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Abstract 

The objective of the current study is to evaluate the performance of the last version of the French best 
estimate thermal-hydraulic code CATHARE 2 regarding void fraction prediction, comparing the 
analytical results with the experiments in the framework of International OECD/NRC Benchmarks based 
on NUPEC (Nuclear Power Engineering Corporation) BWR Full-size Fine-mesh Bundle Tests (BFBT) 
and PWR Subchannel and Bundle Tests (PSBT). The results show reasonable prediction of the void 
fraction distribution in broad range of variation of the operational parameters: pressures, mass fluxes, 
power and inlet subcooling, which characterize the operation of Light Water Reactors. 

Introduction 

The CATHARE strategy of qualification is based on: Verification, Validation procedure on separate 
effect tests, Validation on integral tests. 

The BWR Full-size Fine-mesh Bundle Tests (BFBT) and PWR Subchannel and Bundle Tests (PSBT) 
Benchmark are appropriate exercises for CATHARE qualification, based on void fraction and critical 
heat flux predictions on the level of fuel assemblies (separate effect tests) with a typical reactor power 
and fluid conditions 

The current paper describes the IRSN activity on CATHARE 2 void fraction predictions in the 
framework of both benchmarks. In BFBT benchmark the modeling and results of Exercise 1-3 Transient 
macroscopic grade benchmark of assembly void fraction distribution for two transients: Turbine trip 
without bypass and Recirculation pump have been calculated. In PSBT benchmark the CATHARE 2 
calculations have been carried out for Phase I - Void Distribution Benchmark, Exercisel: Steady-state 
Single Subchannel Benchmark. 

1. CATHARE computer code 

CATHARE (Code for Analysis of Thermal-Hydraulics during an Accident of Reactor and safety 
Evaluation) is an advanced, two-fluid, thermal-hydraulic code. It is developed in France by the French 
Atomic Energy Commission (CEA), Electricite de France (EDF), AREVA and Institut de 
Radioprotection et Surete Nucleaire (IRSN). 
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CATHARE is designed to perform best-estimate calculations of accidents in pressurized water reactor in 
OD, 1D and 3D geometries. Specific modules have also been implemented to allow modeling of other 
reactors like VVER, boiling water reactors or gas cooled reactors. Its range of application covers all loss-
of-coolant accident (LOCA), all degraded operating conditions in steam generators secondary systems, 
following ruptures or system malfunctions [1]. 

Two-phase flows are described using a two-fluid six-equation model. These equations represent 
conservation of mass, energy and momentum, for separate processing of liquid and steam. The presence 
of non-condensable gases can be taken into account by additional transport equations. This system of 
equation is closed by a complete set of momentum, mass and energy transfer laws for exchange at 
liquid/steam interfaces or at walls. Specific models are also available to represent fuel rods 
thermomechanics, core neutronics, reflooding, etc. [2]. 

In the prediction of void fraction distribution NVGP (Net Vapor Generation Point) plays an important 
role together with the condensation phenomena in subcooled region. Improved CATHARE modeling is 
applied [3, 4] based on the KIT experiments [5] with axial gamma attenuation measurements at constant 
and nonuniform heat flux distribution. In the last Revision 6.1 of CATHARE 2 the modified Saha-Zuber 
correlation, obtained as a result of KIT data statistical processing, yields the correlations (1) and (2) in 
two domains of Peclet number: 

A. q  Pe  5.0 
S — < , 0 < PelPeo < 0.52 

G Peo + Pe 65.10-4
(1) 

q 2.0 1.0 p h <- 

CPL a h - < > <-4 1 < >  , 0.52 < Pel Peo < 3.25 (2) 
c Peo 65.10-4 (Pe I Peo) 112 

Where ghc = ( H  Lsat - H L) SB defines the beginning of the subcooled boiling. Peo = 7.104 , q is the 

heat flux (W/m2), G is the mass flow rate (kg/m2.$). 

The condensation term qLc in CATHARE has been decreased for the heated pipe for better prediction 

(more steep void fraction profile at NVGP). 

