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Abstract 

The SuperCritical Water-cooled nuclear Reactor (SCWR) is one of six Generation-W nuclear-
reactor concepts currently under development worldwide. It is designed to operate at pressures 
of 25 MPa and temperatures up to 625°C. These operating conditions make an SCW Nuclear 
Power Plant (NPP) suitable to support thermochemical-based hydrogen production. The Copper-
Chlorine (Cu-Cl) cycle is a prospective thermochemical cycle with a maximum temperature 
requirement of —530°C. Thermalhydraulic calculations are presented for a double-pipe counter-
flow heat exchanger with smooth pipe conditions and enhanced local heat transfer coefficients of 
25%, 50% and 75% above smooth pipe cases. 

1. Introduction 

Hydrogen has been identified as an energy carrier which could supply a portion of the world's 
future energy requirements. The drive to find an alternative energy source replacing carbon-
based fuels is due in part to reducing greenhouse gas emissions which contribute to global 
warming and preparing for a future global economy unwilling to rely on high-cost and scarce 
energy sources. As developing countries industrialize, their energy demand adds to the ever-
increasing demand from current industrialized nations and drives energy prices upward. 

Due to the low cost and available production methods, carbon-based hydrogen production via 
Steam Methane Reforming (SMR) or gasification is the most feasible hydrogen production 
process currently available. Furthermore, the majority of hydrogen produced is consumed at the 
same location, and only in the necessary quantities. Using non-carbon-based energy sources 
such as nuclear or solar power to support thermochemical cycles would facilitate the 
development of centralized, large-scale hydrogen-production facilities. One of the challenges 
associated with the development of thermochemical cycles is identifying a sufficient source of 
energy with an appropriate thermal transportation network that can supply the necessary reaction 
steps. Nuclear-based hydrogen production can be achieved by linking a Generation W 
SuperCritical Water-cooled Reactor (SCWR) with a Cu-Cl cycle based hydrogen production 
facility. An intermediate process loop would be required with a Heat eXchanger (HX) 
transferring thermal energy from the SCWR coolant to the Cu-Cl cycle. One possible design that 
may be used to provide the thermal energy transfer is a counter flow double-pipe HX. To 
optimize the size of the HX, heat transfer enhancement techniques can also be implemented in 
the form of corrugated piping which can increase local Heat Transfer Coefficients (HTCs) and 
reduce the HX's physical dimensions. 
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2. Thermochemical cycles 

Thermochemical cycles decompose water into hydrogen and oxygen through a set of reactions 
that require thermal energy input. In hybridized cycles, an electrolysis step supports the 
decomposition process. Over 200 thermochemical cycles have been identified in literature, 
however, only few are technologically or economically feasible [1]. Many cycles face 
limitations due to high temperature requirements, low efficiencies or complex 
material/construction demands rendering the cycles unfeasible for development beyond 
theoretical calculations. Operating at temperatures of 870°C, the Sulphur-Iodine (SI) cycle is 
one of only several thermochemical cycle currently under investigation which have progressed to 
demonstrative pilot facility stages. The high temperature requirements of the cycle would make 
it suitable to link to a High-Temperature gas-cooled Reactor (HTR) which has a core coolant 
outlet temperature of up to 1000°C [2]. 

Compared to other cycles the Copper Chlorine (Cu-Cl) cycle operates at lower maximum 
temperatures of approximately 530°C. The cycle was chosen to be further investigated through 
research part of the United States Department of Energy's Nuclear Hydrogen Initiative (NHI). 
The objective of the NHI is to develop a cost competitive nuclear-heat based hydrogen 
production facility by 2019 [3]. Of the cycles evaluated, the Cu-Cl cycle had several strengths 
including the low temperature requirement, successful laboratory tests, international support and 
favourable economic targets [3]. Wang et al. have also shown that the SI and Cu-Cl cycles have 
similar hydrogen production costs and provided effective internal heat recycling they have an 
efficiency advantage over conventional electrolysis methods [4]. 

