-order and normal DWO, while in the other hand [7] and subsequent works do not
observe high-order oscillations in experiments or analytical descriptions. Moreover in [3, 10, 9, 1, 8] several
aspects of the classical description and the modeling of DWOare critically discussed. The nature of the
phenomena that influence the occurrence of DWO for differentregimes is thoroughly analyzed. Nevertheless
none high-order DWO are described in these last works either.

The purpose of this work is to analyze the influence of the inertia in the different parts a boiling system.
A non-dimensional stability analysis is presented. The behavior of the system for different regions and
different parameter is studied. The conditions for the occurrence of high-order DWO is also analyzed.

2. Model

The thermo-hydraulic system used to study this kind of instabilities consists of two constant pressure
tanks, two valves, a heated section and two pipe lines, as shown in Figure 1. In this model the pressure
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Table 1: Nomenclature 

Lowercase 
specific enthalpy 
Darcy friction factor 
time coordinate 
specific volume 
themodynamic quality 
space coordinate 
density 
Uppercase 
cross section area 
hydraulic diameter 

K 
L 
P 

PH 
Q 
T 
Subscripts 
in 
out 
TS 

mass flux 
valve constant 
pipe length 
pressure 
wet perimeter 
constant heat source 
temperature 

inlet 
outlet 
test section 

difference between both tanks acts as the driving force and, according to the Kin valve opening, the external 
characteristic (AP vs. G) results in a quadratic decreasing curve. The implemented model is based on the 
following assumptions, 

• One-dimensional model. 

• Thermodynamic equilibrium conditions. 

• Two-phase homogeneous model [8]. 

• Colebrook pressure drop correlation in the single phase region and two-phase Miiller-Steinhagen and 
Heck pressure drop correlation for two-phase flow region [13]. 

The mathematical description of the external system is based on an adiabatic incompressible model. The 
momentum conservation equations for the external system can be expressed as 

Pin 

AP 

P1 
G 

P2 

Test Section 

Lin LTS Lout 

Figure 1: Scheme of the implemented model. 
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Table 1: Nomenclature

Lowercase G mass flux
h specific enthalpy K valve constant
f Darcy friction factor L pipe length
t time coordinate P pressure
v specific volume PH wet perimeter
x themodynamic quality Q constant heat source
z space coordinate T temperature
ρ density Subscripts

Uppercase in inlet
Axs cross section area out outlet
DH hydraulic diameter TS test section

difference between both tanks acts as the driving force and,according to theKin valve opening, the external
characteristic (∆P vs. G) results in a quadratic decreasing curve. The implemented model is based on the
following assumptions,

• One-dimensional model.

• Thermodynamic equilibrium conditions.

• Two-phase homogeneous model [8].

• Colebrook pressure drop correlation in the single phase region and two-phase Müller-Steinhagen and
Heck pressure drop correlation for two-phase flow region [13].

The mathematical description of the external system is based on an adiabatic incompressible model. The
momentum conservation equations for the external system can be expressed as

∆P

G

Test Section

P1 P2Gin

Kout

Gout

Kin

Lin LoutLTS

PoutPin

Figure 1: Scheme of the implemented model.
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dm = Pm— —   1 (i) 2psni Lsx

Goat = P2 — Pout — (Kos 1) G1t ] 1 (2) 
Pout Loot

The mathematical model used to describe the evolution of the heated section is based on the mass, 
momentum and energy conservation. They can be expressed as 

Op ac1 + az 
ac a (c2) + .91,  f  G2
&± az p az DH 2p 

aph aGh 
at az 

= 0 (3) 

— 0 (4) 

PH 
Q Ax (5) 

The pressure drop in the valves is calculated using a pressure drop concentrated value, Ifs, for each valve. 
Friction losses are neglected in the energy equation. Finally the friction factor, eq. (4), is given by the known 
Colebrook correlation for the single phase regions, liquid or gas [14], and by Muller-Steinhagen and Heck 
correlation for the two-phase region [13]. 

3. Numerical approximation 

The introduction of a significant diffusion by low-order methods can affect the numerical solution, de-
scribing inaccurately the modeled problem. High-order discretization reduces the numerical diffusion. The 
necessity of solving thermal-hydraulic problems with high accuracy is analyzed in [4, 11]. 

