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Abstract 

The two-phase flows are prevalent in various industrial fields such as nuclear engineering, chemical 
engineering and the petroleum industry. At high speeds, flows through piping may generate significant 
excitation forces, particularly at joints and bends in piping systems. Interestingly, the flows may also 
generate significant damping forces which can be desirable from a vibration damping point of view. 

The question of exactly how internal two-phase flows generate damping remains largely unanswered. 
Indeed so is the question for external two-phase flows, which are even more complex. The problem 
addressed in this study is related to the behavior of tubular structures subjected to internal two-phase 
slug flow or nearly slug flow. The observation of slug flow subjected to transverse vibration led to 
consideration of the effects of sloshing liquid slugs due to the external vibration. Indeed, in flow 
visualization tests, the upper free surface of the slugs in vertical flow was found to deform significantly 
as the tube vibrated. This suggested a possible mechanism for energy transfer from the structure to the 
fluid which could be (at least partially) responsible for the observed two-phase flow-induced damping. 

An analytical model is developed aimed at incorporating the most basic sloshing effects of liquid slugs 
travelling through a tube at low speed. The first part of the work demonstrates that considering slugs as 
as simple points masses travelling through the tube leads only to low energy transfer from the tube to 
the flow and thus cannot explain the level of energy transfer observed in experimental damping tests. 

In the second part of the work, the flow dynamics within the slug are modeled to account for linear 
order free surface oscillations related to first mode sloshing. Numerical solution of the resulting 
equations shows that the energy transfer is much higher and results in damping levels of the same order 
as found in experimental measurements. The results suggest that sloshing of the individual slugs is an 
important mechanism of energy transfer for slug flow. 

The analytical results are in qualitative agreement with experimental measurements. In view of the 
simplicity of the model, the results are encouraging. The model can, however, be improved to better 
represent more details of the flow. 

Introduction 

Two-phase flow-induced damping is one of the important phenomena resulting from the interaction 
between structures (here pipes or tubes) and two-phase flows. This type of damping is of practical 
significance since it positively works to reduce vibrations of piping carrying the two-phase flow 
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mixtures. Yet, besides this inherent advantage, particularly for high speed flows, the mechanisms 
underlying two-phase flow damping remain largely unknown. Significant work has been done 
identifying key properties of two-phase damping, e.g. [1]-[5]. The work of [2], dealing primarily 
with external cross-flow, shows that two-phase damping attains a maximum value near a superficial 
void fraction (or volumetric quality) of 50-60%. Interestingly, a very similar trend is found for 
internal two-phase flows as we see later. 

Fig.1 shows some typical flow patterns in vertical internal two-phase flows. Pattern (a) corresponds 
to bubbly flow. For the bubbly flow regime (in the range 5-20% void fraction) the authors of [3] 
found that the two-phase damping correlated very well to the total interface surface area of the gas 
bubbles in the mixture. 
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Figure 1 Flow regimes in upward two-phase flow in vertical tubes: (a) Bubbly flow, 
(b) Slug flow, (c) Churn flow, (d) Wispy-annular flow, (e) Annular flow (Collier and Thome, [5]) 

In the present work particular interest is paid to pattern (b) referred to as slug flow. In slug flow, 
elongated air bubbles are interspersed with fairly well defined liquid slugs. This nearly discrete flow 
structure renders itself amenable to the simplified analysis considered here. Despite the existence of 
experimental correlations for two-phase damping, fundamental research on the underlying 
mechanisms of two phase damping remains limited. The present work aims to take advantage of the 
simpler structure of slugs to develop simple theoretical models that could shed light on the 
fundamental nature of two-phase damping of tubes or pipes carrying slug flow. 