2.1 Copper-chlorine cycle 

The Cu-Cl cycle has been selected as a prime cycle to be linked with an SCWR for the 
production of hydrogen [5]. Research into the Cu-Cl cycle started in the 1970's when Dokiya 
and Kotera proposed a hybrid 2-step process [6]. All Cu-Cl cycle variations are based on 
different combinations of the 5-step cycle having different characteristics with associated 
advantages/disadvantages [3],[7],[8],[9]. Several strengths of the cycle include a relatively low 
maximum temperature requirement (-530°C), favourable reaction kinetics and the opportunity 
for internal heat recycling (5-step cycle) [7]. The 5-step cycle is characterized by an exothermic 
hydrogen-production step, three endothermic processes and an electrolysis step. Naterer et al. 
conducted thermodynamic analysis of the 5-step cycle and found the thermal energy 
requirements to be 277.4 kJ/g of H2 produced with no heat recycling available and 31.3 kJ/g of 
H2 of electrical energy [8]. The hydrogen production step, shown in Table 1, Reaction 1a) is an 
exothermic reaction operating at 450°C providing a source of thermal energy that could be 
redirected to the endothermic reactions in the cycle. A disadvantage associated with this step, 
however, is that it processes solid copper reactant which requires additional drying processes 
adding to the complexity of the system. 

The 4-step hybrid cycle removes the requirement for solid copper processing but also loses the 
exothermic hydrogen production resulting in less thermal energy for recycling. The 4-step cycle, 
shown in Table 1, is derived by combining steps la) and lb) of the 5-step cycle into a single 
electrolysis step operating at near-ambient temperatures to produce hydrogen electrolytically. 
This step is analogous to that proposed by Dokiya and Kotera [6]. Teams at several institutions 
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including the University of Ontario Institute of Technology (UOIT), Atomic Energy of Canada 
Limited (AECL) and Argonne National Laboratory (ANL) are participating in research on the 
4-step hybrid cycle. Current research is focused on developing operational Cu-Cl cycle 
assemblies capable of producing up to 3 kg of hydrogen per day [9]. 

Table 1. Reaction steps in the hybrid 4-step Cu-Cl cycle [7],[10],[11]. 

Step Reaction 
Temp. 

Range (°C) 
Feed/Output 

1 
2CuCl (aq) + 2HC1 (aq) —, 

H2 (g) + 2CuC12 (aq) 

Electrolysis 
(Hydrogen 
Production) 

—100 
Aqueous CuCl and HC1+ V + Q 

Feed 
Electrolytic Cu + dry HC1+ Q 

Output H2 + CuC12 (aq) 

2 CuC12 (aq) —, CuC12 (s) Drying <100 
Feed Slurry containing HCl and CuC12 + Q 
Output Granular CuC12 + H20/HC1 vapours 

3 
2CuC12 (s) + H2O (g) —, 

CuO* CuC12 (s) + 2HC1 (g) Output 
Hydrolysis 375-400 

Feed Powder/granular CuC12 +H20(g) + Q 
Powder/granular CuO*CuC12 + 2HC1 (g) 

4 
CuO*CuC12 (s) —, 

2CuCl (1) + 1/202 (g) 
Oxygen 

Production 
450-550 

Feed Powder/granular CuO*CuC12 (s) + Q 
Output Molten CuCl salt + oxygen 

Q, thermal energy; V, electrical energy 
5-Step Cycle Reaction 1: a) 2Cu (s) + 2HC1 (g) —, 2CuCl (1) + H2 (g) at 450°C 

b) 2CuCl (aq) = Cu (s) + CuC12 (aq) in HC1 solution at 30-80°C 
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Figure 1. Process steps of the 4-step hybrid Cu-Cl cycle [11]. 

There are two reaction steps in the Cu-Cl cycle which require high temperature thermal energy: 
hydrolysis (Step 3) and decomposition (oxygen production) (Step 4). Since the temperature 
requirement of the hydrolysis reaction is bounded by the oxygen production step any heat source 
supplying the Cu-Cl cycle must be assessed against a temperature of 530°C. A direct or indirect 
heat supply could be integrated from an external source, however, in relation to an SCWR link, 
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an indirect cycle would be required to lower the probability of any radioactive material being 
released to the external environment (Cu-Cl cycle processes). Due to the temperature 
requirements of the two reaction steps a series piping arrangement could be used to supply the 
thermal energy. SuperHeated Steam (SHS), or an alternative fluid, could be delivered to the 
oxygen production step and then be fed downstream to the hydrolysis reactor. Alternatively, two 
separate heating streams could be supplied to the individual reactions in a parallel configuration. 

