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Abstract 

As part of the THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project, which is 
sponsored by the European Commission from 2010 to 2014, CD-adapco has implemented in the 
commercially available software STAR-CCM+ an Algebraic Heat Flux Model (AHFM). The model 
adopts an expression for the turbulent heat flux which is derived from the full differential transport 
model on the base of a local equilibrium assumption. While considerably simpler than the full 
differential closure this formulation retains the basic terms from the differential transport equations 
representing the physical mechanisms which generate the turbulent heat flux. This approach has 
shown a great potential, and will be object of evaluation and improvements for application to 
innovative reactors. 

Introduction 

Turbulent heat transfer is an extremely complex phenomenon which has challenged turbulence 
modellers for various decades. The first challenge, when trying to model this phenomenon, is related 
to its intrinsic coupling to the characteristics of turbulence which therefore require, as a fundamental 
block, the ability to accurately model the momentum transport. Such requirement is not trivial to 
fulfil for complex flows and has often hindered the ability to evaluate approaches for modelling the 
turbulent heat fluxes. 

Both, turbulent momentum and heat transfer, are based on the same physical mechanism of cross-
streamwise mixing of fluid elements and, as a consequence, the modellers have often assumed the 
possibility that turbulent heat transfer may be predicted only from the knowledge of momentum 
transfer, in what is known as Reynolds Analogy. While this assumption is overly simplistic it has 
been successfully adopted for the last two decades in the very large majority of industrial 
applications of CFD which are based on Eddy Diffusivity models (EDM); this success is justified by 
the fact that, for moderate Pr fluids, this approach has provided reasonable predictions of global 
parameters such as Nusselt numbers and mean temperature distributions. 

For non-unity Pr fluids the limitations of the Eddy Diffusivity approach have become more evident, 
particularly for natural and mixed convection flows, as underlined for example by the OECD/NEA 
2007 report [1] and by Grotzbach (2007) [2] which provides a comprehensive review of the topic. 
One of the objectives of the European sponsored projecy THINS (Thermal-Hydraulics of Innovative 
Nuclear Systems) [3] is to push forward the validation and adoption of more accurate closures for 
single phase turbulence for innovative reactors. 
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As part of the THINS project CD-adapco has implemented in the commercially available software 
STAR-CCM+ an Algebraic Heat Flux Model (AHFM) based on the model introduced by Kenjeres 
and Hanjalic [4]. The AHFM model adopts an expression for the turbulent heat flux which is 
derived from the full differential transport model on the base of a local equilibrium assumption, and 
which retains the fundamental production terms representing the physical mechanisms which 
generate the turbulent heat flux, therefore permitting to accurately model natural and mixed 
convection flows. The implementation and preliminary evaluation of this model are the subject of 
this work. 

1. Model Description 

While the mathematical models for turbulence and their derivations are readily available in fluid 
dynamics textbooks it is useful to provide here a very brief summary to describe particular aspects 
related to the particular model implemented in this work. 

1.1 Low k-E model 

The underlying model selected for the implementation of the AHFM is based on the Low Reynolds 
k-E model formulation introduced by Lien et al. [5]. The equations for the turbulent kinetic energy 
and it dissipation rate are as follows: 
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The user has the option in STAR-CCM+ to either adopt the simple Boussinesq approximation for 
the turbulent stresses or to select a Non-Linear Constitutive relations to account for anisotropy of the 
turbulence (quadratic terms) and further the influence of curvature and rotation (cubic terms). While 
the results presented in this paper all adopt the Boussinesq approximation, future work will also 
include the evaluation of nonlinear stress strain correlation. The stress strain correlation have the 
following form: 
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The user has the option in STAR-CCM+ to either adopt the simple Boussinesq approximation for 

the turbulent stresses or to select a Non-Linear Constitutive relations to account for anisotropy of the 

turbulence (quadratic terms) and further the influence of curvature and rotation (cubic terms). While 

the results presented in this paper all adopt the Boussinesq approximation, future work will also 

include the evaluation of nonlinear stress strain correlation. The stress strain correlation have the 

following form: 
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In order to account for near-wall effects, damping functions are introduced which are shown in the 
formulation of the E-equation f2 in Eq. (2)) and in the expression for the turbulent viscosity (fu in 
Eq. (4)). The damping functions adopt the following form: 
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while for the turbulent viscosity 

f p = 1— exp [—(Cdo VRey + Cdi Rey + Cd2 Re y2 ) (11) 

where Cdo = 0.091 , Cdi = 0.0042 , Cd2 = 0.00011. 

