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Abstract 

Chinshan Nuclear Power Plant (NPP) is the first NPP in Taiwan which is a BWR/4 plant. The 
original rated power for each unit was 1775 MWt. After the project of measurement uncertainty 
recovery (MUR) for Chinshan NPP, the operating power is 1805 MWt now. The Chinshan NPP 
Unit 2 cycle 23 stability analyses were performed by the LAPUR6 stability analysis 
methodology. Comparing the LAPUR6 stability analysis results and vendor's results, they are 
similar. 

Introduction 

Unstable power/flow oscillation of a nuclear power reactor core is one of the main reasons which 
cause core damage. In 1988, LaSalle unit2 experienced core instability incident, and drew 
worldwide attention [1]. Such kinds of stability issue are closely related to operational safety of 
boiling water nuclear reactors. To prevent core instability events from happening, stability 
analysis needs to be performed at each core reloads design. In each BWR reload core design, to 
assure safety operation of the nuclear reactor, the fuel vendor is required to provide instability 
boundaries on NPP power/flow map. In order to establish a capability to carry out independent 
verification of the vendor's results, Taiwan Power Company (TPC), Institute of Nuclear Energy 
Research (INER), and National Tsing Hua University (NTHU) are working together to develop a 
suitable stability analysis methodology for such purposes. 

In our current research, two major computer codes have been adopted, the frequency domain 
stability analysis code - LAPUR6 and the 3-D neutronic code - SIMULATE-3. A set of analysis 
procedures plus certain interface programs are organized together. The stability analyses results 
of LAPUR methodology are compared with the vendor's STAIF prediction results. STAIF is also 
a frequency domain code and the accuracy of STAIF-calculated decay ratio is ± 0.15 for the 
global decay ratio (± 0.20 for the regional decay ratio) [2]. 
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Chinshan NPP is the first NPP in Taiwan. It is a BWR/4 plant and the original rated power for 
each unit is 1775 MWt. The Unit 2 of Chinshan NPP started MURPU (Measurement Uncertainty 
Recovery Power Uprate) from April 6, 2008 and the Unit 1 started MURPU from November 8, 
2008. The operating power is 101.7% of the original designed rated power, which is 1805 MWt 
now. In this research, the cycle 23 stability analysis of Chinshan NPP Unit 2 was performed by 
the LAPUR6 stability analysis methodology. 

1. LAPUR6 Stability Analysis Methodology 

LAPUR6, based on frequency domain approach, is a computer code that analyzes core stability 
and calculates core's decay ratio (the accuracy of LAPUR-calculated decay ratio is roughly ± 
0.20) [2]. Basically, LAPUR6 is divided into two separate programs, including LAPURX and 
LAPURW. LAPURX solves the steady state governing equations of coolant and fuels. LAPURW 
is programmed to handle the dynamic equations of coolant, fuels and core neutronics in the 
frequency domain. Figure 1 depicted the analytic procedures of LAPUR6 methodology in this 
study. In this methodology, LAPUR6, SIMULATE-3, PAPU, EXAVERA, and DRASM are used 
to study core stability [3]-[6]. First, SIMULATE-3 analyzes the core detailed hydraulic and 
neutronic configuration of the different state points and perform perturbation calculations in 
LAPUR6 stability analysis methodology. Second, SIMULATE-3 output files and PAPU are used 
to obtain Doppler and reactivity density coefficients. Third, EXAVERA calculates channel 
grouping, flow distribution, axial power profile, power fraction, and contraction coefficients from 
SIMULATE-3 output files. Fourth, these above data and plus other information (for example, 
recirculation loop gain and time constant) to generate LAPUR6 input files (LAPURX.DAT and 
LAPURW.DAT). Fifth, by LAPUR6 performed, two LAPUR6 output files (LAPURX.OUT and 
LAPURW.OUT) can be obtained. Finally, DRASM checks the consistency of LAPUR6 and 
SIMULATE-3 in density reactivity coefficient, pressure drop, and flow distribution. If the above 
parameters of LAPUR6 are not consistent with the parameters of SIMULATE-3, new density 
reactivity coefficient, pressure drop, and flow distribution are assumed and new iterations are 
repeated. If the iteration converges, the calculation stops. 
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Figure 1 LAPUR6 stability analysis methodology. 
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2. Chinshan NPP Unit 2 Cycle 23 Stability Results 

In Chinshan NPP Unit 2 Cycle 23 reload design, there was only one fuel type - ATRIUMTM- 1 0 +

in the core, and some operating conditions are shown in Table 1. In this study, all fuel assemblies 
are divided into twelve regions which are shown in Figure 2. The sum of relative power in each 
region is not to exceed 20% total power. This requirement guarantees a good description of the 
radial power shape, especially for the high power channels. 

