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Abstract 

In this paper, the STAR-CCM+ CFD code is used in the attempt to reproduce the values of 
friction factor observed in experimental data at supercritical pressures at various operating 
conditions. A short survey of available data and correlations for smooth pipe friction in circular 
pipes puts the basis for the discussion, reporting observed trends of friction factor in the liquid-
like and the gas-like regions and within the transitional region around the pseudo-critical 
temperature. For smooth pipes, a general decrease of the friction factor in the transitional region 
is reported, constituting one of the relevant effects to be predicted by the computational fluid-
dynamic models. 

A limited number of low-Reynolds number models is adopted, making use of refined 
near-wall discretisations as required by the constraint )7+ < 1 at the wall. In particular, the Lien k-
E and the SST k-w models are considered. The values of the wall shear stress calculated by the 
code are then post-processed on the basis of bulk fluid properties to obtain the Fanning and then 
the Darcy-Weisbach friction factors, basing on their classical definitions. The obtained values are 
compared with those provided by experimental tests and correlations, finding a reasonable 
qualitative agreement. Expectedly, the agreement is better in the gas-like and liquid-like regions, 
where fluid property changes are moderate, than in the transitional region, where the trends 
provided by available correlations are reproduced only in a qualitative way. 

1. Introduction 

The possibility to make use of fluids at pressure above the critical one in fossil fuelled plants has 
been matter of study since the mid twentieth century, in the aim to obtain higher thermal 
efficiency. Presently there are plants in different countries making use of supercritical water with 
different operating parameters allowing an efficiency up to 45-50% [1]. 

The possibility to obtain the same advantages in the nuclear field has attracted the 
attention of various researchers since the sixties. This idea has been recently retrieved leading to 
the present conceptual design of Supercritical Water Reactors [2-4]. These reactors exhibit 
several advantages besides the increase of thermal efficiency, including a coolant loop 
simplification and a corresponding decrease in plant costs. For this reason SCWRs have received 
so widespread attention in the frame of the studies for Generation IV reactors. 

In addition to being used in the energy field, supercritical fluids are adopted in several 
applications in industry. For instance, they are used also in air conditioning systems and in 
chemical industry, where they are adopted for selective extraction of components and for waste 
treatment. 

As a consequence, the capability to simulate the behaviour of supercritical fluids is highly 
desirable and different computational tools are presently updated in order to assess their potential 
in this regard. In particular, computational fluid-dynamic (CFD) codes make use of balance 
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equations, numerical methods and turbulence models to catch the details of temperature and 
velocity distributions in different operating conditions. Owing to the general success that CFD 
codes obtained in the simulation of single-phase fluid phenomena, there are in principle good 
motivations to hope that a similar success can be obtained with supercritical fluids that, 
apparently, are just single-phase fluids, involving no presence of interfaces. However, the huge 
changes in fluid properties that are observed when supercritical fluids cross the threshold of the 
pseudo-critical temperature are at the root of phenomena that are found difficult to grasp for 
usual turbulence models, pointing out the need for research and development in this field. 

The present work is included in the studies going on at the University of Pisa in relation 
to the use of CFD codes for the prediction of phenomena of heat transfer and hydraulic resistance 
occurring with fluids at supercritical pressure. In particular, the University of Pisa is involved in 
the Coordinated Research Project of IAEA on "Heat Transfer Behaviour and Thermo-hydraulics 
Codes Testing for SCWRs" and in the recently established European Project on the Thermal-
Hydraulic of Innovative Nuclear Systems (THINS), in whose frame it develops different tasks 
related to heat transfer, hydraulic resistance, stability and natural circulation. The use of CFD 
codes represents a considerable part of in the tasks to be addressed and, in particular, the 
assessment of the STAR-CCM+ code [5] is one of the main objectives pursued in THINS. 

In this frame, the particular objective of the present work is to compare the hydraulic 
resistance predicted by the STAR-CCM+ code with applicable experimental data. In this aim, the 
available literature on the subject has been considered, identifying a few interesting data sets that 
are used in the work for purpose of comparison. 

2. Suggestions obtained from previous literature 

A survey of the relevant literature on the subject (see e.g., the textbook by Pioro and Duffey [1]) 
suggests that frictional pressure drops in supercritical fluids can be evaluated by relationships 
which are basically similar to those adopted for single-phase subcritical fluids. However, in these 
conditions it is necessary to introduce corrections taking into account the significant changes of 
the physical properties across the pseudo-critical temperature. These corrections are among the 
targets of researches in this field. 

