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Abstract

Thermal-hydraulic instabilities and oscillations are amied effects which can result in severe damages
of two phase flow systems. The most common dynamic two-phageiffistability, namely density wave
oscillations, is studied. The stability influence of extdrparameters such as the inertia of the subcooled
liquid before the heated channel and the inertia of the flftiek dhe heated channel are analyzed. Non-
dimensional stability maps, as a function of the subcoadding the phase-change numbers are constructed.
The influence of the inertia components on the stability lolawies is studied and characterized. The study
is performed by modeling a single boiling channel using a bgemeous model. A compressible transient
model describes the evolution of the flow and pressure in tmeheated regions. Finally the problem is
solved using a high-order method, allowing to describe tivelved phenomena with high accuracy and
avoiding the numerical diffusivity, characteristic of lcovder methods. The implementation of wavelet
decomposition in the analysis of the simulation resultdse described.

1. Introduction

The occurrence of oscillations and instabilities may caeseere damages in many industrial systems,
such as heat exchangers, nuclear reactors, re-boileasn gfenerators, thermal-siphons, etc. These phe-
nomena induced in boiling flows are of relevance for the deaigd operation of two-phase systems. Con-
sequently the stability in thermo-hydraulic variableslsas mass flux, pressure and temperature should be
studied in detail to better understand and characterizeahditions for the occurrence of these phenomena.

A theoretical description of density waves oscillation$y(D) can be found in [7, 12, 15]. Nevertheless
these works seem to differ in the description of high-ord&f@ In one hand, [15] describes experimentally
the occurrence of high-order and normal DWO, while in theeotmand [7] and subsequent works do not
observe high-order oscillations in experiments or anedytilescriptions. Moreover in [3, 10, 9, 1, 8] several
aspects of the classical description and the modeling of DM#Ocritically discussed. The nature of the
phenomena that influence the occurrence of DWO for differegitmes is thoroughly analyzed. Nevertheless
none high-order DWO are described in these last works either

The purpose of this work is to analyze the influence of thetia@n the different parts a boiling system.

A non-dimensional stability analysis is presented. Theali of the system for different regions and
different parameter is studied. The conditions for the a@mnce of high-order DWO is also analyzed.

2. Modé€

The thermo-hydraulic system used to study this kind of im#itees consists of two constant pressure
tanks, two valves, a heated section and two pipe lines, asrshoFigure 1. In this model the pressure
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Table 1: Nomenclature

L owercase G mass flux
h specific enthalpy K valve constant
f Darcy friction factor L pipe length
t time coordinate P pressure
v specific volume Py wet perimeter
x themodynamic quality Q constant heat source
z space coordinate T temperature
P density Subscripts

Uppercase in inlet
Ay Cross section area out outlet
Dy hydraulic diameter TS test section

difference between both tanks acts as the driving forcearwhrding to they;,, valve opening, the external
characteristicA P vs. () results in a quadratic decreasing curve. The implementadeinis based on the
following assumptions,

e One-dimensional model.
e Thermodynamic equilibrium conditions.
e Two-phase homogeneous model [8].

e Colebrook pressure drop correlation in the single phasemexnd two-phase Muller-Steinhagen and
Heck pressure drop correlation for two-phase flow regiof.[13

The mathematical description of the external system ischbasean adiabatic incompressible model. The
momentum conservation equations for the external systerbe&xpressed as

AP
| G
Gin Py P Gout
K;, Test Section K,
| Lm | LTS | Lout |

Figure 1: Scheme of the implemented model.
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The mathematical model used to describe the evolution oh#ated section is based on the mass,
momentum and energy conservation. They can be expressed as

dp oG
% + 5 = 0 (3)
oG 9 (G? orP  f G?
— 4+ — = —t+ = = 4
8t+az(p) 0z Dy 2p ! @
ot T Y ©

The pressure drop in the valves is calculated using a predsop concentrated valug,, for each valve.
Friction losses are neglected in the energy equation. liitied friction factor, eq. (4), is given by the known
Colebrook correlation for the single phase regions, liquigas [14], and by Muller-Steinhagen and Heck
correlation for the two-phase region [13].

3. Numerical approximation

The introduction of a significant diffusion by low-order rhetls can affect the numerical solution, de-
scribing inaccurately the modeled problem. High-ordecmiszation reduces the numerical diffusion. The
necessity of solving thermal-hydraulic problems with hégituracy is analyzed in [4, 11].