2. BFBT Full-size Fine-mesh Bundle Test 

The BWR Full-size Fine-mesh Bundle Test (BFBT) consists of 2 phases with several exercises each [6]. 
In this paper we present the modeling and results of Exercise 1-3 Transient macroscopic grade 
benchmark of assembly void fraction distribution for two transients: Turbine trip without bypass and 
Recirculation pump trip. 
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Where SBLLsathc HH )( −=δ  defines the beginning of the subcooled boiling. 4
0 10.7=Pe , q is the 

heat flux (W/m2), G is the mass flow rate (kg/m2.s). 

The condensation term Lcq in CATHARE has been decreased for the heated pipe for better prediction 

(more steep void fraction profile at NVGP). 
 

2. BFBT Full-size Fine-mesh Bundle Test  

 

The BWR Full-size Fine-mesh Bundle Test (BFBT) consists of 2 phases with several exercises each [6]. 
In this paper we present the modeling and results of Exercise I-3 Transient macroscopic grade 
benchmark of assembly void fraction distribution for two transients: Turbine trip without bypass and 
Recirculation pump trip.  
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2.1 Test assembly BFBT and modeling with CATHARE 

In the transient void distribution tests the assembly type 4 (see Table 1) was used with high bum-up 8 x 
8 fuel bundle, large water rod in the centre of the bundle and uniform axial power profile. The axial 
heated length is 3.708 m, the fuel rod diameter is 0.0123 m. 

Two types of void distribution measurements were employed: X-ray densitometers and X-ray CT 
scanner. The X-ray densitometers measurements were carried out in several axial positions inside the 
fuel assembly, providing cross-sectional averaged transient void distributions. The CT scanner measured the 
exit void fraction distribution (0.05 m above the heated length) with higher resolution. 

Parameters of the test assembly are provided in the Table 1. 

Table 1 Test assembly parameters 

Item Dfita 

Test assembly 

-000..000
t

000 
000 

888 000 
00 
-00 • •00(e

000 
0000 

8• • ... • • 000 
000 

C2A : C2B C.3 
Simulated fuel assembly type High burn-up 8 x 8 
Number of heated rods 60 
Heated rods outer diameter (mm) 12.3 
Heated rods pitch (mm) 16.2 
Axial heated length (nun) 3708 
Number of water rods 1 
Water rods outer diameter mm 34.0 
Channel box inner width mm 132.5 
Channel box corner radius nun 1 8.0 
In channel flow area (mm) u 19463 
Spacer type t mule 
Number of spacers 1 7

Spacer pressure loss coefficients ' 1.2 

Spacer location (mm) 455, 967, 1479, 2.991, 2503, 3G15, 
(distance from bottom of hated length to 

3527 
spacer bottom face) 

Radial power shape A A B A 
Axial power shape Uniform Cosine Cosine Inlet-peak 

0 Heated rod, • Water rod — no flow in water rods 
A: Simulation pattern for beginning of operation. 
B: Simulation pattern for middle of operation. 

The fuel assembly is modeled by CATHARE with axial element, inlet and outlet boundary conditions 
and connected with junctions (Fig.1). The axial element is of the type rod bundle with 24 
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axial segments, which correspond to the axial meshes of the experimental power distribution if a cosine 
profile has to be used. The boundary conditions are imposed functions of power, flow rate, temperature 
and pressure. 

In CATHARE the heat structures (fuel simulators) (Fig.2) are represented also with 24 axial segments as 
the hydraulic channel. 

In radial direction the fuel rod is divided in 3 parts: heater, insulator and cladding, where the volumetric 
power is calculated over the whole volume, based on the external heater diameter d=0.0073 m. 

The 7 grid spacers are modeled according to the specification of the benchmark. 

The fuel rod simulator is presented in Figure 2. 

BC5A 
OUTLET PAR1 
(Internal) BUNDLE (x1.00:4.50) 

TOP(3 708) TOP(3 

II 

BC3A 
INLET 

(Internal) 

BOTTOM(0) BOTfofvf(0) 

FORT21: DALuben1C2V2.5_11Mod6.118F6T_XO2ref1FORT21 Step: 61 Time 

Insiktrof 

Ctidding 

:twitter. 4c-A 

Figure 1. CATHARE model of the Figure 2. Fuel rod simulator 
hydraulic assembly channel 
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2.2 Turbine trip without bypass (Test N°4102-001-009) 

The normalized boundary conditions are presented in Figure 3. These are the imposed functions of 
power, flow rate, temperature and pressure. 