The usual Darcy-Weisbach relationship is still adopted for defining the friction factor to 
be used in evaluating friction losses basing on bulk fluid density and velocity: 

AP fi. = 
L pbub2 

(1) 
D 2 

Experimental and analytical approaches are used for determining the friction factor, , 
appearing in the above relationship, with an obvious preference for experiments. Most of the 
addressed ducts have a cylindrical geometry with both vertical and horizontal orientation. Fuel 
bundle tests are also available, though they will not be considered in this work, mainly focused 
on simple boundary conditions. Water and CO2 are the most frequently adopted fluids, though 
Freon refrigerants and Helium have been also tested. 

Table 1 and Table 2 report the relevant works mentioned in similar tables of Ref. [1]. 
Among the relevant conclusions that can be drawn by the analysis of the available studies, the 
following can be considered: 
• most of the experimental work is focused on smooth pipes; therefore, the comparison of the 

measured friction factors is mainly made with smooth pipe correlations, as the classical 
Blasius, McAdams or Filonenko ones; it was found that these correlations provide a 
reasonable description of experimental data in the case of adiabatic pipes (i.e., isothermal 
flow with no change in properties along the duct); 
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• in the presence of heat flux at the wall, the ratio of the measured friction factor to the one 
evaluated by smooth pipe correlations on the basis of bulk properties is generally seen to 
decrease below unity when the temperature at the wall crosses the pseudo-critical region, 
while it approaches unity in the liquid-like and gas-like regions; in other words, it seems that 
classical correlations for friction factors work reasonably well, at least for smooth pipes, in 
the liquid-like and gas-like regions, limiting the zone of large uncertainties to the one across 
the pseudocritical threshold, where the fluid undergoes sharp changes in properties; 

• the effect of wall temperature in the region across the pseudo-critical threshold is the main 
target of corrections proposed to the classical friction factor correlations; some of the 
proposed correlations have the form 

4  ix

=   

pw
Pb Pb 

where is the friction factor evaluated by the isothermal formulations and a and b are 

appropriate exponents that may be different for different fluids and enthalpy ranges and for 
addressing local or pipe averaged conditions (see e.g., Ref. 8). For instance, some of the 
proposals for the correcting factors are.

1) 

2) 

3) 

[(xi/lb )(pw/pb )]0.18 

(Pw/Pb)" 
(Pw/Pb )0.3

(2) 

(3) 

(see e.g., Refs. [6-8]) whose use will be made in the following to compare with calculated 
data; this link between the wall temperature and the friction factor represents a major 
challenge for its prediction, since wall temperature is affected by phenomena like heat 
transfer enhancement and deterioration, whose prediction is rather difficult with both 
correlations and CFD codes; as it will be shown, this represents one of the serious 
complications in the present analysis. 

• some of the papers are not completely clear in defining boundary conditions or the reference 
isothermal friction factor correlation, introducing some uncertainty in the use of presented 
data; 

• obtaining experimental data on friction factors with supercritical fluids by a one-dimensional 
approach appears relatively challenging, since assumptions must be made in data processing 
about velocity distribution across the channel, e.g. in order to discriminate the contribution of 
acceleration; this introduces some uncertainty in the interpretation of experimental data; 

• in a few cases, the increase of friction due to the presence of roughness was assessed, but the 
related information is not enough systematic. 

3. Methodology of analysis 

The analysis of the experimental conditions for which data were considered clear enough to try a 
prediction was performed by adopting the STAR-CCM+ code obtaining the calculated value of 
the shear stress at the wall. 
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Reference P(MPa) t(°C)(H in kJ/kg) q"(.141471m2) G(kg/m2s) Geometry 
Vertical nines 

Tarasox a c Leont'ev (1968) 22.6-26.5 tboHb
non specificati 

0.58-1.32 2000;5000 D=3.34mm, L=0.134m 
D=8.03mm, L=0.602m 

Krasyakova e al. (1973) 23; 25 Hb = 450 — 2400 0.2-1 500-3000 D=20mm. L=2.2;7.73m 
Chakrygin e al. (1974) 26.5 tin = 220 — 330 non specificato 445-1270 D=10min, L=0.6m 

Ishigai e al. (1976) 24.5; 29.5; 39.2 Hb = 220 — 800 0.14-1.4 500;1000;1500 D=3.92mm, L=0.63m 
Razumovskiy e al. (1985) 23.5 Ha„ = 1400; 1600; 1800 0.6557-3.385 2190 D=6.28mm, L=1.44m 

Horizontal nines [ 
Kolidrat'ev (1969) 22.6;24.5;29.4 tb = 105 — 504 0.121.2 Re = 105 D=10.5mm, L=0.52m 

Krasyakova e al. (1973) 23; 25 tboHb non specificati 0.2-1 500-3000 D=20mm, L=2.2;4.2m 
Ishigai e al. (1976) 24.5; 29.5; 39.2 Hb = 220 — 800 0.14-1.4 500;1000; 1500 D=4.4mm, L=0.87m 

Table 1. Characteristics of experiments performed with water 
(adapted from [1] where a detailed list of references can be found) 