In a general case the least squares formulation is based on the minimization of a norm—equivalent func-
tional. For simplicity, the system of equations can be represented as 

=g in Q 

Bu =tit  on c an 
(6) 

(7) 

with .0 a linear partial differential operator and B the trace operator. We assume that the system is well—
posed and the operator (c, B) is a continuous mapping between the function space X(Q) onto the space 
Y(Q) x Y(P). 

The norm equivalent functional becomes 

3(u) Lu g -F; Bu — ur ii;(r) (8) 

Based on variational analysis, the minimization statement is equivalent to: 

film 
—d ,7(u + e v) =0 

VuEX(Q) (9) 
e—o0 de 

Hence, the necessary condition for the minimization of is equivalent to: 
Find f E X(Q) such that 

.4(u, v) = F(v) Vv E X(Q) (10) 
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G2

in

2ρin

]
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Lin
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˙Gout =

[

P2 − Pout − (Kout − 1)
G2

out

2ρout

]

1

Lout
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The mathematical model used to describe the evolution of theheated section is based on the mass,
momentum and energy conservation. They can be expressed as

∂ρ

∂t
+

∂G

∂z
= 0 (3)

∂G

∂t
+

∂

∂z

(

G2

ρ

)

+
∂P

∂z
+

f

DH

G2

2ρ
= 0 (4)

∂ρh

∂t
+

∂Gh

∂z
= Q

PH

Ax

(5)

The pressure drop in the valves is calculated using a pressure drop concentrated value,Ki, for each valve.
Friction losses are neglected in the energy equation. Finally the friction factor, eq. (4), is given by the known
Colebrook correlation for the single phase regions, liquidor gas [14], and by Müller-Steinhagen and Heck
correlation for the two-phase region [13].

3. Numerical approximation

The introduction of a significant diffusion by low-order methods can affect the numerical solution, de-
scribing inaccurately the modeled problem. High-order discretization reduces the numerical diffusion. The
necessity of solving thermal-hydraulic problems with highaccuracy is analyzed in [4, 11].

In a general case the least squares formulation is based on the minimization of a norm–equivalent func-
tional. For simplicity, the system of equations can be represented as

Lu =g in Ω (6)

Bu =uΓ on Γ ⊂ ∂Ω (7)

with L a linear partial differential operator andB the trace operator. We assume that the system is well–
posed and the operator(L,B) is a continuous mapping between the function spaceX(Ω) onto the space
Y (Ω)× Y (Γ).

The norm equivalent functional becomes

J (u) ≡
1

2
‖ Lu− g ‖2Y (Ω) +

1

2
‖ Bu− uΓ ‖2Y (Γ) (8)

Based on variational analysis, the minimization statementis equivalent to:

lim
ǫ→0

d

dǫ
J (u+ ǫ v) = 0 ∀ u ∈ X(Ω) (9)

Hence, the necessary condition for the minimization ofJ is equivalent to:
Findf ∈ X(Ω) such that

A(u,v) = F(v) ∀v ∈ X(Ω) (10)
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with 

.4(u, v) = (Eu, Ev)y(n) + (Bu, Bv)y(r) (11) 

F(v) = (g, Ev)y(n) + (ur, Bv)y(r) (12) 

A.(Vh, Vh )14 = G xh(zz) (13) 

where A:XxX —> R is a symmetric, continuous bilinear form, and F : X —> R a continuous linear form. 
The introduction of the boundary residual allows the use of spaces X (Q) that are not constrained to 

satisfy the boundary conditions. The boundary terms can be omitted and the boundary conditions must be 
enforced strongly in the definition of the space X (Q). Finally, the searching space is restricted to a finite 
dimensional space such that uh E Xh(Q) c X (Q). 

3.1. Numerical description of the internal problem 

From equations (3-5) it is possible to see that the system is non-linear (quasi-linear). For that reason 
it is necessary to find a linear form for this set of equations in order to use LSSM (Least Square Spectral 
Method). Non-linear effects and the coupling between internal an the external systems are considered by 
implementing an iterative Picard loop. The linearization of the system described in Eqs. (3-5) results in 

ac a c.2) 

au` OG 
± 

0 (14) at az 
ap f G*2

+ 
( 

+ + 0 (15) at az ft az DH 2p. 
oust& 

±Gs 
a h 

Q 
PH (16) at az Ax 

where G* and ft correspond to the old values 
description of eq. (6), it is possible to rewrite 

Lint 

of 
the linearized 

• 

flow and 

a • 

density respectively. Hence, 
system as 

0
a • a • 

+G` 

using the operator 

(17) 
gz. 

