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Abstract

A method is proposed whereby uncertainty of anydrymargin measure (figure of merit)
may be quantified when the only experimental infation available for validation is whether
dryout has occurred or not. The method does nathwevthe heater temperature, except as a
discrete dryout indicator. This is an advantage rwiamalysing anticipated operational
occurrences for which the acceptance criterionrsedaclusively to the probability of dryout
occurrence. The derived uncertainty provides actlirelation between the simulated dryout
margin and the aforementioned probability. Furtheen the method, which is based on
logistic regression, has been designed to be densiwith more common parametric methods
of uncertainty analysis that are likely to be ugmdother parts of a thermal hydraulic model.
One example is provided where the method is utllimeassess statistical properties, which
would have been difficult to quantify by other msan

1. Introduction

Best estimate safety analysis is usually carrigdbgudemonstrating that some safety related
parameter, e.g. temperature, does not, with seffily high probability, exceed some specific
value. The probability is a result of the uncera@mnalysis and is based on either parametric
or non-parametric statistical analysis. The accegacriteria, which are defined by the
regulatory body in each country, usually requira the result of the uncertainty analysis, such
as probabilities, shall be calculated with a cartiégree of confidence. This accounts for the
fact that the results are based on finite samplee ghe probability distributions are usually
not knowna priori.

The mathematical framework necessary to perfornmutioertainty analysis is now rather well
established [1]. It has been developed primarihtlie analysis of severe accidents, e.g. a loss
of coolant accident (LOCA), and the acceptanceatthat apply to these scenarios. There is,
however, another class of events to which similgerga apply but that has attracted less
theoretical attention. These are the anticipateeraipnal occurrences (AOO), which, by
definition, are much more likely to occur than detits. Since these events are relatively
common, the acceptance criteria are more restigtivorder to ensure that the fuel is not
damaged. The US NRC accepts the following critef@nand most other countries apply
something similar:
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“For ... CPR correlations, there should be a 95-p#rpeobability at the 95- percent
confidence level that the hot rod in the core dussexperience a ... boiling transition
condition during normal operation or AOOSs.”

This criterion is very similar to e.g. the temparatcriteria, which apply to less likely event
classes. There is, however, an important differefibe dryout criterion for AOOs, as stated
above, is formulated in terms of a parameter, thg.critical power ratio (CPR), that is not
directly measurable during a transient. These nusnbrist be viewed as figures of merit,
which may be useful as indicators of dryout maigih with a scale that cannot be related to
any physical quantity [3]. If mechanistic models aised instead of correlations — something
that starts to be feasible — the margin would pobble stated in terms of the liquid film
thickness or flowrate instead. These are, in ppie¢cimeasurable quantities but measurements
are rarely available at the relevant conditionse Thcertainty analysis must instead be based
on measurements of dryout power or wall temperatuen though the acceptance criteria are
formulated in terms of e.g. CPR. The present papgigests a theoretical framework for
estimating dryout probabilities based on typicakasly-state and transient dryout
measurements regardless of the specific definitibthe figure of merit that is used as a
measure of dryout margin.

2. Definitions

The result of a simulation is some measure of dryoargin (film-flow, film-thickness or
some other arbitrarily defined measure, e.g. CBR)en a specific valué/ , of the simulated
dryout margin we may interpret the dryout probamibiz(M) as the fraction of dryout tests
that would indicate dryout if all possible testsnsistent with the margiM could be
experimentally evaluated. Thus we interpret the susaments as a stochastic variable, the
dryout indicatorY(M), which may take only two values: unity (dryout)zaro (not dryout).
Note here that we view the result of the simulatMn as a known value whereas the
outcome of the experiment is treated as a stocheatiable. This is a matter of definitions
but this approach reflects the fact that we canmotadvance, know the outcome of an
experiment, partly due to epistemic uncertaintie®del deficiencies and simplifications),
partly due to aleatory uncertainties (random orpengied effects). The result of the
simulation, on the other hand, is fully known aegroducible.

Were the dryout margin measure perfect we Woulcéhé(M):l if and only if M <0 and
Y(M)=0 for M >0. However, since no model is perfect, the boundanditions are not

known exactly and the two-phase flow and boilinggesses themselves may be associated
with uncertainties, the dryout indicator functionlvequal unity with probabilityn(M) and

zero with probabilityl-7{M). That isY(M) follows a Bernoulli distribution [4] with
expectation value€[Y(M )] = 77(M).