The 4-step cycle has less recoverable thermal energy compared to the 5-step cycle, some of 
which is low grade. Wang et al. have reported that approximately 50% of the heat released 
within the 5-step cycle can be recycled [12]. As a result, the net heat input required by the 4-step 
cycle is 247 kJ/g of hydrogen with 46 kJ/g available for recycling [4]. Accounting for the 
recoverable fraction, the net thermal energy requirement of the cycle is 224 kJ/g of hydrogen. 

3. Potential SCWR layouts 

Currently in the conceptual design phase, the SCWR is a Generation W nuclear-reactor-design 
having two main objectives: 1) increase the thermal efficiency of current NPPs from 30-35% to 
ranges of 45-50%; 2) decrease capital, operational and unit-energy costs. The operating 
conditions of the SCWR further present the opportunity for process heating applications 
involving thermochemical cycles. Due to the nature of the technology, NPPs provide baseload 
electricity and typically do not load follow. A process heating application would allow a reactor 
to operate at constant power with varied electrical output. Hydrogen production via the Cu-Cl 
cycle could be maximized during periods of off-peak electrical demand. 

There are several design layouts for a SCW NPP based on no-reheat and single reheat "steam" 
cycles. The SCWR design operates with light water coolant at pressures of 25 MPa and 
temperatures of up to 625°C. As the coolant travels through the reactor it passes through the 
pseudocritical point which is defined as a point at a given temperature and pressure above the 
critical point where the specific heat of the liquid is at its maximum value. The pseudocritical 
temperature for water at a pressure of 25 MPa is approximately 384.9°C. Water at this state is 
termed SuperCritical (SC) and possesses an immense amount of thermal energy which can be 
used as input to the Cu-Cl cycle. A fraction of high temperature SCW coolant from the primary 
SCWR loop would be diverted to an HX where it could transfer heat to an intermediate fluid 
(e.g., steam or helium) and then be returned to a suitable location on the coolant circuit. Studies 
have shown that to meet the thermal demand of the 5-step Cu-Cl cycle through a 1200 MWei 
NPP, 12% of the total SCWR thermal energy would need to be diverted to the HX [13]. This 
requirement would change based on the variation of Cu-Cl cycle used, the amount of heat 
loss/recovery within the cycle and the thermal losses associated with transporting the 
intermediate coolant to the required reactions in the hydrogen production facility. 

For a no-reheat NPP layout with a total coolant flowrate of approximately 1200 kg/s, the sole 
candidate location for an HX is at the reactor outlet. This is also one of the two locations 
available on the single reheat cycle which is shown in Figure 2. A double-pipe HX at this 
location, termed "HX A" would operate with SCW flowing through the inner pipe and SITS in 
the annulus. For a single-reheat NPP layout with a total flow rate of 960 kg/s, there are two 
candidate locations under consideration, however, only one should be integrated per station [14]. 
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Following expansion of the SCW through a High Pressure (HP) turbine with coolant extraction 
the lower pressure SHS would return to the reactor at a flow of 780 kg/s and be heated to a 
temperature of 625°C and pressure of 5.7 MPa. Flow exiting the reactor could then be diverted 
to an HX, "HX B" operating with an SHS/SHS interface. 

The HXs under consideration would need to be located inside the containment structure for the 
SCWR to provide a barrier to prevent external radioactive releases. The intermediate coolant 
loop between the two facilities would act as the containment boundary between the NPP and the 
external environment. Assessments on the economic impact of adding such an HX into 
containment are not considered in this analysis, but will be required in the future to measure the 
increased capital costs associated with its inclusion. 

5 MPa To Hz Facility 5 MPa 5 MPa To Fl2Fadlity 5 MPa 
289°C 600°C 289°C 600°C 

Reactor Building 

25 MPa 
625°C 

25 MPa 
Tom-? 

HX A HX B 

5.7 MPa 
Tout- ? 

To Turbines 

5.7 MPa 
625°C 

Reactor 

Reheat 
Channels 

Feedwater 

To Suitable Location 
Within NPP Loop 

From HP Turbine 

To Feedwater Heater 

Figure 2. Potential HX location for a single-reheat SCW NPP layout. 

4. Heat-exchanger thermalhydraulic analysis 

The objective of performing thermalhydraulic calculations was to assess combinations of HX 
design parameters and determine which of them produced feasible operating conditions that 
could be further investigated in future work. The focus of this research was the HX A 
arrangement as it involves more complex design due to the SCW/SHS interface. A hydrogen 
production rate of 1 kg/s was assumed on the Cu-Cl facility side and steady state operating 
conditions were assumed for the HX. Additional assumptions for the analysis included no heat 
loss through the outer pipe outer wall, no pressure losses, no radiation effects and no fouling on 
HX pipe walls. A script was developed using MATLAB computational software that would 
iteratively calculate thermophysical properties and perform energy balance for the HX operating 
fluids across the HX pipe length. 