l a 

at 
o 

az 
o 

& az 
ps 

f G*2

a 
a (c.2\ 

Hint az 
(18) 

ps j DH 2p.} 

QPH

Hint 

G,
(19) 

and the operator A nt is the matrix where the corresponding initial and boundary nodes are set to one and the 
ur corresponds to the initial values for flow, pressure and enthalpy. In x = 0 the boundary conditions for 
enthalpy, flow are added to the vector ur, while the boundary condition for the pressure is set at x = 1. 
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with

A(u,v) = 〈Lu,Lv〉Y (Ω) + 〈Bu,Bv〉Y (Γ) (11)

F(v) = 〈g,Lv〉Y (Ω) + 〈uΓ,Bv〉Y (Γ) (12)

A(vh,vh)uh = F(vh) ∀vh ∈ Xh(Ωh) (13)

whereA : X×X → R is a symmetric, continuous bilinear form, andF : X → R a continuous linear form.
The introduction of the boundary residual allows the use of spacesX(Ω) that are not constrained to

satisfy the boundary conditions. The boundary terms can be omitted and the boundary conditions must be
enforced strongly in the definition of the spaceX(Ω). Finally, the searching space is restricted to a finite
dimensional space such thatuh ∈ Xh(Ω) ⊂ X(Ω).

3.1. Numerical description of the internal problem

From equations (3-5) it is possible to see that the system is non-linear (quasi-linear). For that reason
it is necessary to find a linear form for this set of equations in order to use LSSM (Least Square Spectral
Method). Non-linear effects and the coupling between internal an the external systems are considered by
implementing an iterative Picard loop. The linearization of the system described in Eqs. (3-5) results in

∂ρ∗

∂t
+

∂G

∂z
= 0 (14)

∂G

∂t
+

∂

∂z

(

G∗2

ρ∗

)

+
∂P

∂z
+

f

DH

G∗2

2ρ∗
= 0 (15)

∂ρ∗h

∂t
+

∂G∗h

∂z
= Q

PH

Ax

(16)

whereG∗ andρ∗ correspond to the old values of flow and density respectively. Hence, using the operator
description of eq. (6), it is possible to rewrite the linearized system as

Lint =























∂ •

∂z
0 0

∂ •

∂t

∂ •

∂z
0

0 0 ρ∗
∂ •

∂t
+G∗

∂ •

∂z








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
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gint =










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
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
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



−
∂ ρ∗

∂t
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∂
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(
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)

−
f
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G∗2

2ρ∗

Q
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

























(18)

uint =







G

P

h







(19)

and the operatorBint is the matrix where the corresponding initial and boundary nodes are set to one and the
uΓ corresponds to the initial values for flow, pressure and enthalpy. Inx = 0 the boundary conditions for
enthalpy, flow are added to the vectoruΓ, while the boundary condition for the pressure is set atx = 1.
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12. Numerical description of the external problem 

In contrast with the internal system, the external system is solved just as a function of the time (t). The 
operator description of this system, Eqs. (1-2) 

gext 

nest 

l a
at 
•

0 
0 

a • 
at 

1 [Pm - P1 - (Kin ± 1)*2-21 Lila

[-PI — Pout - (Kout i)veiLL = { Gin } (22) 
Gout 

where the • values correspond to the values of the variables in the previous step. The values of Pin and Gout
are taken as initial boundary conditions. 

(20) 

(21) 

3.3. Spectral element approximation 

The computational domain Q is divided into Ne non-overlapping sub-domains Ste of diameter he, called 
spectral elements, such that 

N. 

Q—Une, 
e=1 

P.o nQi= e$1 (23) 

The global approximation in Q, uh, is constructed by gluing the local approximations u70 i.e. 

N. 

uh = U t171
e=1 

The local approximation solution 14, can be expressed like 

(24) 

N1 N2 

1.171 t ) = E wi(x) wi(t), with 4 = u(xi, ti) (25) 
j=ci 

where cp,(x) and W3(t) are the one dimensional basis functions. These basis functions consist of Lagrangian 
interpolants polynomials through the Gauss-Lobatto-Legendre (GLL) collocation points. For example the 
polynomial W2(x) defined in the reference domain Q = [-1, 1] is given by 

(x2 1) dLiz(z) 

W3(x) N2(N2 + 1)LN2 (z)(x - ;) 

where the (N2 + 1) GLL-points, x3, are the roots of the first derivative of the Legendre polynomial of degree 
N2, extended with the boundary nodes [5]. 

