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Abstract

Wavelet transforms can be a valuable time-series analysis tool in the field of nuclear
thermalhydraulics. As an example, the Morlet wavelet transform can be used to reduce the aleatory
(random) uncertainty of a voiding transient in a large loss of coolant accident (LOCA). The wavelet
transform is used to determine the cutoff frequency for a low pass Butterworth filter in order to
remove the noisy part of the signal without infringing upon the characteristic frequencies of the
phenomenon. This technique successfully reduced the standard random uncertainty by 42.4%.

Introduction

Wavelet analysis has recently become a popular tool in the geosciences for analyzing localized
variations of power within time-series [1]-[3]. Using the wavelet transform, one is able to determine
both the dominant modes of variability and how those modes vary in time by decomposing the time-
series into the time-frequency domain. The wavelet transform uses base functions called wavelets
that have smooth ends to perform the decomposition. As the name implies, wavelets are small wave
packets that can be stretched and translated with a flexible resolution in both frequency and time,
which allow them to easily map changes in the time-frequency domain. Mathematically speaking, a
wavelet transformation decomposes a time-series into some elementary functions from a mother
wavelet by dilation and translation. There are many mother wavelets available in literature, such as
the Marr wavelet, the Paul wavelet and the Morlet wavelet. The Morlet wavelet is known to be the
most popular wavelet used in the geosciences [1].

Wavelet analysis can also be a valuable time-series analysis tool in the field of nuclear
thermalhydraulics, and can specifically aid best estimate plus uncertainty (BEPU) methods.
Transient nuclear thermalhydraulic phenomena are characterized by their variation in time. These
phenomena are understood by analyzing the time-series or signal of a parameter of interest.

An important accident within the field of nuclear thermalhydraulics is the loss of coolant accident
(LOCA), which leads to coolant voiding. Within a CANDU nuclear reactor, coolant voiding within
a fuel channel can lead to heat-up and damage of the fuel. Instrument measurements, including void
fraction measurements, are subjected to high uncertainties. Measurements are often taken as the
best estimates of true values, against which computer code calculations are compared. Hence,
reducing the uncertainty of measurements will allow for better understanding of the uncertainties
within the computer codes as well.

The overall uncertainty in any one measurement can be decomposed into two different types of
uncertainties: aleatory (random) uncertainty and epistemic (systematic) uncertainty. A specific
uncertainty reduction technique, aimed at reducing the aleatory uncertainty, involves the application
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of a band-pass filter in order to remove the noisy part of the signal. The choice of the passband
should not infringe upon the characteristic frequencies of the phenomenon being studied but should
remove the noisy part of the signal as much as possible. The wavelet transform offers an advantage
here, in that it allows the signal to be viewed simultaneously in both frequency and time therefore
allowing one to easily choose the passband for a filter.

The objective of this study is to demonstrate the use of wavelet analysis in selecting a cutoff
frequency for a band-pass filter, which will be used to reduce the aleatory uncertainty of a
measurement. Specifically, the Morlet wavelet will be used to select cutoff frequency for a low pass
Butterworth filter, which is in turn used to reduce the uncertainty of idealized void fraction data.

1. Nuclear Thermalhydraulic Time-Series Data

Transient nuclear reactor thermalhydraulic phenomena can be characterized by their variation in time.
To better understand a given phenomenon, measurements of a parameter of interest are made and
analyzed. However, every measurement has error, which results in a difference between the measured
value and the true value. Ultimately, this places a limit on the degree to which a given phenomenon
can be predicted.

1.1 Idealized Void Fraction Data Set

An important accident within the field of nuclear reactor thermalhydraulics is a loss of coolant accident
(LOCA), which leads to a coolant voiding transient. The coolant void fraction can be characterized by:

Vg
o =
T, (1)
where,
a = is the coolant void fraction,
v, = is the volume of the channel occupied by the coolant vapour phase, and
v, = is the volume of the channel occupied by the coolant liquid phase.

Coolant void fraction measurements were made during LOCA tests at the RD-14M experimental
facility. Specifically, test B9401 shows voiding trends for a large LOCA. The heated section in the
broken pass went from no voiding to complete voiding within approximately 10 seconds from the start
of the break [5]. The RD-14M void fraction measurements are stated to be within £10% void (95%
confidence interval) [6].