There are many concepts that may be interpretedeasures of dryout margin, e.g. CPR and
related concepts, which are, however, not easyetmeal precisely for transients [3]. The
present theory is not intended to be limited tingle such concept. We will therefore discuss
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some general properties of a dryout margin measateare required by the theory. An ideal
margin measure would satisfy the following requiesns:

1. At the onset of dryout the margin should equabz (Any other, known constant would
work as well but we choose zero for simplicity.)

2. If dryout does not occur the margin should atgr than zero.

3. For a typical series of experiments that prosdieain a non-dryout to a dryout state (or
vice-versa) the margin should be approximately dinith respect to the controlling
parameters (power, flow, etc). It follows that thargin measure will extrapolate to negative
values in the post-dryout heat transfer regime.

We have already concluded that an ideal margin uneasnnot exist. The three requirements
above will thus never be satisfied by any real dtymodel. We may, however, imagine that
there is such an ideal measve, which we will call the “true margin” and that the
simulated marginM , is related to the true margin 8 =M +&. We will refer tos as the
uncertainty, lumping the epistemic and aleatorga#. For a given value of the mardih

we have

(M) = probM " <0) = proM +¢ <0). (1)

Note that the true marginyl ", and the uncertaintys, are regarded as stochastic variables
whereas the calculated margix, , and the probability7(M) are single-valued. We will also

assume that the uncertaindydoes not exhibit any detectable trends or pattémsthat it is
reasonable to consider it an uncertainty with resfethe available simulation technology.

3. Application to typical steady-state database

Steady-state dryout experiments are typically peréal in such a way that we may assume
that the true margin is exactly zero for each expental point (slowly increasing the power
until the dryout power is found). The simulated guaris hence just the uncertainty, that
may, in this case, be directly observed. This assutimat the measurement uncertainty can be
neglected in comparison with the model uncertainty.

It is common to assume, and sometimes to verift, ttie uncertainty approximately follows a
normal probability distribution. It is then suffesit to determine the mean, and standard
deviation, g, of the uncertainty distribution in order to edisib a relation between the
simulated marginM , and the dryout probabilityr(M ). Explicitly we have that

n(M) = %{u erf( %H )
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This is the standard approach to uncertainty aisalfermulated in the terminology used in
this paper.

4. Application to typical transient database

We have a set of transient measurements of headetemperature with known boundary
conditions. The dryout marginyl , can be calculated based on the boundary consgiasma
function of time and position and the measured tesdperatures determine whether dryout
occurred or not for each transient. That is, weehavset of observations of the dryout
indicator, Y(M ), for various, known, values dfl and we want to establish a relation between
M and the dryout probabilityﬂ(M), based on these observations. Since the dependent
variable, Y(M), can take only the values one (dryout) or zera @mout) the relation
n(M )cannot be assessed by ordinary linear regressianpfioblem is preferably approached
by the mathematical framework called logistic esgion [5]. This type of regression is based
on generalized linear models, whereby a simpleatinmodel is postulated for a derived
variable, connected to the probability through acated link function. The canonical link
function for the binomial distribution, and hence f((M), is the logit [6], defined as

logit(77) = In(ij 3)

1-7
A linear model for this function is hence reasopabhat is,
logit(77) = aM +b, (4)

where a and b are constants. This is equivalent to the followmgdel for the dryout
probability:

_ exgaM +bh)
ﬂ(M ) 1+ exp@M +b) ®)

This is the standard approach to logistic regressio a single variable. However, any
monotonous, increasing function to the intervall]Dcould be used as link function instead of
the logit [5][6]. That is, the inverse of any curative distribution function (CDF):
CDF*(m)=aM +b (6)
Selecting the CDF of the normal distribution, gitles probit model:
probit(r7) = /2erf*(277-1) 7)

The difference with eq. (3) is mainly that the pta consistent with the common assumption
that the steady-state error is normally distributed with eq. (2).
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For transients we do not have direct observatidriteomodel uncertainty. We hence cannot
estimate the mean and standard deviation as easilfjor the steady-state case. The
observations of the dryout indicator can, howewer,exploited by a maximum likelihood
technique to find estimates of the coefficient¢he model. Explicitly, we maximize the log
likelihood [7]