In the power/flow map (shown in Figure 3), there are ten operating points corresponding to two 
kinds of decay ratio values (0.90 and 0.85), which are calculated by vendor's STAIF programs. In 
the decay ratio 0.90 boundary, the operation points (%power/%flow) are 49.8/36.6, 53.0/38.3, 
58.9/41.0, 66.2/44.0, and 72.9/46.5. In the decay ratio 0.85 boundary, the operation points 
(%power/%flow) are 48.9/36.7, 52.0/38.3, 57.8/41.0, 64.4/44.0, and 74.6/48.4. Because these 
data belong to the vendor, the detailed decay ratios of the above points do not share in this paper. 
So the results of LAPUR6 only compare with the boundaries decay ratios which are 0.85 and 
0.90. Besides, the LAPUR6 analyses are performed from BOC to EOC in all points. Table 2 and 
3 show the analysis results of LAPUR6 methodology and these results are the maximum decay 
ratio in each point analysis. By comparing the results of LAPUR6 and STAIF, the maximum 
difference in decay ratio was 0.19 (In point "53.0/38.3", the decay ratio is 0.71, 0.90-0.71=0.19) 
between these two approaches. This difference may be caused by the difference of some input 
parameters and the neutronic model (LAPUR6 is a point kinetic model; STAIF is a one-
dimensional neutron kinetic model). These parameters are different value in LAPUR6 and 
STAIF. In the comparison of LAPUR6 and STAIF parameters, fuel gap conductance, density 
reactivity coefficient, and delayed-neutron fraction have larger differences. Therefore, the 
sensitivity studies of these parameters are performed. The analysis results of the sensitivity 
studies are described in the next section. 
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Figure 2 Divided regions of °Anshan NPP Unit 2 Cycle 23 for LAPUR6 stability analysis. 
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Figure 3 The power/flow map of Chinshan NPP Unit 2 Cycle 23. 

Table 1 Operating conditions of core. 

Core data 

Number of fuel assemblies 408 

Rated thermal power, MWt 1805 

Rated core flow, Mlbm/hr 53 

Rated core inlet subcooling, Btu/lbm 20.6 

Moderator temperature, °F 546 
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Table 2 LAPUR stability results for power/flow map instability boundary (decay ratio 0.90). 

Power(%)/flow(%) Decay ratio 

49.8/36.6 0.85 

53.0/38.3 0.71 

58.9/41.0 0.80 

66.2/44.0 0.77 

72.9/46.5 0.81 

Table 3 LAPUR stability results for power/flow map instability boundary (decay ratio 0.85). 

Power(%)/flow(%) Decay ratio 

48.9/36.7 0.84 

52.0/38.3 0.69 

57.8/41.0 0.72 

64.4/44.0 0.71 

74.6/48.4 0.71 
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3. Sensitivity Studies 

Sensitivity studies are performed in all points. However, in this paper, only one point is chosen 
for the following discussions. This point is 48.9/36.7 (base case) and the parameters data of this 
point list in Table 4. 

3.1 Fuel Gap Conductance 

Table 5 shows the decay ratio results for the sensitivity analysis of fuel gap conductance. The 
variation of fuel gap conductance is ±40%. In this cycle stability analysis, for all points, the 
values of fuel gap conductance roughly include in this variation range. A variation of ±40% fuel 
gap conductance resulted in the decay ratio that changed from 0.90 to 0.67. As the fuel gap 
conductance increases from 0% to +40%, the decay ratio increases from 0.84 to 0.90. The 
increase of fuel gap conductance causes the more heat released to core which makes the core 
more unstable. On the other hand, as the fuel gap conductance decreases from 0% to -40%, the 
decay ratio decreases from 0.84 to 0.67. From above results, it indicates that this parameter is 
sensitive. Additionally, in reference 7, it describes that the increase in fuel gap conductance 
raises the reactivity feedback gain thus making the core more unstable. Hence, this is the same 
with our results. 