In a general case the least squares formulation is basecakanittimization of a norm—equivalent func-
tional. For simplicity, the system of equations can be repnéed as

Lu=g inf) (6)
Bu=ur onI C 9N (7)

with £ a linear partial differential operator aritithe trace operator. We assume that the system is well—-
posed and the operatof, B) is a continuous mapping between the function sp&¢g) onto the space
Y(Q) x Y/(T).

The norm equivalent functional becomes

1

Ju) =< | Lu—g |} +3 | Bu—ur |3 (8)

DO =

Based on variational analysis, the minimization stateriseeatjuivalent to:

limij(quev):O Vue X(Q) 9)

e—0 de

Hence, the necessary condition for the minimizatiog/as equivalent to:
Find f € X () such that
Au,v) = F(v) Vv e X(Q) (10)
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with
A, v) = (Lu, Lv)y@q) + (Bu, Bv)y (12)
.F(V) = (g, EV)y(Q) + <U—F, BV)y(p) (12)
.A(Vh, Vh)uh = .F(Vh) Vv, € Xh(Qh) (13)

whereA : X x X — R is a symmetric, continuous bilinear form, aAd: X — R a continuous linear form.

The introduction of the boundary residual allows the usepafcesX ({2) that are not constrained to
satisfy the boundary conditions. The boundary terms camtitterd and the boundary conditions must be
enforced strongly in the definition of the spa&é(2). Finally, the searching space is restricted to a finite
dimensional space such that € X, (Q2) C X(Q).

3.1. Numerical description of the internal problem

From equations (3-5) it is possible to see that the systenonslinear (quasi-linear). For that reason
it is necessary to find a linear form for this set of equationender to use LSSM (Least Square Spectral
Method). Non-linear effects and the coupling between mdkan the external systems are considered by
implementing an iterative Picard loop. The linearizatibthe system described in Egs. (3-5) results in

op*  9G
BT + 9 0 (24)
oG 9 [(G?\ 9P [ G*?
E*&(,ﬁ) 2 "Dz (15)
dp*h  OG*h Py
ot + dz QA—QC (16)

whereG* and p* correspond to the old values of flow and density respectivdbnce, using the operator
description of eq. (6), it is possible to rewrite the linead system as

"
% 0 0
Lo = { 20 0 0 (17)
ot 0z
o et
( ot BE
( ap* )
ot
o G*Q f G*Q
S N ”
Py
\ QA:E J
G
h

and the operatad8;,,; is the matrix where the corresponding initial and boundayas are set to one and the
ur corresponds to the initial values for flow, pressure andapyh Inx = 0 the boundary conditions for
enthalpy, flow are added to the vectar, while the boundary condition for the pressure is set at 1.
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3.2. Numerical description of the external problem

In contrast with the internal system, the external systesoliged just as a function of the timg.( The
operator description of this system, Eqgs. (1-2)

0e 0
‘Ce:ct = aot Oe (20)
ot
Py — P — (K + 1)(§0 | L
Cext — [ ' 2pin 2:| Lml (21)

P = Pout = (Ko = 15| 1

Gin
Ueyt = {G t} (22)

where the values correspond to the values of the variables in the pue\step. The values &f,, andG,,;
are taken as initial boundary conditions.

3.3. Spectral element approximation

The computational domaif is divided into/N, hon-overlapping sub-domaitk of diameterh,, called
spectral elements, such that

Ne
Q=J2  Qnu=0 e#l (23)
e=1

The global approximation if2, uy, is constructed by gluing the local approximatiatjs i.e.
Ne
u, = U uj (24)
e=1

The local approximation solutiom; can be expressed like

N1 N2

wh (2, 1) = )l i) @(t),  with uf; = u(x;, t;) (25)

i=0 j=0

whereyp;(z) andy,(t) are the one dimensional basis functions. These basis funsotionsist of Lagrangian
interpolants polynomials through the Gauss—Lobatto—hége(GLL) collocation points. For example the
polynomialy;(x) defined in the reference domdin= [—1, 1] is given by

(xz _ 1)dLN72(x)
(@) = o >
P Ny(Ny+ 1)Ly, (z)(x — x;)

where thg N, + 1) GLL—points,z;, are the roots of the first derivative of the Legendre polyiaof degree
N,, extended with the boundary nodes [5].