Reference I P(IVIPa) t(°C) I q" (kW/m2 ) G(kg1m2s) Geometry 
Vertical nines 

Petukhov e al. (1983) 7.7;8.9 tb = 0 — 80 384-1053 1000;4100 St.St.tube (D=8mm,L=1.67m) 
Kurganov e at (1989) 9 ti . = 33 — 36 170-440 2100 St.St.tube (D=22. 7man,L= 5.2 m ) 

' Horizontal pipes 
Kuraeva c 

Protopopov (1974) 
8;10 19-88,4, 

fino a 500 
fino a 2500 1140-7400 St.st.tube (D=4.1mm,L=0.21m) 

Petukhov e al. (1980) 7.5-7.8;8;9 t. = 18 — 20 8704480 3270;4130;5230 St.st.tube (D=8mm, L=1.8m) 
Petukhov e al. (1983) 7.7;8.9 tip. = 18 — 20 384-1053 1000-4100 St.st.tube (D=8mm, L=1.67m) 

Table 2. Characteristics of experiments performed with carbon dioxide 
(adapted from [1] where a detailed list of references can be found) 

According to a usual procedure adopted at the University of Pisa for CFD analyses with 
STAR-CCM+ related to supercritical fluids, the fluid properties were assigned in the code in the 
form of piecewise cubic spline approximations, obtained by the INIST package [9]. The spatial 
discretisation was adapted to the particular case, including anyway an adiabatic region at the 
entrance of the channel, to allow for flow development (Figure 1). Circular pipes were addressed 
by a two dimensional axial-symmetric domain. Since low-Reynolds number models were used, 
care was taken that the value of the y+ parameter at the wall was less than unity as requested by 
their application. On the other hand, only smooth pipe conditions were addressed, coherently 
with the use of the low-Re approach, which is intrinsically incapable to deal with rough walls. 

The data obtained by the CFD code were exported and processed by a purposely 
developed code in order to extract the relevant information on bulk fluid parameters and on 
friction factor. In particular, the calculated shear stress at the wall is used to define the Darcy-
Weisbach friction factor on the basis of the local bulk fluid properties by the relationship: 

1 'rw 
2 

—8 PbUb 

where the bulk density and velocity appear at the denominator. In one case, the values of the 
friction factor were averaged along the pipe (Figure 2) while in all the other cases, local 
calculated values were reported. The lack of precise information on the inlet conditions adopted 
for each experimental data point, required to elaborate a procedure to cover the whole range of 
bulk enthalpy presented in the related plots with the prescribed heat flux and flow rate. The CFD 
calculations were then performed subdividing the entire bulk enthalpy range into arbitrary 
intervals and assigning at the pipe inlet in each calculation the values of fluid temperature 
obtained at the outlet of the pipe in the previous one. 

(4) 
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The comparison of the obtained friction factor was therefore made with smooth pipe 
relationships like the classical Blasius (for Re < 30000) or McAdams ones (for larger values of 
Re). The relationship by Filonenko was also considered for comparison: 

= (1.821og10 Reb -1.64)-2 (5) 
A first check of the response of the code was made considering adiabatic conditions (i.e., 

without property changes) at both subcritical and supercritical pressure. These analyses served 
for validating the adopted calculation procedure and for assessing the adequacy of the models 
adopted in the CFD code for "normal" smooth pipe friction prediction. Table 3 and Table 4 
summarise the boundary conditions adopted in these analyses and the obtained results. As it can 
be noted, the two turbulence models used in these analyses were the "standard" k-c low-Re 
model available in the code [10] and the SST k-o) model [11]; the results obtained by the 
calculations support the adequacy of the adopted procedure and of the adopted models in 
predicting smooth pipe friction. The discrepancies observed between the obtained results and 
those proposed by the different correlations clearly highlight also the accuracy limitations of the 
comparisons presented hereafter. 

 testattlion 

Figure 1. Typical adopted radial discretisation for low-Re number model application 

Pressure D [m] G [kg/m2 s] p [kg/m3] u [m/s] p. [Pa • s] Re 

1 bar 0.0044 2100 997 2.1 8.90 •10-4 1.04 • 104

245 bar 0.0044 1000 587 1.7 6.78 •10-5 6.5 •104

Table 3. Boundary conditions adopted for the comparison of friction factors 
for adiabatic cases at subcritical and supercritical pressures 

Pressure Blasius McAdams Filonenko [LIEN k-r] [SST k-w] 

vertical horizontal vertical horizontal 

1 bar 0.03131 0.03223 0.03223 0.03290 0.03290 

245 bar 0.02006 0.01973 0.02137 0.02137 0.02152 0.02152 

Table 4. Comparison of friction factors obtained by different correlations 
for adiabatic cases at subcritical and supercritical pressures 