If we now introduce the Reynolds-averaged energy equation this takes the following general form: 

apc pT apcpTui + apc pOu; = k aT
at axi axi  axi axi (12) 

The quantity 0u: is called the Turbulent Heat Flux, and is the Reynolds-average of the fluctuating 

velocity-temperature correlation. As mentioned in the introduction this is most commonly 
represented by the simple Eddy-diffusivity model, which is based on the Reynolds analogy between 
the transport of momentum and heat and is expressed as: 
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In order to account for near-wall effects, damping functions are introduced which are shown in the 

formulation of the ε-equation (f1, f2 in Eq. (2)) and in the expression for the turbulent viscosity (fµ in 

Eq. (4)). The damping functions adopt the following form: 

 











 


k

k

P

P
f 11

  (6) 

with  

    22 00375.0

2
23.0133.1 yt

Re

k

R

k e
y

k
PeP











   (7) 

and 

  2

3.012
tR

ef


  (8) 

with 

 


2k
Rt   (9) 

 


ky
Rey   (10) 

while for the turbulent viscosity 

  2

210 ReReReexp[1 ydydyd CCCf   (11) 

where Cd0 = 0.091 , Cd1 = 0.0042 , Cd2 = 0.00011. 
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The quantity iu is called the Turbulent Heat Flux, and is the Reynolds-average of the fluctuating 

velocity-temperature correlation. As mentioned in the introduction this is most commonly 

represented by the simple Eddy-diffusivity model, which is based on the Reynolds analogy between 

the transport of momentum and heat and is expressed as: 
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where 6 T is called the turbulent Prandtl number and has usually the value of 0.9. As discussed, for 

moderate Pr fluids this approach has provided reasonable predictions of global parameters such as 
Nusselt numbers and mean temperature distributions, and these agreements justify the success of 
this simple method. 

1.2 Algebraic Heat Flux Model 

In order to improve the fidelity of the turbulent heat flux, full second order closures can be derived 
in a similar fashion to what is done for momentum closures. Such closures are attractive as they 
model the turbulent heat fluxes with separate transport equations, therefore trying to account for the 
complex creation and dissipation mechanisms, but their derivation requires assumptions which often 
do not fmd a physical support, leading to lack of generality. A more promising approach is 
represented by the AHFMs, which are obtained from the simplification of the full second order 
differential equations on the base of a local equilibrium assumption. The expression adopted in the 
STAR-CCM+ implementation is as follows: 
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While considerably simpler than the full differential closure this formulation retains all three 
production terms from the differential transport equation representing the physical mechanisms 
which generate the turbulent heat flux due to: 

non-uniformity of the mean thermal field 

mechanical deformation (mean rate of strain) 

amplification/attenuation of turbulence fluctuations due to the effect of buoyancy. 

It should also be noted, that consistently with the original work of Kenjeres, an additional term 

related to the molecular dissipation of Oui that often appears in equation 14 is omitted as negligible 

at high Ra numbers. 

In order to complete the closure 2 more equations need to be solved, which represent the 
temperature variance and its rate of dissipation: 
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Temperature Variance Dissipation Rate 
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where the coefficients suggested from Kenjeres and Hanjalic are shown in table 1. 

Table 1 Model Coefficient (Kenjeres and Hanjalic [4]) 

ce, 9 Ca 9 Ca 9 Cm 9 Co 9 92 beg 

1.3 0.0 0.72 2.2 0.8 1.0 1.3 

(16) 

2. Model Implementation 

The model described in the previous paragraph has been implemented in the commercially available 

STAR - CCM+ software and is accessible as an optional treatment for temperature flux. The model is 

implemented in conjunction with STAR-CCM+ segregated solver which is based on a large body of 

work by Peric, Demirdzic and colleagues [6][7][8]. Given the target of the THINS project to 

evaluate and possibly improve the predictive capabilities of the prolapsed model its coefficient will 

need to be evaluated and are therefore open to the user and easily accessible as shown in Fig.l. 
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Figure 1 AHEM Implementation and access to its coefficients in. STAR-CCM+ 
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Figure 1 AHFM Implementation and access to its coefficients in STAR-CCM+ 
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2.1 Model Preliminary Verification 

As a necessary part of the implementation work, a preliminary verification of the model has been 
performed to confirm that it provides rational predictions and in particular that it shows the potential 
for the expected improvement in heat transfer predictions. 

2.1.1 Horizontal Cavity Heated from Below 

The first test for the model is the capability of reproducing the roll patterns inside a two-dimensional 
1:4 aspect ratio enclosure. Kenjeres and Hanjalic showed how the eddy diffusivity assumption fails 
in reproducing the correct roll patterns and even in some cases cannot capture the turbulent 
behaviour but predicts laminar conditions. 

  Uniform grid 0.8L x 3.8L  

  0.2L Near walls stretched --

rrll riurrr 
  Uniform grid 0:8L x 3.8L 

0.2L Near walls stretched 
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Ra = 107
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Ra = 2x109
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Figure 2 Computational grids for 1:4 aspect ratio enclosures 

Two tests are performed for different Ra numbers, Ra=107 and Ra=2x109. The grids adopted for the 
computations are shown in Fig. 2, while uniform in the bulk the grids are then stretched in the near 
wall region, and contain respectively 12,200 and 28,800 cells. 