The heat-transfer correlation selected for the analysis was the Mokry et al. correlation [17], 
shown as Equation (1). The correlation was developed from an experimental dataset for heated 
upward flow of SCW in vertical bare tubes. It is dependent on both bulk-fluid and wall-fluid 
properties similar to correlations based on the Bishop et al. correlation [18]. Although the 
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arrangement as it involves more complex design due to the SCW/SHS interface.  A hydrogen 

production rate of 1 kg/s was assumed on the Cu-Cl facility side and steady state operating 

conditions were assumed for the HX.  Additional assumptions for the analysis included no heat 

loss through the outer pipe outer wall, no pressure losses, no radiation effects and no fouling on 

HX pipe walls.  A script was developed using MATLAB computational software that would 

iteratively calculate thermophysical properties and perform energy balance for the HX operating 

fluids across the HX pipe length. 

The heat-transfer correlation selected for the analysis was the Mokry et al. correlation [17], 

shown as Equation (1).  The correlation was developed from an experimental dataset for heated 

upward flow of SCW in vertical bare tubes.  It is dependent on both bulk-fluid and wall-fluid 

properties similar to correlations based on the Bishop et al. correlation [18].  Although the 
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correlation was developed for water at supercritical conditions it was also been applied to the 
SHS flow in the annulus gap. This was based on conclusions of researchers at the University of 
Ottawa (UO) specifying the Mokry et al. (earlier termed "Gospodinov et al.") correlation 
showing the best agreement with available experimental data for the SHS and SCW regions [19]. 

Nub = 0.0061Re°.904,0b.684 (p)
0.564 

1 L (1) b
Pb 

Heat Flux (q"): 70-1250 MW/m2
Diameter (D): 0.003-0.038 m 

Since the Mokry et al. correlation requires evaluation of thermophysical properties at the pipe 
wall, the wall temperature, Twx, for each Control Volume (CV) was calculated iteratively using 
Equation 2. An initial wall temperature was assumed and used to calculate thermophysical 
properties and HTCs which were then used as inputs into Equation 2 to generate a calculated 
value. If a discrepancy existed then the assumed wall temperature was increased or decreased by 
half of the difference of the assumed and calculated wall temperatures. Once the wall 
temperature was obtained, the overall HTC was calculated using Equation 3. Iterations were 
performed until the change in wall temperature was less than 0.001 K. This typically required 
less than 80 iterations for more demanding solutions. 

T • [( Rtx To,x 1 

T = t,x) (Ro,x)]/KRJ (Ro,x)] 

= do do•ln(do/  +
U dchi 2k ho 

A second iterative process was used to calculate temperature parameters for each CV. Energy 
balance Equation 4 was rearranged to solve for SCW outlet temperature, Tscw,out,x, while 
Equation 5 was rearranged for SITS inlet temperature, THE A value for SITS inlet 
temperature was assumed in Equation 4 to calculate an SCW temperature. Subsequently, using 
the results of Equation 4, a temperature value for the SITS was calculated using using Equation 5. 
These values were then used to calculate energy balances for both flows. The above procedure 
was repeated until the difference in thermal energy transferred between the streams was 0.001 J. 
The typical length for convergence to be achieved was approximately 20 iterations. 

Inner Pipe: thscwcpscw,x(Tscw,in,x — Tscw,out,x) — 
xAincrTSCW,in,x+TSCW,out,x TSHS,in,x+TSHS,out,x 

— 0 (4) 
2 2 

Annulus Ga : in FTSHS,inx+TSHS,out,x TSCW,in,x+TSCW,outx 
c SHS p,SHS,x(T SHS,in,x SHS,out,x) — UxAinc — 0 (5) p 