4. Wavelet stability analysis

The stability of the system is analyzed by the constructioa non-dimensional stability map. In this
work the subcooling and phase-change numbers are used&y.cbrrespond with
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Figure 2: Density wave oscillations and wavelet decomposition. Tiff@ieint modes can be observed. This case
corresponds to the example of section 5.3. The @gjr(,Ns,) for this case is (17,7.5).
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To evaluate the stability of the numerical solution the atioh of the inlet flow is analyzed by using
wavelet decomposition [2]. In particular the “Mexican hatavelets family is used. This analyzing tech-
nique is useful not just to analyze the frequency spectrunalso to obtain the evolution of this spectrum.
In Figure 2 the wavelet decomposition of a simulated casesisgmted. The color-bar corresponds with the
percentage of energy for each coefficient of the waveletmecsition. In this case the decomposition is
characterized by two peaks at different frequencies. TWweldrequency component behaves in convergent
fashion, while the high frequency component evolve withwejent behavior. The peak position for each
characteristic frequency;, is detected and an exponential curve is fitted to the maximaioes of the
wavelet decomposition evolution at this particular fregeye Then according to the obtained exponential
function, f () = Ae~*, the stability criterion for each mode corresponds to ef).(& this way the wavelet
analysis allow to analyze independently the evolution Giédent frequency modes.

a >0 Stable a <0 Unstable (28)

5. Numerical Results
All the simulations in this section are done in a system wighfbllowing characteristics:
Fluid: R134a

LTS =1m,Dy =5mm

Pout =8 105 Paipin — stationary(Gin = 500 [kg/mQS])
° Kzn = 1O)Kout = 1

The numerical order of approximation of time and space is Be fmumber of elements in which the
space is discretized is,N- 50 and the time step At = 10-2 sec for all the cases. The non-linear relative
error for the Picard loop is fixed itD=°.

(6/11)



The 14th International Topical Meeting on Nuclear Reactoermal Hydraulics (NURETH-14) Log Number: 000
Hilton Toronto Hotel, Toronto, Ontario, Canada, Septenfief9, 2011.

14

Figure 3: Stability map forL;, = L., = 0. This stability map corresponds to the normal DWO mode. G
black lines are, respectively, Ishii's simplified corr@at[7] and Guido’s correlation [6]. Rose line and red linbs\w
the numerical stability limit and Guido’s criterion for tleecurrence of Ledinegg instability.

5.1. No external inertia

In this example a no external inertia case is analyzgd~= 0 and L, = 0. the corresponding stability
map is presented in Figure 3. A total of 204 cases have beehfaséhe construction of this map. Most
of these simulations are localized close to the stabilititlto assure an accurate description of the system
in that region. Ishii's and Guido’s stability criteria foVi2O are plotted in this figure. Guido’s prediction
does not describe the limit of stability in an accurate waye Tifference is probably due to the simple
lumped model used by Guido to obtain that limit. In contraghie case of Ishii’s criterion the stability limit
is predicted more accurately. Nevertheless for high subopthis simplified criterion and the numerical
limit does not agree. One of the main differences of the masdedt! in this work and previous works is that
the density profile is updated in each non-linear step as eiumof the enthalpy profile. Moreover the
numerical limit and Guido’s correlation for the occurrerudd_edinegg excursions is also plotted (rose line
and red line). The predicted limit differs significantly diet numerical obtained limit. Therefore the usage
of Guido’s limit, for both Ledinegg and DWO, to real casesdlddde very carefully analyzed, since this
criteria does not seem to reflect the nature of the involvehpmena. While Ishii’s limit seems to predict
properly and conservatively the occurrence of DWO. Noné&{ugler modes are observed in the analyzed
simulations for this case.

5.2. Inletinertia

In this example the same case as previously is analyzed asing meter inlet pip€,;, = 1m, L,,; = 0.
226 numerical simulations have been used to construct tipeahkigure 4. Same as before the stability
limit criteria for DWO and Ledinegg instabilities are plett None of the stability limits seems to predict
accurately the DWO stability limit. Since the models usedltain those limit does not reflect the influence
of external parameters as the length of the pipe lines. Mearethe system behaves in a more stable way
when inertia is introduced at the inlet of the heated pipenéloigh-order modes are observed in this case.