Kenjeres and Hanjalic (2000) 

: --- --------------
............ 

........ 

STAR-CCM+ AHFM 

Ra = 107 Ra = 2x109

Figure 3 Roll structures represented by velocity streamlines 
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Figure 3 Roll structures represented by velocity streamlines 
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Looking at the results in Fig. 3, the implemented model confirms the predictions from Kenjeres and 
Hanjalic, where for the higher Ra number, 2x109, the flow patterns consist of 2 large rolls and 2 very 
small corner rolls on the top, while the lower Ra case, 1x107, shows 4 large and 2 small rolls in the 
bottom corners, which eddy-diffinivity models are known to not reproduce. The local Nu numbers 
along the horizontal wall are also shown for the 2 analysed cases in Fig. 4, again showing consistent 
predictions to the results of Kenjeres and Hanjalic. The roll structures cause strong periodic 
variations of the local Nu numbers, with maximum points in the stagnation regions. Also the 
absolute values predicted by the present implementation are in reasonable agreement with previous 
results; in particular for the lower Ra case the predicted average Nu = 18, typical of a turbulent 
regime, shows the expected increase in heat transfer that the eddy diffusivity assumption cannot 
capture. 

Kenjeres and Hanjalic (2000) 
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Figure 4 Local Nusselt number predictions 

2.1.2 Rayleigh-Bernard convection 

Another important verification has been performed for predictions of Rayleigh-Bernard convection. 
The DNS data from Bunk and Woerner [9] are used as reference and the non-dimensional results 
have been scaled to the RANS test case conditions with Ra=6.3x105, air as fluid Pr O.71, cavity size 
LO.2m and temperature difference of 1K. 
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2.1.2 Rayleigh-Bernard convection  

Another important verification has been performed for predictions of Rayleigh-Bernard convection. 

The DNS data from Bunk and Woerner [9] are used as reference and the non-dimensional results 

have been scaled to the RANS test case conditions with Ra=6.3x10
5
, air as fluid Pr=0.71, cavity size 

L=0.2m and temperature difference of 1K.  
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Mean temperatures for the Rayleigh-Bernard convection case are shown in Fig. 5, and while the 
present results only represent a preliminary qualification of the model, one important observation 
can be math:: the AHFM seems to much better capture the DNS temperature distribution, thanks to 
the improved prediction of the heat transfer phenomena and therefore of the local Nu values, while 
the EDM, as expected, considerably underpredicts the Nu values; this behaviour is consistent with 
expectations and provides a first confirmation of the potential of the model. 

2.1.3 Cube cavity heated from below 

The last verification presented in this work has been performed on a 3-dimensional geometry, trying 
to verify the behaviour of the model on complex, unsteady 3 -D turbulence. The selected case is 
based on the work of the Leong et al. [10] where heat transfer is computed in a cube cavity heated 
from below, with Ra=1.0x108, air as fluid Pr-0.71, cavity size L41.5m and temperature difference 
of 10K. Unsteady calculations are performed for 700s with a time step of 0.1s, 

The computational results as well as the grid are presented in Fig. 6. The comparison again shows 
the potential of the AHFM to more accurately predict the heat transfer phenomenon and produce 
results that are closer to the experimental values. 
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In this particular tests anyhow, while the AHFM predictions show a clear improvement, the absolute 
value of the average Nusselt number still underpredicts the experimental value. The under-
predictions are believed to be related to the simplified boundary conditions which do not exactly 
represent the experimental configuration but more investigations are needed to clarify these findings. 

Table 2 Averaged Nusselt number for cube cavity 

Nu 
(Nusselt Number) 

Experiment 
(Leong et al. [14]} 

31.22 

EDM 23.16 

ATIFM 28.42 
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3. Conclusion 

As part of the THINS project, sponsored by the European Commission, CD-adapco has 
implemented in the commercially available software STAR-CCM+ an Algebraic Heat Flux Model 
(AHFM) which retains the basic terms from the differential transport equations representing the 
physical mechanisms which generate the turbulent heat flux. 

This work has introduced the details of the model and its implementation and has presented and 
discussed the results of the preliminary validation. The model has been tested on 3 different cases: 
an horizontal cavity heated from below, the classic Rayleigh-Bernard convection, and a 3-D cube 
cavity. In all three cases the AHFM model has shown the potential to improve the predictions of 
heat transfer, and qualitatively reproduce the expected behaviours. Moreover the verification has 
shown satisfactory prediction of quantitative heat transfer in the 3 selected cases. 

The present model implementation will constitute the base for validation and improvement of the 
AHFM model during the remainder of the THINS project. 
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