Three distinct periods can be observed in the RD-14M LOCA test B9401 coolant voiding transients
[5]:
1. Before the break: a minimum void fraction of 0.0 is sustained.
0 to10 seconds after the break: an approximately linear increase in void fraction from minimum
value of 0.0 at the time of the break, to a value of 1.0 at 10 seconds.
3. >10 seconds after the break: a maximum void fraction value of 1.0 is sustained.
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Using these characteristics and a break time of 55 seconds, an idealized void fraction time-series data
set was constructed (see Figure 1). This data is used to represent the true value of coolant void

fraction.
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Figure 1: Idealized Coolant Void Fraction Transient - “True” Coolant Void Transient Fraction

In order to construct a data set for the “measured” value of coolant void fraction, a random uncertainty
of £10% void was added to the idealized “true” value (see Figure 2). In other words, what is referred
to as the “measured” void fraction is actually an artificially created dataset.
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Figure 2: Idealized Coolant Void Fraction Transient - “Measured” Coolant Void Fraction

1.2 Measurement Uncertainty

There is an inherent uncertainty in the use of measurements to represent the true value. The total
uncertainty in a measurement can be attributed to: uncertainty due to random error (aleatory) and
uncertainty due to systematic error (epistemic) [4]. This paper will focuses on a technique to reduce

the former.
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In successive measurements of a parameter, e.g., void fraction, the values of elemental random error
sources change resulting from random scatter. For measurements with zero systematic error, the mean
is equal to the true value of the parameter and standard deviation is a measure of the scatter of the
individual measurements about the mean. The sample mean is given by:

N
X (1)
¥ -
N 2

where,
X = is the sample mean,
X, = is the value of jth measurement, and
N = is number of measurements in the sample.

The sample standard deviation, s, , is given by:

)
Sy =
The random standard uncertainty of the sample mean, s, is given by:
s
Sy = va’ 3)

For a normally distributed population and a large same size, the interval X £2 s+ 1s expected to contain

the true population mean with 95% confidence. The value of 2 represents the Student’s t-value for
95% confidence and degrees of freedom, i.e., N —1 greater than or equal to 30.

1.3 Band-pass Filtering

A specific uncertainty reduction technique, aimed at the reducing the random standard uncertainty,
involves the application of a band-pass filter in order to remove the random or “noisy” part of the
signal. The choice of the passband should not infringe upon the characteristic frequencies of the
phenomenon being studied but should remove the noisy part of the signal as much as possible. The
wavelet transform, by decomposing the signal into the frequency-time domain, allows one to easily
choose the passband frequency for a filter.

Many filter options are available within the Scilab software package. The Butterworth filter is a type
of signal processing filter designed to have frequency response that is as flat as possible in the
passband [7]. The Butterworth filters in Scilab are considered analog filters which are generally
defined in the frequency domain as rational transfer functions of the form:

b.s'
H(s)=—"—+, 4)

1+ Ea[si
i=0

This is used to design an order » low pass digital Butterworth filter with normalized cutoff frequency,
w, . Scilab returns the filter coefficients a, and b, or equivalently the zeros z, and p, poles of H in
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order to meet given specifications of the magnitude response. A fourth-order low pass digital
Butterworth filter was chosen for the voiding transient. Other band-pass filters may be used; however,
it is important that the selected filter does not infringe up the frequencies of the phenomena understudy.

2. Wavelet Analysis

This section describes the method of wavelet analysis used for random uncertainty reduction, which
has been adapted from the work of Trauth [1], Torrence and Compo [2], and Lau and Weng [3]. The
wavelet software used was adapted from that provided by Torrence and Compo [8].

2.1 Wavelet Transform

A wavelet transform can be used to analyze a time-series that contains a non-stationary power at many
different frequencies [2]. It uses base functions, i.e., wavelets, which can be dilated and translated with
a changeable resolution in both frequency and time. An example being the Morlet wavelet, consisting
of a plane wave modulated by a Gaussian [1]:

wo(n) — ﬂ-1/4eiwwe-n2/2 ’ (5)
where,
Y,(n) =1s the wavelet function,
n = is the non-dimensional time parameter, and
w, = is the non-dimensional frequency.

The Morlet wavelet is the most popular wavelet used for time-series analysis in the geosciences [1] and
is shown in Figure 3.
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Figure 3: Morlet mother wavelet with wavenumber 6 [1]

Assuming that one has a time series, x, , with equal time spacing, o¢,and n =0,..., N -1 the

continuous wavelet transform is defined as the convolution of x, with a scaled and translated version

of (1)

W, (s) = Nz_lxn«p - [(”‘T’”‘S’] : ©)

where,
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W (s) =1is the continuous wavelet transform,

N = is the total number of values in the time-series,
X, = is the time-series,

yw*  =1is the complex conjugate of the wavelet function,
n = is the localized time index,

ot = is the time spacing, and

s = is the wavelet scale.