2 2 

The results of these calculations showed that HXs can be integrated at both the SCW channel 
outlet and steam reheat channel outlet stream locations for a single reheat SCW NPP [15,[16]. 
For a select number of HX A arrangements the temperature of the SCW flow nearing the HX 
outlet would approach the pseudocritical region for pressures of 25 MPa. The pseudocritical 
temperature at 25 MPa, corresponding to the temperature where the SCW flow would experience 
a maximum specific heat value, is 384.9°C. For such layouts the thermophysical properties of 
both the SCW and counter flow SITS flows would change significantly in this region. This 
required an iterative solution to obtain HX parameters such as pipe length, required number of 
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For a select number of HX A arrangements the temperature of the SCW flow nearing the HX 

outlet would approach the pseudocritical region for pressures of 25 MPa.  The pseudocritical 

temperature at 25 MPa, corresponding to the temperature where the SCW flow would experience 

a maximum specific heat value, is 384.9°C.  For such layouts the thermophysical properties of 

both the SCW and counter flow SHS flows would change significantly in this region.  This 

required an iterative solution to obtain HX parameters such as pipe length, required number of 
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pipes and the SCW flow exit temperature. The inlet temperature of SHS into the HX was fixed 
at approximately 25°C above the saturation temperature for water at 5 MPa to ensure that the 
flow through the HX entered as SHS and remained a single phase. For an HX A design, results 
for pipe length varied between 10 m to 50 m with the number of pipes required to provide the 
total Cu-Cl cycle thermal energy requirements ranging between 2800 and 4400 as shown from 
several test cases in Table 2 and [16]. 

Table 2. General design parameters for several test HX A designs. 
Parameter HX A - 1 HX A - 2 HX A - 3 HX A - 4 
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Heat Transferred per Pipe, kW 55.5 77.7 78.5 54.8 
No. of HX Pipes, N 4043 2890 2857 4095 
Average Overall HTC, U, W/m2K 764 879 810 826 
Heat Transfer Area per Pipe, m2 1.04 1.93 3.35 0.83 
Length per Pipe, L, m 12.1 23.0 39.9 9.9 
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 Total Mass Flow Rate, tit kg/s 340 243 197 424 

Inlet/Outlet Temperatures, T, °C 625/441 625/405 625/391 625/468 
Inner Diameter, di, mm 18.9 18.9 21 21 
Outer Diameter, do, mm 26.7 
Pipe Mass Flux, G, kg/m2s 300 300 200 300 
Maximum Flow Speed, m/s 4 4 3 4 
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 Total Mass Flow Rate, tit kg/s 287 289 286 287 
Inlet/Outlet Temperature, T, °C 284/600 289/600 287/600 287/600 
Inner Diameter, Di, mm 30.1 
Outer Diameter, Do, mm 33.4 
Annulus Mass Flux, G, kg/m2s 462 659 659 462 
Maximum Flow Speed, m/s 36 52 52 36 

4.1 Heat transfer enhancement 

To optimize the size of the HX design used in this application heat transfer enhancement 
techniques were considered. Enhancement techniques can be used to increase heat transfer area 
(finned surfaces), a fluid flow's HTC (surface roughness) or a combination of the preceding 
factors. It is recommended that any augmentation of the heat transfer surface be applied to the 
fluid stream that has the dominant thermal resistance in the system [20]. Although the SCW 
thermal resistance was typically dominant in previous analyses, enhancement was applied to 
both streams. Focus was on a passive enhancement technique in the form of helically corrugated 
pipes. The use of a helically corrugated pipe for the inner pipe would introduce a rough surface 
for both the internal and annulus flows promoting improved turbulence and better heat transfer at 
the pipe wall. Additional benefits of helically corrugated pipes over other types of corrugated 
pipes include easier fabrication, more effective heat transfer relative to increased friction factors 
and low levels of fouling [21]. Figure 3 depicts a cross sectional view of a HX pipe with a 
helically corrugated inner pipe. This type of arrangement causes secondary flows within the 
piping resulting in better mixing of the working fluid near the pipe wall and a reduction in the 
boundary layer improving heat transfer [22]. 

Helically corrugated pipes are characterized by three main parameters: pipe diameter, rib height 
(depth between inner and outer surface) and helical pitch. Studies by Pethkool et al. [22] 
investigated various samples of helical pipes in a double-pipe HX and measured enhancement 
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effects on Nusselt number, friction factor and thermal performance factor. The average increase 
in heat transfer across the HX in their analysis was up to 232% while Vicente et al. [23] reported 
Nusselt numbers up to 250% greater for helically corrugated tubes than those for smooth tubes in 
their experimental analysis of several tube samples. 