(26) 

4. Wavelet stability analysis 

The stability of the system is analyzed by the construction of a non-dimensional stability map. In this 
work the subcooling and phase-change numbers are used [7]. They correspond with 
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3.2. Numerical description of the external problem

In contrast with the internal system, the external system issolved just as a function of the time (t). The
operator description of this system, Eqs. (1-2)

Lext =











∂ •

∂t
0

0
∂ •

∂t











(20)

gext =







[

Pin − P ∗

1 − (Kin + 1)
(G∗

in
)2

2ρin

]

1
Lin

[

P ∗

2 − Pout − (Kout − 1)
(G∗

out
)2

2ρ∗
out

]

1
Lout







(21)

uext =

{

Gin

Gout

}

(22)

where the∗ values correspond to the values of the variables in the previous step. The values ofPin andGout

are taken as initial boundary conditions.

3.3. Spectral element approximation

The computational domainΩ is divided intoNe non-overlapping sub-domainsΩe of diameterhe, called
spectral elements, such that

Ω =
Ne
⋃

e=1

Ωe, Ωe ∩ Ωl = ∅, e 6= l (23)

The global approximation inΩ, uh, is constructed by gluing the local approximationsu
e
h, i.e.

uh =

Ne
⋃

e=1

u
e
h (24)

The local approximation solutionue
h can be expressed like

u
e
h(x, t) =

N1
∑

i=0

N2
∑

j=0

ue
ij ϕi(x) ϕj(t), with ue

ij = u(xi, tj) (25)

whereϕi(x) andϕj(t) are the one dimensional basis functions. These basis functions consist of Lagrangian
interpolants polynomials through the Gauss–Lobatto–Legendre (GLL) collocation points. For example the
polynomialϕj(x) defined in the reference domain̂Ω = [−1, 1] is given by

ϕj(x) =
(x2 − 1)

dLN2
(x)

dx
N2(N2 + 1)LN2

(x)(x− xj)
(26)

where the(N2+1) GLL–points,xj , are the roots of the first derivative of the Legendre polynomial of degree
N2, extended with the boundary nodes [5].

4. Wavelet stability analysis

The stability of the system is analyzed by the construction of a non-dimensional stability map. In this
work the subcooling and phase-change numbers are used [7]. They correspond with
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Figure 2: Density wave oscillations and wavelet decomposition. Two different modes can be observed. This case 
corresponds to the example of section 5.3. The pair (Nych,Nsub) for this case is (17,7.5). 
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To evaluate the stability of the numerical solution the evolution of the inlet flow is analyzed by using 
wavelet decomposition [2]. In particular the "Mexican hat" wavelets family is used. This analyzing tech-
nique is useful not just to analyze the frequency spectrum but also to obtain the evolution of this spectrum. 
In Figure 2 the wavelet decomposition of a simulated case is presented. The color-bar corresponds with the 
percentage of energy for each coefficient of the wavelet decomposition. In this case the decomposition is 
characterized by two peaks at different frequencies. The lower frequency component behaves in convergent 
fashion, while the high frequency component evolve with a divergent behavior. The peak position for each 
characteristic frequency, 11,,, is detected and an exponential curve is fitted to the maximum values of the 
wavelet decomposition evolution at this particular frequency. Then according to the obtained exponential 
function, f (t) = Ae- at, the stability criterion for each mode corresponds to eq. (28). In this way the wavelet 
analysis allow to analyze independently the evolution of different frequency modes. 

a > 0 Stable a < 0 Unstable (28) 

5. Numerical Results 

All the simulations in this section are done in a system with the following characteristics: 

• Fluid: R134a 

• LTS =1M, DH = 5mm 

• Pout = 8 105 Pa, Pm = Pstationary (ain = 500 [kg/m2s]) 

• Km = 10, K out = 1 

The numerical order of approximation of time and space is 4. The number of elements in which the 
space is discretized is Ne = 50 and the time step is at = 10' sec for all the cases. The non-linear relative 
error for the Picard loop is fixed in 10-6. 
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Figure 2: Density wave oscillations and wavelet decomposition. Two different modes can be observed. This case
corresponds to the example of section 5.3. The pair (Npch,Nsub) for this case is (17,7.5).