By varying the wavelet scale, s, and translating along the localized time index, », one can generate a
representation showing both the amplitude of any features versus the scale and how this amplitude
varies with time. The subscript 0 on @ has been dropped to indicate it has been normalized. Although
it is possible to compute the wavelet transform using (6), Torrence and Campo [2] suggest it is faster to
do the computations in Fourier space. By using all N points in the time series, the convolution
theorem allows one to do all N convolutions simultaneously in Fourier space using a discrete Fourier
transform (DFT). The DFT of time series x, is:

N

% = LN_IX o2kl N > 7
N& "
where,
X, = is the DFT of the time-series
k = 0,..., N —1 is the frequency index.

In the continuous limit, the Fourier transform of a function of 1y (#/s)is given by ¢/ (sw). By

convolution theorem, the wavelet transform is the inverse Fourier transform of the product:
N-1

W, (s) = ; R * (sw )e™"™” (8)

where the angular frequency is defined as:

% . k<£
Nt 2

Y o N )
N&t 2

Using (8) and a standard fast Fourier transform routine, one can calculate the continuous wavelet
transform for all s at all » simultaneously and efficiently.

To ensure that the wavelet transforms (8) at each scale are directly compatible, the wavelet function at
each scale is normalized to have unit energy:

Y(sw,) = (2(5_]?)

1/

Yo(sw,)’ (10)

For the Morlet wavelet, the non-normalized Fourier transform of a function v (7/s) is given by:
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wo(swk) — ﬂ—1/4H(w)e—(sw—(uo)2/2 s (1 1)

where,
H(w) =1s the Heavyside step function; H(w) =1if w>0, H(w) =0 otherwise.

2.2 Wavelet Power Spectrum

In general, the wavelet transform is a complex number. This means that the transform can be divided
into a real part (i.e., ER{/V,, (s)}) and an imaginary part (i.e., S% (s)}. Alternatively, the transform can

w, (s)| ) and a phase (i.e., tan™ [S{/Vn (s)}/ﬁi{l/Vn(s)}{l). As suggested
by Torrence and Campo [2], the wavelet power spectrum can be defined as |I/I/,,(S)|2 or normalized to

w,(s)| /o

be divided into an amplitude (i.e.,

2.3 Choice of Scale

After choosing a wavelet function, it is necessary to choose a set of scales, s, to use in the wavelet
transform. The scales can be written as fractional powers of two:

s, =5,2", j=01..J" (12)
J = log,(Not/s,)” (13)
where,
S, = is the smallest resolvable scale, and
J = is an indicator of the largest possible scale.

The s, should be chosen so that the equivalent Fourier period is approximately 267 . The choice of a
sufficiently small ¢ depends on the width in the spectral-space of the wavelet function. For the
Morlet wavelet, a value § of about 0.5 is the largest value that still gives adequate sampling in scale.
Smaller values of § give finer resolutions.

2.4 Wavelet Scale and Fourier Frequency

The maximum int) (sw) does not necessarily occur at a frequency of s”'. Following the method

presented by Meyers et al. [9], the correlation between the equivalent Fourier period and the wavelet
scale can be derived for a particular wavelet function. This is done by substitution of a cosine wave of
a known frequency into (8) and computing the scale, s, at which the wavelet power spectrum reaches
its maximum. Torrence and Campo [2] have calculated that a Morlet wavelet with wy = 6, gives a
value of A = 1.03 s, where A is the Fourier period. This indicates that for the Morlet wavelet the
wavelet scale is almost equal to the Fourier period.
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3. Methodology

A specific application of wavelet analysis is that it can be used to reduce the random uncertainty of
nuclear thermalhydraulic time-series data. The methodology used to reduce the random uncertainty
with wavelet analysis is presented in Figure 4.
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#l - for Filter |
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Figure 4: Random Uncertainty Reduction Methodology

First, nuclear thermalhydraulic time-series data with random uncertainty is analyzed using a wavelet
transform. Upon examining the dominant modes of variability and how those modes vary in time, a
passband frequency can be chosen such that it does not infringe upon the characteristic frequencies of
the phenomenon being studied. Nonetheless, the frequency can be chosen such that it will filter the
noisy part of the signal as much as possible. Once the frequency is chosen for the band-pass filter, it is
used to filter the original time-series data. The filtered data can then be decomposed with the same
wavelet transform into the time-series into the time-frequency domain for qualitative comparison
purposes with the unfiltered data. The random uncertainties are then calculated and compared for both
the filtered and unfiltered data for a quantitative indication of the reduction in uncertainty.
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4. Results and Discussion

This section uses the methodology presented in section 3 to reduce the standard random uncertainty for
an idealized measured void fraction time-series.