4. Obtained results 

A first analysis was performed considering the data by Kondrat'ev (1969) [12], as reported in the 
textbook by Pioro and Duffey [1], for water in horizontal tubes. The boundary conditions of 
these tests were chosen within the ranges declared in the reference (bulk temperature from 105 to 
540 °C, heating flux from 0.12 to 12 MW/m2) with a Reynolds number in the order of 105. The 
adopted fluid is water at 25.3 MPa. The computation of the product Re°.2 allows a direct 
comparison with the constant appearing in the McAdams correlation (0.184) applicable in this 
range of conditions for smooth pipes. This comparison is presented in Figure 2, showing that the 
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length averaged friction factor evaluated by the code shows a relatively deep decrease in 
proximity of the pseudo-critical temperature, greater than reported in the data. 

Local values of the ratio of the friction factor to the smooth pipe value obtained by the 
Filonenko correlation were then calculated for the data by Kaji et al. (1978) [13] related to water 
in horizontal tubes at the pressure of 24.5 MPa, compared also with results for vertical tubes. 
Figure 3 to Figure 8 report the results obtained in repeated calculations performed representing 
local tube conditions and also averaged friction factors along the simulated channel lengths; this 
information is compared with the values of the friction factor ratio calculated by the three 
property groups suggested in previous literature. As it can be noted, wherever the experimental 
data available for comparison are clear enough, a qualitative agreement with the values 
calculated by the CFD code and by correlations is observed, showing the expected decrease in 
the friction factor ratio when the pseudocritical temperature is reached at the wall. The location 
at which this decrease occurs is anticipated with respect to the location at which pseudocritical 
conditions are reached in bulk, coherently with the fact that the temperature at the wall is 
increasingly larger than in the bulk fluid as a function of the heat flux. 

It must be noted that the ratio of the friction factors was directly calculated on the basis of 
the values of the shear stress provided by the code and of bulk properties, while determining the 
values of the property groups required also the evaluation of wall temperature as provided by the 
code itself; so, the comparison of the CFD code results with correlations is made on the basis of 
the calculated wall temperature. This aspect represents a major point for both predictions and 
correlation application. In fact, as shown in Figure 9 to Figure 11, the prediction of wall 
temperature by the adopted standard low-Re k-E model tends to provide an overestimate of 
deterioration, suggesting a further aspect to be carefully accounted for in predicting friction. 

Additional information on this key aspect is reported in Figure 12 and Figure 13, 
reporting also the predictions obtained by the SST k-w model. As it can be noted in Figure 14, 
the SST k-w model provides a better description of wall temperature, showing a milder decrease 
of the friction factor ratio across the pseudocritical temperature. 

Finally, Figure 15 and Figure 16 report the prediction of the data by Petukhov et al. 
(1980) [14], related to CO2 in horizontal tubes. The addressed conditions are limited to a small 
range of bulk enthalpy below the pseudocritical point, though the wall temperature exceeds it. In 
both the considered cases, the calculated shear stress appears lower than the one derived by the 

correlation attributed to Popov in Kurganov's paper [8], 0 = (pw l p)a4 , when it is applied 

with both the experimental and the calculated wall temperatures. In this case, the role of 
temperature is highlighted in Figure 16, reporting the comparison of the experimental and 
calculated trends. 
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for Kaji et al. (1978) data compared with the experimental trends 
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Figure 16. Local wall temperature evaluated by the standard low-Re model 
for data by Petukhov et al. (1980) for horizontal pipes 
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Figure 14. Local wall temperature evaluated by the standard low-Re and the SST k-ωωωω 

model for Kaji et al. (1978) data compared with the experimental trends 
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5. Conclusions 

Log Number: 559 

The results of the performed analyses provide a preliminary overview of the capabilities of the 
CFD code in predicting the observed hydraulic impedance. The limitations in the performed 
work are mainly due to the difficulty to obtain well defined boundary conditions for the 
experimental data reported in literature, which are not always clear enough in the referenced 
papers. 

Despite of these limitations, some interesting aspects were pointed out: 
• the general ability of the adopted CFD code in reproducing the observed trend of the friction 

factor ratio in the liquid-like and gas-like region and when the wall temperature crosses the 
pseudo-critical value; 

• a tendency to overestimate the decrease in the friction ratio across the pseudocritical region at 
the wall, possibly linked to the prediction of wall temperature. 

The latter aspect should be considered with attention. In fact, owing to the present 
limitations in predicting heat transfer enhancement and deterioration, evaluating friction is 
relatively challenging for CFD codes, as the two aspects are strictly linked at the level of fluid 
properties at the wall. 

A final mention must be made in relation to the effect of roughness. Though this aspect 
was not discussed here, because of the scarcity of data, it must be recognised that rough pipe 
conditions should be addressed in greater detail for a more realistic representation of the 
hydraulic impedance envisaged to occur in practical applications. 
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