L=>Inm+ > In(l-7) (8)

iODO i0DO

by finding optimal values of the constamat and b in eq. (6). Here DO is the set of
experiments in which dryout was observed. For ttodip model, the parametegsand b are
related to the standard deviation and mean of igertainty & as:

1
o= ©)

&

b
u=-r (10)

4

Note, however, that there is no reason to assupneori that the mean and standard deviation
thus estimated would agree with the correspondstignates for the steady-state application
of the same model. Since most dryout models haea loeveloped based on steady-state
measurements and transient applications involveensomplex phenomena, one would, in

general, rather expect the transient uncertaitdié® larger.

5. Example: MEFISTO-T film flow analysis

51 TheMEFISTO and MEFISTO-T codes

The MEFISTO code is a simplified sub-channel fillmaf analyzer, specialized on dryout
prediction in BWR fuel bundles [8]. The MEFISTO-Dde is essentially the same model
extended to transient applications [9]. Both codékcalculate the minimum film flowrate per
unit wall perimeter (MFF) on all wetted surfacesthe fuel bundle. A special feature is that a
negative MFF is calculated when the code prediost-gryout conditions. A negative MFF does
not have any physical meaning; it is merely a #gaf merit that measures the distance to the
dryout line and in that sense similar to and ma@jaee a transient CPR value.

Since the MFF serves as a measure of dryout macgimesponds to a measureable quantity
(except when negative) and is the primary outpuheffilm-flow analysis, it is natural to let the
MFF replace the CPR concept in the safety analydisstatistics and the calculation of dryout
probability will hence be based on the MFF andeheill be no reason to even define the CPR
concept.

5.2 Analysisof steady-state performance
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The MEFISTO code was validated with 1364 dryoutezkpents from the Westinghouse FRIGG
loop [8]. The experiments were performed in fulddecquarter-bundles (24 rods) with pressure
varying between 3.0 and 9.0 MPa and including gelamumber of lateral power distributions and
three different axial power distributions. The drypower was measured (by slowly increasing
power until dryout occurred) and the MFF could reebe calculated at the experimental dryout
power in each case (compare section 3).

The MEFISTO model was based on a discretization 8% subchannels and 100 axial nodes.
The high axial resolution was necessary in ordeesolve the dryout locations in the vicinity of
the spacer grids. The statistics of the calculM&d values showed a meap | close to zero

and a standard deviatioro( of about 0.04 kg/m/s. For the sake of comparigooan be
mentioned this corresponded to a CPR standardtawviaf about 4%.

5.3 Analysisof transient performance

The MEFISTO-T code was recently validated over ao$e294 transient dryout experiments
from the Westinghouse FRIGG loop [9]. The mock-updie and test conditions were similar to
the steady-state test program. Flow transients el ag power transients and combinations
thereof were included (not fast pressure chandmsigh). Also the model was the same 35-
subchannel, 10- nodes model that was used ine¢hd\sttate case.

For each experiment the measured heater rod tetapesavere utilized to determine whether
dryout occurred or not during the transient. Frbméxperience with the steady-state code it was
expected that dryout would occur approximatelyMi==0 but the transient results show a clear
bias, with many experiments indicating dryout forF#0. Work is in progress to fully
understand these results, but the biased MFFtatatis an interesting application of the methods
developed in the present paper.

Applying the logistic regression based on the groimdel as outlined in section 4 above gives
the probability curve shown in Figure 1 togethethwihe Y(M) of the entire experimental

database. Using the regression parameters andatpuéd) and (10) we get a standard deviation
o= 0.034 kg/m/s and a biga=0.13 kg/m/s. The bias could have been quantifiediimpler

methods but the standard deviation could hardlyehbeen calculated without using the
presented method. It can be noted that the stamldsdtion is as low as in the steady-state case,
which shows that the transient version of the mqatelvides good precision but a lack of
accuracy due to the apparent bias. The cause ®fbias should identified and preferably
eliminated before the MEFISTO-T code can be rebador safety analysis but this is not the
primary message of the present paper. Instead wete@oint out that we have not even defined
a transient CPR concept and hence base all thgsanaif the transient model on the MFF
concept as a measure of dryout margin. By the yherod examples provided in the present paper
we also intend to show that it is fully possiblecaculate the dryout probability and hence to
base the safety analysis on the MEFISTO codestenMEF concept without defining CPR.
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Figure 1 Logistic regression applied to a datalod&94 transient dryout experiments simulated
with the sub-channel film-flow model MEFISTO-T [9)hich produces negative film-flow rates
when dryout is expected to occur..