The Figure 4 provides the comparison of the transient void fraction prediction by CATHARE with the 
X-ray measurements at axial position 0.682m, 1.706 m and 2.73 m (averaged cross section void 
fraction). The void fraction distribution is reasonably predicted by CATHARE code, especially the 
NVGP (Net Vapor Generation Point) and the initial region of the boiling with lower void fractions. 
Some underprediction is observed at higher void fractions in the upper part of the fuel assembly, 
especially in the initial steady state period of the transient, but then the transient void distribution agrees 
well with the experiment. It should be noted that for comparison reasons we used the raw measurement 
data (no corrections). There is higher uncertainty of the experimental results of the X-ray densitometer 
compared to CT scanner data. The CT scanner provided lower exit void fraction than the upper most X-
ray densitometer. The standard deviation of CATHARE results a = 1.12 is among the other code 
predictions: 

MATRA 
(KAERI) 

MARS 
(KAERI) 

RELAP3D 
(UNIPI) 

F-COBRA-TF 
(AREVA) 

COBRA-TF 
(UPM) 

RELAP5 
(KTH) 

CATHARE 2 
(IRSN) 

TRACE 
(KTH) 

2.06 1.82 1.56 2.21 2.32 0.77 1.12 1.40 

BFBT Turbine trip, Boundary conditions 
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Figure 3. Normalized power, flow rate, temperature and pressure. 
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Figure 4. Comparison of transient void fraction prediction CATHARE vs. experiment 

2.3 Recirculation pump trip (Test N°4102-0194127) 

dimension: mm 

The normalized boundary conditions of the Recirculation pump trip transient are presented in Figure 5. 
These are the imposed functions of power, flow rate, temperature and pressure. The comparison of the 
transient void fraction CATHARE vs. measurements is given in Figure 6. The same trend of the 
prediction can be observed as in Turbine trip transient. The void fraction distribution is reasonably 
predicted by CATHARE code, especially the NVGP (Net Vapor Generation Point) and the initial region 
of the boiling with lower void fractions. Some underprediction is observed at higher void fractions in the 
upper part of the fuel assembly, especially in the initial steady state period of the transient. Then during 
the transient the prediction is better but remains below the measurements. There is a high uncertainty of 
the experimental results of the X-ray densitometer. 
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Figure 4. Comparison of transient void fraction prediction CATHARE vs. experiment 

2.3 Recirculation pump trip (Test N°4102-019~027) 

The normalized boundary conditions of the Recirculation pump trip transient are presented in Figure 5. 
These are the imposed functions of power, flow rate, temperature and pressure. The comparison of the 
transient void fraction CATHARE vs. measurements is given in Figure 6. The same trend of the 
prediction can be observed as in Turbine trip transient. The void fraction distribution is reasonably 
predicted by CATHARE code, especially the NVGP (Net Vapor Generation Point) and the initial region 
of the boiling with lower void fractions. Some underprediction is observed at higher void fractions in the 
upper part of the fuel assembly, especially in the initial steady state period of the transient. Then during 
the transient the prediction is better but remains below the measurements. There is a high uncertainty of 
the experimental results of the X-ray densitometer. 
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3. PSBT PWR Subchannel and Bundle Tests 

The NUPEC PSBT benchmark consists of two parts (phases), each part considering different exercises: 

IP. Phase I — Void Distribution Benchmark 

IP. Phase II — DNB Benchmark 

The current CATHARE 2 calculations have been carried out for Phase I - Void Distribution Benchmark, 
Exercisel: Steady-state Single Subchannel Benchmark. 

3.1 PSBT test subchannels and modeling with CATHARE 

Four different subchannel test section configurations have been calculated and compared with the 
experiments. The subchannels represent the flow area geometries, which can be observed in the PWR 
assembly: central, side, thimble and corner cells (Table 1) [7]. 

Table 1. Subchannel parameters 

Assembly 
Reference 
fuel type 

Type of cell 
. 