3.2 Density Reactivity Coefficient 

Table 6 shows the results for the sensitivity analysis of density reactivity coefficient. A variation 
range of density reactivity coefficient is ±20%. The values in the variation of density reactivity 
coefficient may be used in this cycle stability analysis. As the density reactivity coefficient 
decreases from +20% to -20%, the decay ratio decreases from 0.99 to 0.68. It is clearly seen that 
the core is more unstable with a larger density reactivity coefficient from above data. The 
increase of density reactivity coefficient causes the increase of reactivity feedback gain, so that 
the core is more unstable. Additionally, by the comparison of results of fuel gap conductance and 
density reactivity coefficient, it indicates that this parameter is more sensitivity than fuel gap 
conductance. 

3.3 Delayed-Neutron Fraction 

The sensitivity analysis result of delayed-neutron fraction (six groups) is shown in Table 7 and 
the variation range of delayed-neutron fraction is ±20%. In this variation range, the values of 
delayed-neutron fraction roughly include in this cycle stability analysis. As the delayed-neutron 
fraction increases 20%, the decay ratio decreases from 0.84 to 0.71. As the delayed-neutron 
fraction decreases 20%, the decay ratio increases from 0.84 to 1.02. It indicates that the delayed-
neutron fraction is a sensitive parameter for decay ratio from above results. Besides, it also 
indicates that this parameter is more sensitivity than fuel gap conductance. 
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3.4 Axial variable areas 

There is new function implanted in LAPUR6. That is the capability of modeling channels with 
variable areas. This new function can simulate the partial-length rods of the new fuel designs. 
Table 8 shows the stability analysis results of full-length and partial-length fuel assemblies. It 
shows their single-phase pressure drop are nearly the same, but the two-phase pressure drop of 
full-length rods is larger than partial-length rods. In Figure 4, in the top of fuel assemblies, it 
shows that there is larger flow area (flow area A) in partial-length rods fuel assemblies than in 
full-length rods fuel assemblies. So it makes the two-phase pressure drop of partial-length rods 
fuel assemblies lower than full-length rods and reduces decay ratio. 

4. Conclusion 

In this research, the LAPUR6 stability analysis methodology has established for Chinshan NPP 
operational stability assessments. By the comparisons of LAPUR6 and vendor predictions in 
Chinshan NPP Unit2 Cycle 23 reload design, it shows that the maximum difference in decay 
ratio is 0.19. Besides, the sensitivity studies of some parameters are performed. From the 
sensitivity studies results, it indicates that the fuel gap conductance, density reactivity coefficient, 
and delayed-neutron fraction are sensitive parameters for LAPUR6 stability analysis. 
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Table 4 The parameters data of base case (48.9/36.7). 

Value 

Gap conductance, 
(cal/cm2 • sec • °C) 

Density reactivity coefficient 
(DRC), (%AlC/K)/(gr/cm3) 

Delayed-neutron fraction 

0.1268 

14.261 

5.682E-03 

Table 5 The sensitivity studies of fuel gap conductance. 

Gap conductance, 

(cal/cm2 • sec • °C) 

Decay ratio 

Base 0.1268 0.84 

+20% 0.1522 0.88 

+40% 0.1775 0.90 

-20% 0.1014 0.77 

-40% 0.0761 0.67 
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Table 6 The sensitivity studies of density reactivity coefficient. 

Density reactivity coefficient 
(DRC), (%LK/K)/(gr/cm3) 

Decay ratio 

Base 14.261 0.84 

+20% 17.113 0.99 

-20% 11.409 0.68 

Table 7 The sensitivity studies of delayed-neutron fraction. 

Delayed-neutron fraction Decay ratio 

Base 5.682E-03 0.84 

+20% 6.818E-03 0.71 

-20% 4.545E-03 1.02 

Table 8 The sensitivity studies of axial variable areas. 

Two-phase 

pressure drop 

(kg/cm2) 

Single-phase 

pressure drop 

(kg/cm2) 

Two-phase pressure drop/ 

Single-phase pressure drop 

Ratio 

Decay 

Ratio 

0.332 0.042 7.90 0.84 

0.306 0.041 7.46 0.65 

(13/13) 

Full-length rods fuel 

assemblies 

Partial-length rods fuel 

assemblies 
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Table 8 The sensitivity studies of axial variable areas. 
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2
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