1. Slug flow model and fluid-structure system 

1.1 Slug flow model 

The goal of the present study is to investigate how discrete discontinuities in the fluid density, in the 
form of slugs, lead to transfer of energy from the structure to the flow resulting in an effective 
damping of the containing tube vibrations. For this purpose, the approach taken is to model the fluid 
mechanics in the simplest fashion possible. The flow itself is modelled as a plug flow as is often 
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done for internal pipe flows when studying internal flow induced vibrations [6]. In the present case, 
however, the existence of two phases must be taken into account. 

For given flow conditions, a slug distribution as depicted in Fig.2 is considered. Vertical upward 
flow will be considered; the tube is shown horizontal here for convenience. Slug size and number of 
slugs (slug frequency) are estimated from experimental data. In order to write the equation of 
motion of the pipe subjected to axial slug flow, an analytical expression for the mass distribution in 
the pipe as a function of time is needed. Referring to Fig.2, slugs are formed at a frequency f =11T . 
Gas bubbles are considered to be of negligible mass and incompressible. Liquid slugs are identical 
and have mass mo . A slug entering the tube at time t= 0 will be located at the position x= Ut at time 

t; here U is the average slug speed. Using the Dirac delta function, the mass distribution function 
associated with the slug may be expressed as mob (x — Ut). At a given instant, the total number of 

slugs in the tube of length L is N. 

L =U(N —DT +W 

UST 

Figure 2 Instantaneous slug distribution in a pipe of length L. 

The total mass distribution associated with the N slugs is therefore 

m(x, t) = mo 6 (U (i —1)T + x —Ut)+ mo6(U(N —1)T + x —Ut)h(1— ; T) 

(1 

where the factor represents a partial length as shown in Fig.1 and ho) is the Heaviside function. 

1.2 Fluid-structure system equations 

We consider next the equation of motion of the fluid-structure system. The system under 
consideration is a pinned-pinned (or later, clamped-clamped) tube subjected to internal two phase 
flow. Fig.3 shows a section of the tube with internal flow under consideration. 
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where the factor ξ represents a partial length as shown in Fig.1 and h(.) is the Heaviside function. 

1.2  Fluid-structure system equations 
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Figure 3 Fluid-structure element. 

The tube has mass per unit length M , structural rigidity El and total length L. The resulting 
equation of motion [6] is 

A4, A2, a ay a 2y am am ay a2y 
EI +(M + m)" +2mU2 ( - )4 2 m(L,t)+ I(x,t))—+( +U )( +U =0 (2) 

ax4 at2 at ax ax 2 at ax at ax 2

( am au\
where the fluid mass m(x,t) is given by equation (1) and /(x,t) = f L U + m dx. 

x at at I

1.3 Simplified analysis 

Introducing the modal expansion 

y(x,t)= Ti(x)q (t) 

(3) 

equation (2) becomes 

E (El q9i(4) g1 + (M + m)q)14i + + Um )991.qi + 2mLITA + (U2 m(L, t) + I(x,t))cpi" qi )= 0 

(4) 

The Galerkin method will be used to simplify the equation above. Experimental damping tests have 
been primarily carried out on first mode vibrations. For this reason we consider a one mode 
approximation. For analytical simplicity here, we shall also consider a pinned-pinned tube. Putting 
q91 = q9 and q1 = q we obtain 
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1. (El q:p(4)q2 + ( M + m)co2 4+(in+ Uffi)q22 q+ 2 mUq)'17) q+ (U2 t7( I, t) + I( .; t) )q2" q>lx= 0 (5) 

Introducing m(x,t) from equation (1) and performing the integrals leads to the following simplified one 
mode system: 

[A1+ (N -1)m, mo {Ho _  t  ) po)}14+ 2,7rUm°  Q(t)R'+ 
L fIT 

2 2 

r
L

) [Ern — U2 m(L,01q = O. 
L 

(6) 

The periodic functions P(t) and Q(t) capture the periodicity of mass variation within the tube due to 
passing slugs. To simplify things further, the functions P(t) and Q(t) are represented by their first order 
Fourier series, leading to 

27r
{P(t)— H(1 v ,)} = y + y, cos  T  t , Q(t)= a, + a, sin  T  t( 2 — 0) , m(L,t)= 10, (cr, + cr, cos 

T
t) 

Equation (6) then takes the form below 

-1)m0
in° y° + y1 cos 27( t 27rUm° a ° + a 1 sin 27r t 4+ 

+ (N 
4+ L2

L 
T T 

2 

C I ) [El U2m° {a„+ cos 2rt t tlq = O. 
L T 

Equation (8) shows that the slugs act as parametric excitation to the modal vibrations. 