4.1 Wavelet Power Spectra and Data Filtering

The wavelet power spectrum for the idealized void fraction time-series data described in section 1.1 is
shown in Figure 5. The void fraction transient shows a characteristic peak in the wavelet power
spectrum at the time coinciding with the break.
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Figure 5: (a) “True” Time-Series Data. (b) The wavelet power spectrum. The contour levels are chosen so that 75%,
50%, 25%, and 5% of the wavelet power is above each level, respectively.

In contrast to Figure 5, Figure 6 shows the wavelet power spectrum for the measured void fraction
time-series. The random uncertainty in the void fraction at any given point (i.e., £10% void)
contributes to the lower period region, i.e., higher frequency region, of the wavelet power spectrum.
This validates the choice of a low band-pass digital filter to reduce the random uncertainty.
Specifically, a fourth order low pass Butterworth filter was chosen to filter the measured data. As seen
in Figure 6, a cutoff frequency of 0.125 Hz (i.e., period of 8 s) was chosen for the filter. This allows
one to reduce the noise from the random uncertainty in the measured void fraction while preserving the
characteristic frequencies of the phenomena during of the voiding transient. In other words, the
voiding transient has a period of 10 seconds and choosing a period of less than 10 seconds (i.e., period
of 8 s) does not remove any of the void fraction information.

Applying the filter to the data in Figure 6, yields to the time-series and wavelet power spectrum in
Figure 7. Comparing these figures, reveals that the forth order low pass Butterworth does a good job of
removing the high frequency noise caused by the random uncertainty while also preserving the
characteristic frequencies of the voiding phenomena.
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Figure 6: (a) “Measured” Time-Series Data. (b) The wavelet power spectrum. The contour levels are chosen so that
75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively.
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Figure 7: (a) Filtered Time-Series Data. (b) The wavelet power spectrum. The contour levels are chosen so that 75%,
50%, 25%, and 5% of the wavelet power is above each level, respectively.
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4.2 Reduction in Uncertainty

To compare the uncertainties in the measured and filtered data sets on a consistent basis, i.¢., relative to
the true value, two different residuals can be defined. The measured residual is given by:

measured,j — Pmeasured j ~ Pirue,j > (14)
where,
measured. = is the random residual error of the j" measurement,
measured.j = is the j™ measured void fraction value, and
A ; = is the j™ true void fraction value.

In essence, equation (14) is a measure of the distance between a measured value and the true value
which can also be thought of as the random error in an individual measurement. Similarly, the distance
between a filtered value and the true values can be defined as:

- 15
Xf ilteredj — Clf ilteredj ~— Cltrue,j H ( )
where,

X fitered, = is the random residual error of j" filtered value,

A/ iered = is the j" filtered void fraction value, and

A ; = is the j™ true void fraction value.

Substituting (14) and (15) into (1) and calculating (2) and (3) in section 1.2 yields the values in Table
1.

Table 1: Uncertainty metrics for the measured and filtered data sets

Uncertainty Metric Measured Data Set Filtered Data Set
(void fraction) (void fraction)
Sample Mean 0.00700 0.00022
Sample Standard Deviation 0.05707 0.03289
Random Standard Uncertainty 0.00260 0.00150

The percentage reduction in the random standard uncertainty is provided by the following formula:

% reduction =

where,
S?, filtered

S?,measured

|S},f iltered - S},measured

X ,measured ‘

= is the standard random uncertainty for the filtered data set.

(16)

= 1is the standard random uncertainty for the filtered data set, and

The percent reduction in the random standard uncertainty is approximately 42.4%.
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5.

Conclusions

Wavelet transforms and wavelet analysis has been shown to be a valuable time-series analysis tool
in the field of nuclear thermalhydraulics. As a proof of concept, the Morlet wavelet transform was
used in an uncertainty reduction technique aimed at the reducing the aleatory uncertainty of a
voiding transient in a large loss of coolant accident (LOCA). The wavelet transform enabled the
choice of cutoff frequency (0.125 Hz) for a low pass forth order Butterworth filter in order to
remove the noisy part of the signal without infringing upon the characteristic frequencies for this
specific phenomenon (i.e., the idealized voiding transient). This technique facilitated a 42.4%
reduction in the standard random uncertainty.
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