5.3. Outlet inertia

For this case an outlet one meter pipe is considefed,= 0, L,,, = 1m. A total number of 225
cases have been simulated to construct the stability mamafd-6(a). Ishii’'s and Guido’s stability limits
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Figure 4: Stability map forL;, = 1m, L., = 0. This stability map corresponds to the normal DWO mode. Gree
and black lines are, respectively, Ishii's and Guido’serié. Rose line and red lines show, respectively, the nualeri
stability limit for Ledinegg instability occurrence ancethedinegg Guido’s correlation.

for DWO and Ledinegg are also plotted. None of these critggiam to reflect the stability limit correctly,
since none of them take into account external parametetrsedsdrtia of the fluid in non-heated pipes. In
contrast with the other two examples, in this case high+oDWO appear for high subcooling. The limits
for the normal mode and the high-order modes are plottedgnrEs 6(a) and 6(b). FaW,,, humbers
above 5 the high-order modes become unstable even when tin@ln@WO mode is stable. Moreover
for N, higher than 10 the higher-order oscillations are not a prequiency oscillation but conversely
they correspond to the sum of different frequencies, as showigure 5. This last fact is completely in
accordance with the experimental data presented in [15revfor higher subcooling the superposition of
higher-modes is observed. The ratio between high-ordenandal modes frequencies goes from 2.5 times
(Npen, = 14, Ny = 5) to approximately 10 times\(,., = 21, Ny = 12).
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Figure 5. Density wave oscillations and wavelet decompositial,.f,,N.) for this case are (19,10.5). In this case
the high-order modes are the sum of different frequency coanpts.
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1.5

(b) High-order mode

Figure 6: Stability maps forl;, = 0, L., = 1m. Normal (a) and high-order (b) stability maps are shown.e@re
and black lines are, respectively, Ishii’s and Guido’seriét. Rose line and red lines show the numerical stabilityt i
for Ledinegg instability occurrence and the Ledinegg Gisidorrelation.
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Figure 7: Comparison of the stability limit for the three exampleslgrad in this work. No external inertia (blue
line), inlet inertia (green line) and outlet inertia (redd). In the case of outlet inertia, higher-modes are obderve
the system. The higher-mode stability limit is also plotiteded line.

6. Discussion

In Figure 7 all the stability limits found in this work are pled. As it is possible to see, the effects of
inlet external inertia stabilize the system. In the othardhautlet inertia not just destabilize the system but
also provoke the occurrence of high-order DWO. So accorttirigese conclusions, as an important design
rule for two-phase systems, it is possible to say that thiebpipes (two-phase outlet) should be shortened
as much as possible in order to stabilize normal DWO and dandoice high-order modes. Moreover the
occurrence of high-order modes can affect more stronglgdimérol systems since their frequency is higher
than a normal DWO. The period of the oscillations does noinstechange significantly within the three
different examples presented here. In addition, none oéxsing stability criteria for DWO predicts the
change on the stability limit due to this inertia effects.

The results of this work seem to be the link between Ishiig #adigaroglu’s works [7, 15]. In those
cases it is just necessary to remark that the outlet pipe ins€éadigaroglu’s experiment has had a strong
influence over the system and has induced high-order modethelother hand, in Ishii’'s experiment the
used by-pass configuration allow them to reduce the outtetitneffects and as a result they do not seen any
high-order mode.

Finally the nature of these phenomena should continuing bealied, both experimentally and numer-
ically, to full understand the conditions and parameteas #ifect the stability. Besides, the prediction of
these phenomena in real systems could be improved if thelmsldeuld better represent all the parameters
that can be found in real industrial cases.

7. Conclusions

Density wave phenomenon has been studied in a simple thérydedulic system. The inertia influence
of the connecting pipes has been analyzed. It is found tleantbt inertia (longer inlet pipes) increases the
stability of the system. On the contrary for the increase udfet inertia (longer outlet pipes) the stability
of the system is not just decreased but also high-orderatsails are induced. The frequency of this high-
order oscillations has found to be between 2.5 and 10 tineegelquency of the normal mode, according to
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(Npen,Nsup) region. Wavelet decomposition has proved to be an effi@aatysis technique for this kind of
cases where the evolution of different modes is needed.
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