(7) 

(8) 

Introducing next the dimensionless parameters below (where el, -0 ,E2 turn out to be small 

parameters) 
2a 2a NU E 1 _ moy 1  / ( m + (N —1)m, mLoyo  ); co . moa o  1 ( m ± (N —1)mo moo ) 

co = .,,,, 
T L ; L L L L L ) 

E2 = mocc  / (M + (N — Dino moYo  ) . E . MOCrl  / (M 

+l 

(N — Dmo moY o  \ 
L L L " L l L L r 

2 2 

CO 2 = ( 5 1 [M r(  ) 
MoU 2 0  I i ( m+  (N —1)m, moy ,) 

° [ L L ° L L ) 

(9) 

The following equation, representing a parametrically excited system is obtained: 
2 

L
( 0) 

(1- E 1 cos 0)04 + + e2 sin cot )4 + w02
 1 + 63 L' r coU cos cot q =O. 

(10) 

. 27rU 
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Dividing by (1— el cos cot) and neglecting second order terms, equation (10) becomes: 

2 

4 + 2.7tU 
(4+ E2 sin cot )4 + wo2 [1 + {1 + (  

/EV  
) } E3 cos cotlq =O. 

L Lcoo

(11) 
Via the following change of variables 

q(t) = exp(— 
1 r f27E-U 

(4 + E2 sin cor)dr)p(t)= exp( 7tU 4 et + cos cot)p(t) 
2.10 L L N 

equation (10) takes the simpler form 

p+c002(1—E COS cot)p =0 

(12) 
where 

E = 62 E, 1+ 7rU
2N - Lcoo

2 } 

The reader will recognize equation (12) as the well known Mathieu's equation for parametric forcing. 
A perturbation solution of this equation in the non-resonant case leads to the following solution for q(t) 
after the change of variable (11), 

yru  cot
q(t) = q(0)e L cos coot +0(e) 

(13) 

This simplified analytical solution suggests that the force due to the slugs induces an approximate 
viscous damping like effect on the tube motion. Note that no actual energy dissipation to heat occurs —
rather, energy is 'mechanically' transferred to the liquid slugs which then carry it out of the system. 

To confirm this result, numerical solution of the non-simplified equations was carried. Figure 4 shows 
the results of numerical simulations for a flow velocity of 3 m/s and superficial void fraction of 50%. 
The results clearly show that energy transfer occurs, with the result that the tube response is damped 
after several cycles. The damping ratio is, however, extremely small at 0.04% - much lower than the 
measured two-phase damping of 3.43% under the same flow conditions (but for a clamped tube). 

Another simulation example is shown in Fig.5. Here the flow velocity is 8 m/s with the superficial void 
fraction 80%. In this case a higher damping of 0.4% is calculated. Although this damping value is 
higher, it is still much lower than the experimentally measured damping value of 1.15 %. 
The foregoing results suggest that although an energy transfer mechanism between the tube and flow 
has been found, the amount of energy transferred cannot account for the level of damping observed 
experimentally. We note also that the trend is also different from that observed in the experiments. 
These observations have led to a closer inspection of the structure of the slugs during tube vibration. 
Visual observation coupled with flow visualization showed that during tube free vibrations, the liquid 
slugs themselves were excited strongly enough to deform periodically at the upper free surface. These 
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oscillations were all but absent at the bottom of the liquid slug where the concave interface tended to 
stabilize the free surface. 
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Figure 4 Response for U=3 mis, /3=50% . Figure 5 Response for U=8 mis, /3=80% . 