-4- CV Increment = 10 cm -0-

SuperHeated Steam 414.4 

SuperCritical Water .44110-

SuperHeated Steam 41•4 

x+1 
Figure 3. Corrugated inner pipe with smooth outer pipe for a double-pipe HX (not to scale). 

This analysis looked to evaluate the impact of heat transfer enhancement on the inside and 
outside surfaces of the inner pipe of the double-pipe HX. The Mokry et al. correlation was 
modified to increase the value of the local HTC for both SCW and SHS flows by values of 25%, 
50% and 75%. Factors such as modified piping dimensions were not accounted for as the sole 
objective was to assess the level of enhancement, regardless of the corrugated pipe dimensions 
used to incorporate it. Results for four test cases are shown in Table 3. The thermal energy 
transferred for each pipe remained fixed as the flow rates of SCW and SHS remained constant 
through the HX and only pipe length was allowed to vary. Temperature profiles were obtained 
for each of the test cases, with examples shown in Figure 4 and Figure 5 for the smooth pipe and 
50% local HTC increase case of HX A-2, respectively. Findings show that an increase in the 
local HTCs by a given fraction did not result in the overall HTC being increased by the same 
amount as is shown in Table 3 and Figure 6. This is due in part to the wall thermal resistance 
remaining unchanged by the enhanced heat transfer conditions on the pipe surfaces. 
Additionally, the relative improvement of the overall HTC decreased as local HTCs were 
increased suggesting that there is an upper bound for level of enhancement beyond which it 
would not be economical to pursue for an HX design. 

Table 3. HX A heat transfer characteristics for enhanced pipes with local HTCs of 25%, 50% 
and 75% above values for smooth nines. 
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5. Conclusions 

Nuclear-based process heating from an SCWR in support thermochemical hydrogen production 
via the Cu-Cl cycle was discussed. A counter flow, double-pipe HX would be integrated into the 
SCW NPP primary SCW coolant loop downstream of the reactor outlet operating at inlet 
conditions of 625°C and 25 MPa. The HX would transfer approximately 224 MW of thermal 
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energy as SHS at 600°C and 5 MPa flowing in an isolated intermediate loop to reactions within 
the Cu-Cl cycle requiring temperatures of up to 530°C. 

An iterative program was developed to perform energy balances across the HX using the Mokry 
et al. correlation as the heat transfer correlation. Input parameters included HX pipe dimensions, 
operating pressures and mass flow rates of the fluid flows. Several combinations of test inputs 
were developed and typical individual pipe lengths for the HX ranged between 10 m and 50 m 
with the number of pipes required ranging between 2800 and 4400. For all test scenarios, the 
outlet temperature of SCW for the HX was above the pseudocritical temperature. 

Heat transfer enhancement effects were also investigated with proposed helically corrugated 
pipes used for the inner pipe of the HX pipe unit. Increases in local HTCs of 25%, 50% and 75% 
produced overall HTC increases between 20% and 61% for investigated test cases and reduced 
the total length of piping required for the HX. The relative improvement in heat transfer 
decreased as HTC values increased indicating that exceeding an upper bounding percentage of 
HTC enhancement would result in a smaller reduction in total HX pipe length. 
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Q: Thermal energy, J s: Surface 

     Heat flux, W/m
2
 x: Increment position 

R: Thermal resistance, K/W w: Wall 

T: Temperature, °C/K   

U: Overall heat transfer coefficient, W/m
2
K   

V: Electrical Energy, J   
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Dimensionless Numbers 

Nu: Nusselt Number 

Pr: Average Prandtl Number 

Re: Reynolds Number 

Acronyms 

(hDhy) 

k J 
opcp) 

k J 
( 4m ) Inner Pipe, 

7rDhytt 

( 4m. 

g(do+D Did 
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Annulus Gap 

AECL Atomic Energy of Canada Limited NPP Nuclear Power Plant 
ANL Argonne National Laboratory SC SuperCritical 
CV Control Volume SCW SuperCritical Water 
Cu-Cl Copper Chlorine SCWR SuperCritical Water Reactor 
HP High Pressure SHS SuperHeated Steam 
HTC Heat Transfer Coefficient SI Sulphur-Iodine 
HTR High-Temperature gas-cooled Reactor SMR Steam Methane Reforming 
HX Heat eXchanger UO University of Ottawa 
NHI Nuclear Hydrogen Initiative UOIT University of Ontario Institute of 

Technology 
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