Nsub =
hf − hin

hfg

ρfg

ρg
Npch =

Q

GAxshfg

ρfg

ρg
(27)

To evaluate the stability of the numerical solution the evolution of the inlet flow is analyzed by using
wavelet decomposition [2]. In particular the “Mexican hat”wavelets family is used. This analyzing tech-
nique is useful not just to analyze the frequency spectrum but also to obtain the evolution of this spectrum.
In Figure 2 the wavelet decomposition of a simulated case is presented. The color-bar corresponds with the
percentage of energy for each coefficient of the wavelet decomposition. In this case the decomposition is
characterized by two peaks at different frequencies. The lower frequency component behaves in convergent
fashion, while the high frequency component evolve with a divergent behavior. The peak position for each
characteristic frequency,Fi, is detected and an exponential curve is fitted to the maximumvalues of the
wavelet decomposition evolution at this particular frequency. Then according to the obtained exponential
function,f(t) = Ae−αt, the stability criterion for each mode corresponds to eq. (28). In this way the wavelet
analysis allow to analyze independently the evolution of different frequency modes.

α > 0 Stable α < 0 Unstable (28)

5. Numerical Results

All the simulations in this section are done in a system with the following characteristics:

• Fluid: R134a

• LTS = 1m,DH = 5mm

• Pout = 8 105 Pa,Pin = Pstationary(Gin = 500 [kg/m2s])

• Kin = 10,Kout = 1

The numerical order of approximation of time and space is 4. The number of elements in which the
space is discretized is Ne = 50 and the time step is∆t = 10−2 sec for all the cases. The non-linear relative
error for the Picard loop is fixed in10−6.
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Figure 3: Stability map for Li,, = Lout = 0. This stability map corresponds to the normal DWO mode. Green and 
black lines are, respectively, Ishii's simplified correlation [7] and Guido's correlation [6]. Rose line and red lines show 
the numerical stability limit and Guido's criterion for the occurrence of Ledinegg instability. 

5.1. No external inertia 
In this example a no external inertia case is analyzed, Li,, = 0 and Lout = 0. the corresponding stability 

map is presented in Figure 3. A total of 204 cases have been used for the construction of this map. Most 
of these simulations are localized close to the stability limit to assure an accurate description of the system 
in that region. Ishii's and Guido's stability criteria for DWO are plotted in this figure. Guido's prediction 
does not describe the limit of stability in an accurate way. The difference is probably due to the simple 
lumped model used by Guido to obtain that limit. In contrast in the case of Ishii's criterion the stability limit 
is predicted more accurately. Nevertheless for high subcooling this simplified criterion and the numerical 
limit does not agree. One of the main differences of the model used in this work and previous works is that 
the density profile is updated in each non-linear step as a function of the enthalpy profile. Moreover the 
numerical limit and Guido's correlation for the occurrence of Ledinegg excursions is also plotted (rose line 
and red line). The predicted limit differs significantly of the numerical obtained limit. Therefore the usage 
of Guido's limit, for both Ledinegg and DWO, to real cases should be very carefully analyzed, since this 
criteria does not seem to reflect the nature of the involved phenomena. While Ishii's limit seems to predict 
properly and conservatively the occurrence of DWO. None high-order modes are observed in the analyzed 
simulations for this case. 

5.2. Inlet inertia 
In this example the same case as previously is analyzed using a one meter inlet pipe, Li,, = 1in, Lout = 0. 

226 numerical simulations have been used to construct the map of Figure 4. Same as before the stability 
limit criteria for DWO and Ledinegg instabilities are plotted. None of the stability limits seems to predict 
accurately the DWO stability limit. Since the models used to obtain those limit does not reflect the influence 
of external parameters as the length of the pipe lines. Moreover the system behaves in a more stable way 
when inertia is introduced at the inlet of the heated pipe. None high-order modes are observed in this case. 

5.3. Outlet inertia 
For this case an outlet one meter pipe is considered, Lin = 0, Lout = krt. A total number of 225 

cases have been simulated to construct the stability map of Figure 6(a). Ishii's and Guido's stability limits 
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Figure 3: Stability map forLin = Lout = 0. This stability map corresponds to the normal DWO mode. Green and
black lines are, respectively, Ishii’s simplified correlation [7] and Guido’s correlation [6]. Rose line and red lines show
the numerical stability limit and Guido’s criterion for theoccurrence of Ledinegg instability.