In the next section then, we incorporate the liquid slug surface dynamics into the theoretical model. 

2. Sloshing based model 

We considered next a more detailed model of fluid motion within the slug itself. In particular, 
sloshing behavior, associated with the upper free surface of the slugs is of particular interest. As 
noted earlier, experiments show that the lower free surface (the top of the bubble in Fig.1(a)) has a 
higher curvature and thus tends to be more stable. For simplicity we therefore assume this surface to 
be immobile (and flat!). The upper free surface oscillations can be modeled, for a first 
approximation, as a classical sloshing problem. The problem is more complex now though because 
the slugs also have a global motion within the tube. The sloshing problem has been addressed by 
numerous researchers. We follow the approach of [7] to derive a simple first order model for slug 
sloshing. The resulting oscillating force due to sloshing is then added to the slug-tube interaction 
forces already considered above. 

2.1 Equations governing slug sloshing 

In this section we briefly outline the basic equations for small amplitude sloshing. An (idealized) 
individual liquid slug is shown in Fig.6. Flow is upward (against gravity) in the figure and the tube 
inner diameter is a. The fluid motion associated with sloshing is approximated by a potential 'flow' 
for small tube oscillations. 

The equations for the flow potential and boundary conditions are 
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Fig.6 Liquid slug geometry 

At the upper free surface (elevation z =71(r ,I9,t)), the following boundary condition holds 

an + an ao + 1 an ao _a0 
at ar ar r ae ae az 
ao + 1 (  80)2 + 1 (1 .4)2 + 1(30)2
at 2 ar 2 r a e 2 az

(15) 

+1;iisr cos 0 + gri = 0 

where the subscript 's' in equation (15) indicates that the tube acceleration at the slug location 

should be considered here. In keeping with low order approximation, the boundary conditions are 

linearized to give 
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{877 ao 
at az 
ao .. 

+ Iv cos° + gri = 0 
at 

(16) 

Series expansions for the potential function and free surface elevation solutions considering only 

antisymmetric circumferencial modes are expressed in the form 

sinh(Xn (h + z)) 
4)(r , 0 , z , t) = E 2 Amn (t) cos(m0)Jn (An r ) a

n m a
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The series above are injected into equation (14) and simplified boundary conditions (16) and the 
Galerkin method used to effect the modal projection. Considering only one mode (hence m=n= 1), 
the following equations for the modal generalized coordinate are obtained 
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Solution of equation (19) yields the following expressions potential for the slug oscillation flow 
potential and surface height 
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h
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—) tul 
a 
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2.2 Sloshing-induced forces and the fluid-structure problem 

(20) 

With the flow potential (20) known, the force associated with sloshing for each liquid slug may be 

determined from momentum considerations. The forces consist of two components, one associated 

with oscillatory pressure variations in the radial (r) direction, the second due to bulk acceleration of 

the slug. The total force at the axial position is given by the integral 
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(21) 

To solve equation (19), the tube displacement w(x,t) needs to be known. Since the latter depends 
also on the slug oscillations, a coupled problem needs to be solved. The fluid-structure problem was 
outlined earlier in section 1.2. In the tube equation of motion (equation (2)), the first term of the slug 
force (equation (21)) is added. Note that the second term in equation (21), which is the force due to 
the bulk acceleration of the slug, is already present in the second term of the fluid-structure 
interaction equation (2). 

The solution of the numerical problem defined by equations (2), (19) and (21) is not trivial since it 
involves an intro-differential system. The symbolic software MAPLE is used to obtain the 
numerical solutions. In view of the simplifications already included in the model, no attempt is 
made to solve the equations simultaneously. Instead, the sloshing and vibrations problems are 
solved with a delay of one time step which effectively introduces a decoupling (albeit at a frequency 
much higher than the natural frequency of either system). 