I Power distribution 
1 Radial . Axial 

Si 

1 7x17 M Subchannel 

Center (Typical) - Uniform 
S2 Center (Thimble) - Uniform 
S3 Side - Uniform 
S4 Corner - Uniform 

Item Data 

Assembly 
(Subjected subchannel) 

00000 
0 lit000 
00 1000 
00000 
00000 

00000 
0Q000 
0 0 101) 0 0 
00000. 
00000 

0
0

0
0

0
 

0
0

0
0

0
 

0
0
0
0
 

0
0
0
0
 

0
0

0
0

0
  

00000 
00000 
00000 
00000. 
00000 

Si S2 S3 S4 
Subchannel type Center (Typical) I Center (Thimble) I Side I Corner 
Number of heaters 4x1/4 3x1/4 2x1/4 lx1/4 
Axial heated length (min) 1555 1555 1555 1555 
Axial power shape Uniform Uniform Uniform Uniform 

• : Subjected subchaimel0 : Heated roc° : Thimble rod 
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3.1 PSBT test subchannels and modeling with CATHARE 

Four different subchannel test section configurations have been calculated and compared with the 
experiments. The subchannels represent the flow area geometries, which can be observed in the PWR 
assembly: central, side, thimble and corner cells (Table 1) [7].  

Table 1. Subchannel parameters 
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The subchannels are modeled in CATHARE with axial elements, inlet and outlet boundary conditions 
and connected with junctions (Fig.7) The axial elements (heated length of 1.555m) are of the type tube 
channel geometry with 24 axial segments, which correspond to the axial meshes of the experimental 
power distribution if a cosine profile has to be used. Parametric study was performed also with rod 
bundle option (in CATHARE according to the geometry the physical models consider pipe, rod bundle 
and annular flows in the correlations) 
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In CATHARE the heat structures (fuel simulators) are represented also with 24 axial segments as the 
hydraulic channel. 

In radial direction the fuel rod is divided in 2 parts: heater and insulator, where the volumetric power is 
calculated over the annular volume, based on the external and internal heater diameter respectively, 
Dext=9.5 mm and Dint=7.8 mm. 
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3.2 CATHARE subchannel void fraction results (S1, S2, S3, S4) 

The next graphics illustrate the predictions of the void fraction by CATHARE 2 code for the single cell 
geometries characterizing the assembly of PWR reactors: central, side, thimble and corner cells for 
different combination of pressures, powers, temperatures and mass flow rates (42 calculated cases). 
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Illustration of the axial void fraction distribution is given in Fig.9. 
(S1, Run No 1.4312 (P= 100.2kg/cm2, MF=5.106 kg/m2.h, Pow=79.8kW, Tin=248.9°C) 
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4. Conclusion 

 
 
 
 
 
 
 
 
 
 
 
Figure 10. CATHARE vs. experiment, Test subchannel S2, Central (Thimble) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. CATHARE vs. experiment, Test subchannel S3, Side 
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The OECD BFBT and PSBT benchmarks provide excellent opportunity for system, subchannel and CFD 
codes validation and code to code comparison. The predictions of the French thermal-hydraulic code 
CATHARE 2 are generally in good agreement with the transient void fraction tests of BFBT (turbine trip 
and recirculation pump trip) regarding especially the NVGP (Net Vapor Generation Point) and the initial 
region of the boiling with lower void fractions (subcooled boiling). Some underprediction is observed at 
higher void fractions in the upper part of the fuel assembly in the initial steady state period of the 
transient, but then the transient void distribution is in reasonable agreement with the experiment 
(measurement uncertainties have to be taken into consideration). The stationary single subchanel tests 
(central, thimble, side and corner cells) of PSBT benchmark with typical reactor parameters and flow 
conditions of PWR are relatively well predicted by CATHARE especially in subcooled regions with low 
void fractions. Higher deviation is observed at higher void fractions. As a whole the deviations of the 
calculated void fractions are in the domain less then 10% (the measurement uncertainty is evaluated to 
be about 4%). In the current study cases recommended by the benchmark team have been considered. 
For better statistics all experimental results provided by NUPEC should be calculated. 
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