5.1. No external inertia

In this example a no external inertia case is analyzed,Lin = 0 andLout = 0. the corresponding stability
map is presented in Figure 3. A total of 204 cases have been used for the construction of this map. Most
of these simulations are localized close to the stability limit to assure an accurate description of the system
in that region. Ishii’s and Guido’s stability criteria for DWO are plotted in this figure. Guido’s prediction
does not describe the limit of stability in an accurate way. The difference is probably due to the simple
lumped model used by Guido to obtain that limit. In contrast in the case of Ishii’s criterion the stability limit
is predicted more accurately. Nevertheless for high subcooling this simplified criterion and the numerical
limit does not agree. One of the main differences of the modelused in this work and previous works is that
the density profile is updated in each non-linear step as a function of the enthalpy profile. Moreover the
numerical limit and Guido’s correlation for the occurrenceof Ledinegg excursions is also plotted (rose line
and red line). The predicted limit differs significantly of the numerical obtained limit. Therefore the usage
of Guido’s limit, for both Ledinegg and DWO, to real cases should be very carefully analyzed, since this
criteria does not seem to reflect the nature of the involved phenomena. While Ishii’s limit seems to predict
properly and conservatively the occurrence of DWO. None high-order modes are observed in the analyzed
simulations for this case.

5.2. Inlet inertia

In this example the same case as previously is analyzed usinga one meter inlet pipe,Lin = 1m, Lout = 0.
226 numerical simulations have been used to construct the map of Figure 4. Same as before the stability
limit criteria for DWO and Ledinegg instabilities are plotted. None of the stability limits seems to predict
accurately the DWO stability limit. Since the models used toobtain those limit does not reflect the influence
of external parameters as the length of the pipe lines. Moreover the system behaves in a more stable way
when inertia is introduced at the inlet of the heated pipe. None high-order modes are observed in this case.

5.3. Outlet inertia

For this case an outlet one meter pipe is considered,Lin = 0, Lout = 1m. A total number of 225
cases have been simulated to construct the stability map of Figure 6(a). Ishii’s and Guido’s stability limits
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Figure 4: Stability map for Liu = lm, Lout = 0. This stability map corresponds to the normal DWO mode. Green 
and black lines are, respectively, Ishii's and Guido's criteria. Rose line and red lines show, respectively, the numerical 
stability limit for Ledinegg instability occurrence and the Ledinegg Guido's correlation. 

for DWO and Ledinegg are also plotted. None of these criteria seem to reflect the stability limit correctly, 
since none of them take into account external parameters as the inertia of the fluid in non-heated pipes. In 
contrast with the other two examples, in this case high-order DWO appear for high subcooling. The limits 
for the normal mode and the high-order modes are plotted in Figures 6(a) and 6(b). For 1V,„t, numbers 
above 5 the high-order modes become unstable even when the natural DWO mode is stable. Moreover 
for 1V,„t, higher than 10 the higher-order oscillations are not a pure frequency oscillation but conversely 
they correspond to the sum of different frequencies, as shown in Figure 5. This last fact is completely in 
accordance with the experimental data presented in [15], where for higher subcooling the superposition of 
higher-modes is observed. The ratio between high-order and normal modes frequencies goes from 2.5 times 
(Npth, = 14, Nsub = 5) to approximately 10 times (Nth = 21, Nsub = 12). 
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Figure 5: Density wave oscillations and wavelet decomposition. (Npoh,N,„b) for this case are (19,10.5). In this case 
the high-order modes are the sum of different frequency components. 
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Figure 4: Stability map forLin = 1m, Lout = 0. This stability map corresponds to the normal DWO mode. Green
and black lines are, respectively, Ishii’s and Guido’s criteria. Rose line and red lines show, respectively, the numerical
stability limit for Ledinegg instability occurrence and the Ledinegg Guido’s correlation.

for DWO and Ledinegg are also plotted. None of these criteriaseem to reflect the stability limit correctly,
since none of them take into account external parameters as the inertia of the fluid in non-heated pipes. In
contrast with the other two examples, in this case high-order DWO appear for high subcooling. The limits
for the normal mode and the high-order modes are plotted in Figures 6(a) and 6(b). ForNsub numbers
above 5 the high-order modes become unstable even when the natural DWO mode is stable. Moreover
for Nsub higher than 10 the higher-order oscillations are not a pure frequency oscillation but conversely
they correspond to the sum of different frequencies, as shown in Figure 5. This last fact is completely in
accordance with the experimental data presented in [15], where for higher subcooling the superposition of
higher-modes is observed. The ratio between high-order andnormal modes frequencies goes from 2.5 times
(Npch = 14, Nsub = 5) to approximately 10 times (Npch = 21, Nsub = 12).