2.3 Simulations results 

The transient response of a clamped-clamped tube is considered for better comparison with 
experiments. The tube is 1.48m long with an inner diameter a=2.12 cm and wall thickness t=2.8mm. 
The acrylic tube has a mass of 0.309 kg/m and first model natural frequency of 21 Hz. Fig.7 
shows the two-phase damping measured for this tube at a mixture (homogeneous) flow velocity of 1 
m/s for a range of void fractions. 
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Figure 7 Two phase damping versus void fraction (/3%) for a velocity of 1 m/s. 

In this case, a maximum damping is found near 30% superficial void fraction. In the slug flow 
regime the two-phase damping is in the range of 1.5% to just below 3%. 

A numerical solution is carried out for this tube and selected conditions in the slug flow regime. 
Fig.8 shows the numerically computed free vibration response for LT=1m/s and void fraction 
X40%. The estimated slug frequency is 4 Hz. The computed two-phase damping due to sloshing is 

4.47%. The experimentally measured damping for the same flow conditions is &2.34%. In Fig.9 
a second simulation result is presented for a higher flow velocity of 3 m/s, void fraction /50% and 
an estimated slug frequency of 5 Hz. The calculated damping is =2.13% compared to the 
experimentally measured value of 43.43%. 
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Figure 8 Tube response for U=1m/s, /40%. Figure 9 Tube response for U=3m/s, /50%. 
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Figure 8 Tube response for U=1m/s, β=40%.      Figure 9 Tube response for U=3m/s, β=50%. 
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The theoretically estimated damping values fall within the range of experimental measurements. In 
view of the simplifying assumption, the model can be deemed to be modestly successful in 
demonstrating that for slug flow, sloshing type free surface motions in the liquid slugs plays a key 
role in generating 'apparent' two-phase damping. In this case the tube damping effect is a purely 
inertia related phenomenon with no actual viscous dissipation. 

The results demonstrate that the (or a) basic mechanism for slug flow-induced damping is likely 
closely inertia related and more specifically, sloshing of the slugs themselves. This simple model 
has a number of limitations. One important input is the slug frequency which is estimated from 
experimental data. A more elaborate model may take into account the inexact periodicity of 
slugging. There is also the difficult problem of the exact form of the slugs themselves. The present 
model idealizes the slugs as depicted in Fig.6. However, as seen in Fig.1 and Fig.7, the slugs have a 
more complex structure including a significant wake region. The latter means that the slug does not 
have a constant depth (h) as assumed in the model. Furthermore, the slugs themselves will generally 
contain gas bubbles which modify the effective slug density. This is another important reason for 
the difference between the computed and measured damping values. 

The authors are aware that there will be limitations to the model since the detailed two-phase flow 
mechanisms are not considered. An obvious inconsistency of the model, relative to the experiments, 
is the inverse (decreasing) trend observed in the computed damping compared to the (increasing) 
trend in the experiments as a function of void fraction. This clearly points to an inconsistency in the 
model. A possible error is in the estimation of the slugging frequency. More importantly, the flow 
pattern changes with void fraction — and as figure 7 shows, the definition of a given flow pattern is 
at best approximate. Despite these short comings, the basic idea, confirmed here, is that the globally 
observed damping effect is relatively independent of some of the more complex dynamics of the 
two-phase flow. 

3. Conclusion 

This work has proposed an analytical model for the estimation of two-phase damping induced by 
slug flow. Firstly a simple point mass model was developed which showed that propagating slugs —
modelled as point masses — can lead to a parametric excitation (damping!) of the containing pipe or 
tube. The resulting damping was, however, found to be significantly smaller than measured values. 

The model was developed further to include a first order approximation of sloshing dynamics within 
the slugs as a mechanism for the transfer of kinetic energy from the tube to the flow. This sloshing 
based model was found to give damping values within the range of measured damping values —
suggesting that slug sloshing could potentially be an important mechanism for two-phase damping 
for slug flow. Further work is, however, needed to improve the model for better consistency with 
experimental measurements. 
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