6. Discussion and conclusions

6.1 Local versusglobal margin and dependent probabilities

In section 3 and 4 we have tacitly assumed thagmdor the fuel channel is the smallest

simulated margin in both time and space. Havingldisthed a relation between any margin
measure (e.g. the film flow rate) and the dryowbability we have, however, effectively a

local and time-dependent dryout probability. An ortant question is to what degree these
local probabilities are independent. It is quiteviobs that the dryout probabilities at two

points on a transient separated by short timevateannot be fully independent. If they were,
the total dryout probability would quickly increagath time, even in a zero transient. It

follows that for a short enough time span the ulaceties must be completely correlated. It is
relatively easy to show that the total dryout ptuliy is then 7r= mtax{n(M (t))]. In other

words, it is sufficient to consider the maximum alsty probability during a transient, i.e. the
minimum margin. A similar reasoning applies to sdateparation. The dryout probability at
two nearby locations with the same film flow ragmoot be independent.
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It is, however, questionable if maximal dependerare be assumed from one film to another,
in particular if these films are located in diffatesub-channels, on different rods or even in
different fuel assemblies. It can be noted that phoblem is, in part, mitigated by the fact that
dryout probabilities during a typical transient aegligible except for a rather small range in
time and space. Within such a small range it iSeea® motivate that uncertainties are
correlated and that the over-all probability shoblel calculated based on the minimum
margin.

It is hardly motivated to assume that the dryowtbpbilities in separate fuel assemblies are
strongly correlated. In this case it seems morsarable to assume independent probabilities.
The safety criterion, on the other hand, refers'th@ limiting channel”. This could be
interpreted as the channel with the highest drymobability, which is equivalent to the
assumption of completely correlated uncertaintigss is, in fact, the interpretation that is
currently used by the industry for the calculatadrsafety margins. Typically a single fuel rod
or a few potentially “limiting” rods are analyzed.

6.2 Steady-state versustransient uncertainties

As noted in section 4, the uncertainties basecherahalysis of transient measurements may
not agree with the uncertainties from the steadtesévaluation. There are several reasons
why the steady-state and transient analysis maggoie. One is that transient simulations
involve more complex physical phenomena and coomdipgly more complex models. It is,
for example, important to correctly model the poessdrop and void fraction in the channel
when simulating a transient but these problemsbeaignored when studying a single channel
in steady-state and the flow-rate is known (meahur®ther reasons may be a smaller
database of transient measurements and the faciotistic regression is based exclusively
on the dryout classification whereas the steady sttatistics uses the information contained
in the measured margin. In general, it seems tiatcorrect approach would be to use the
transient uncertainties when analysing transiemdssdeady-state uncertainties only in steady-
state or for transients that are slow enough thguasi steady-state may be assumed, i.e.
transients that can be evaluated in a steady-state. On the other hand, if the transient
database is small and does not fully cover theaavfgapplications the transient standard
deviation may be underestimated. An indication th& may be the case is if the estimated
transient uncertainty is significantly smaller thiae corresponding steady-state uncertainty
without apparent reason.

6.3 Uncertaintiesin the boundary conditions

The theory outlined in the present paper concdrasincertainty inherent in the dryout model
or correlation. It is assumed that the boundanditaons used in the statistical evaluation are
exact since, in practice, these boundary conditemesmeasured with much better precision
than what can be expected from the model. In tkase the assumptions made are not
problematic. In any realistic application, howevéhe boundary conditions would be
calculated by other models, which are probably moenaccurate than the dryout model itself.
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In the final uncertainty analysis the contributidr@m all models must be evaluated together.
Standard methods for this problem are availablee @y, for example, assume that the
various contributions to the total uncertainty arelependent and sum up all the
corresponding variances or use a non-parametrit©odetlt is common, but not strictly
necessary, to assume the individual as well asotlaé uncertainties are normally distributed.
The outcome of the logistic regression as describedection 4 fits smoothly into this
framework. In particular when the probit model sed, which corresponds to the common
assumption of normality.
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