Figure 5: Density wave oscillations and wavelet decomposition. (Npch,Nsub) for this case are (19,10.5). In this case
the high-order modes are the sum of different frequency components.
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6. Discussion 

In Figure 7 all the stability limits found in this work are plotted. As it is possible to see, the effects of 
inlet external inertia stabilize the system. In the other hand, outlet inertia not just destabilize the system but 
also provoke the occurrence of high-order DWO. So according to these conclusions, as an important design 
rule for two-phase systems, it is possible to say that the outlet pipes (two-phase outlet) should be shortened 
as much as possible in order to stabilize normal DWO and do not induce high-order modes. Moreover the 
occurrence of high-order modes can affect more strongly the control systems since their frequency is higher 
than a normal DWO. The period of the oscillations does not seem to change significantly within the three 
different examples presented here. In addition, none of the existing stability criteria for DWO predicts the 
change on the stability limit due to this inertia effects. 

The results of this work seem to be the link between Ishii's and Yadigaroglu's works [7, 15]. In those 
cases it is just necessary to remark that the outlet pipe used in Yadigaroglu's experiment has had a strong 
influence over the system and has induced high-order modes. In the other hand, in Ishii's experiment the 
used by-pass configuration allow them to reduce the outlet inertia effects and as a result they do not seen any 
high-order mode. 

Finally the nature of these phenomena should continuing been studied, both experimentally and numer-
ically, to full understand the conditions and parameters that affect the stability. Besides, the prediction of 
these phenomena in real systems could be improved if the models should better represent all the parameters 
that can be found in real industrial cases. 

7. Conclusions 

Density wave phenomenon has been studied in a simple thermal-hydraulic system. The inertia influence 
of the connecting pipes has been analyzed. It is found that the inlet inertia (longer inlet pipes) increases the 
stability of the system. On the contrary for the increase of outlet inertia (longer outlet pipes) the stability 
of the system is not just decreased but also high-order oscillations are induced. The frequency of this high-
order oscillations has found to be between 2.5 and 10 times the frequency of the normal mode, according to 
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6. Discussion

In Figure 7 all the stability limits found in this work are plotted. As it is possible to see, the effects of
inlet external inertia stabilize the system. In the other hand, outlet inertia not just destabilize the system but
also provoke the occurrence of high-order DWO. So accordingto these conclusions, as an important design
rule for two-phase systems, it is possible to say that the outlet pipes (two-phase outlet) should be shortened
as much as possible in order to stabilize normal DWO and do notinduce high-order modes. Moreover the
occurrence of high-order modes can affect more strongly thecontrol systems since their frequency is higher
than a normal DWO. The period of the oscillations does not seem to change significantly within the three
different examples presented here. In addition, none of theexisting stability criteria for DWO predicts the
change on the stability limit due to this inertia effects.

The results of this work seem to be the link between Ishii’s and Yadigaroglu’s works [7, 15]. In those
cases it is just necessary to remark that the outlet pipe usedin Yadigaroglu’s experiment has had a strong
influence over the system and has induced high-order modes. In the other hand, in Ishii’s experiment the
used by-pass configuration allow them to reduce the outlet inertia effects and as a result they do not seen any
high-order mode.

Finally the nature of these phenomena should continuing been studied, both experimentally and numer-
ically, to full understand the conditions and parameters that affect the stability. Besides, the prediction of
these phenomena in real systems could be improved if the models should better represent all the parameters
that can be found in real industrial cases.

7. Conclusions

Density wave phenomenon has been studied in a simple thermal-hydraulic system. The inertia influence
of the connecting pipes has been analyzed. It is found that the inlet inertia (longer inlet pipes) increases the
stability of the system. On the contrary for the increase of outlet inertia (longer outlet pipes) the stability
of the system is not just decreased but also high-order oscillations are induced. The frequency of this high-
order oscillations has found to be between 2.5 and 10 times the frequency of the normal mode, according to
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(Nph,Nsub) region. Wavelet decomposition has proved to be an efficient analysis technique for this kind of 
cases where the evolution of different modes is needed. 
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