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Abstract 

This paper presents a methodology for solving thermal-hydraulic flows that are prototypical to 
nuclear reactors, using a stabilized finite element method. The discrete equations are solved 
using a fully-coupled algebraic multigrid preconditioned Newton-Krylov iterative solver. The 
prototype problem of interest is a spatially evolving flow through a 3x3 rod bundle geometry 
including spacer grid and mixing vanes, which is modeled using large eddy simulation at 
different spatial resolutions. The results demonstrate trends towards convergence of mean values 
in the far field (as mesh resolution increases), though, the flow field just downstream of the 
mixing vanes will require greater resolution to capture, than is presented here. 

Introduction 

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the name of a new 
U.S. Department of Energy Innovation Hub that is investing in the development of a "virtual 
reactor toolkit" that incorporates science-base models, state-of-the-art numerical methods, 
modern computational science, modern software engineering, and uncertainty quantification and 
validation against currently operating pressurized water reactors. Under CASL there are five 
focus areas having different responsibilities. One of these, Thermal Hydraulics Methods (THM) 
is tasked with developing computational fluid dynamics (CFD), multi-phase computational fluid 
dynamics (MCFD) and thermal-hydraulics (TH) tools that can solve challenge problem flows. 

One such challenge problem deals with grid-to-rod-fretting (GTRF). This problem is 
characterized by flow induced rod vibrations that cause deterioration of the rod cladding material 
and support grids at points of contact. The vibrations are due to turbulent flow generated at the 
core inlet and by rod bundle support grid mixing vanes. Turbulence is deliberately generated to 
enhance heat transfer and prevent localized hot spots from occurring. This problem is inherently 
three-dimensional and unsteady. High fidelity turbulence modeling will lead to better 
understanding of rod excitation phenomena and has the potential to improve clad time-to-failure, 
enhance heat transfer and improve overall reactor core performance. 

1 Sandia National Laboratories is a multiprogram science and engineering facility operated by Sandia Corporation, a 
Lockheed-Martin company, for the U.S. Department of Energy's National Nuclear Security Administration, under 
contract DE-AC04-94AL850. 
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Ultimately, full-scale simulations of the entire reactor core including inlet/outlet characterization 
will be performed. Included in these will be coupled fluid/structure interaction simulations. 
Leading up to full-scale, various sub-scale rod bundle assembly problems serving as prototypes 
will be solved and analyzed. Separate fluid and structural dynamic simulations will be 
conducted where the rod excitation predicted by the fluid simulations will be transferred to the 
structural code through surface boundary conditions. 

Our initial prototype problem is turbulent flow through a 3x3 rod bundle with support grid and 
mixing vanes. A new CFD code called Drekar is under development to address the challenge 
problems. Drekar uses a stream-line upwind Petrov Galerkin (SUPG) stabilized finite element 
(FE) discretization and solves the equations in a fully coupled manner using a Newton-Krylov 
nonlinear solver and GMRES iterative linear solver. Time integration is based on a BDF method. 
Large-eddy simulation (LES) turbulence model methodology has been employed. The wall 
adapted large eddy (WALE) model developed by Nicoud and Ducros [1] has been used. In two 
related studies, [2,3] the CD-Adaptco STAR-CCM++ CFD solver [4] and WALE LES sub-grid 
turbulence model was used to solve for the turbulent flow and rod vibration forcing on the same 
geometry. This work also follows closely the work by Benhamadouche et al. [5] who used an 
unstructured finite-volume discretization and SIMPLEC iteration procedure to solve the flow 
equations to study rod excitation. They used the Smagorinsky sub-grid model along with a wall 
model for their turbulence model. In another related work, Abbasian et al. [6] used a dynamic 
Smagorinsky sub-grid model (DSM) in the study of turbulent flow along a circular array of rods. 
The model was assumed periodic in the streamwise direction so that fully develop turbulent flow 
could be realized. The DSM alleviates the requirements of specifying a model constant and a 
wall-damping model. The present work is considered in line with these two studies with the 
main difference being the numerical methods used in the flow solver. 

In this paper LES solutions at four different mesh resolutions will be presented. The next section 
presents the governing equations, LES turbulence model and discretization details. Next, a 
description of the problem details is presented. Results from the flow solutions will then be 
presented followed by a discussion of the results. 

1. Governing equations 

This section presents the governing equations describing; unsteady, single-phase, incompressible 
isothermal flows. 

1.1 Flow equations 

A summary of the governing equations is presented in Table 1. The equations are written in 
residual form, which simplifies presentation of the weak form of the FE method. 
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Governing Equation 

Continuity a p 
RP= a I + pv Gu 

Momentum a (pu) 
R v 0(pu ® u) v GT hy= + — 

a I 
Table 1. Residual form of governing equations for incompressible, isothermal, single-phase flow. 

In these equations, pis the density, ti is the velocity vector, and T represents the stress tensor 

(containing pressure, P) T = -I + tie rvu+ vuil The subscript "eff" on viscosity signifies 

that this coefficient contains both molecular and eddy viscosities, µet = µ + The eddy 

viscosity models unresolved turbulent fluctuations. The over bar denotes spatial filtering in LES. 
The filter operator is mass weighted (Favre) if density is not constant. Boundary and initial 
conditions are required to complete the mathematical description of the flow problem. The 
specific boundary and initial conditions are discussed in a later section. 

1.2 Turbulence modeling 

The Reynolds number for this class of flows can typically reach tens to hundreds of thousands 
and sub-assembly hardware can be several meters in length rendering direct numerical 
simulation un-tractable. It is therefore necessary to apply averaging or filtering to the governing 
equations resulting in RANS, URANS or LES models for solving these flows. RANS equations 
model all of the turbulent fluctuations thus lumping all the physical processes associated with 
unsteady turbulent fluctuations into effective constitutive parameters such as eddy viscosity or 
conductivity. Higher fidelity flow analysis has been pursued based on large eddy simulation 
where two assumptions are made; 1) most of the turbulent transport is carried out by the large 
scales which are directly computed and 2) the small (sub-grid) unresolved scales are more 
universal than the large scales and can be described by relatively simple eddy-viscosity models. 

Consider a single constituent incompressible fluid. The sub-grid stress tensor arising in the 
filtered momentum equation is; 

= p (71i — kirj) 

The sub-grid stress tensor is modeled using the Boussinesq assumption; 

1 
rr = + .1 3 isa J 

( ak
—9 = —2 ax1 + ax;

where AiS; is the filtered strain rate tensor. The trace of the sub-grid stress tensor is absorbed 
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in the pressure; P=p--1 rsgs6 .. and recognizing that µt = f3v,, results in the LES equations 
3  

presented in Table 1. 
The eddy viscosity is typically evaluated using a variation of the Smagorinsky model [7] that 
accounts for the presence of solid surfaces. An example is Van Driest damping which is 
suitable for wall-bounded flows [8,9]; 

v, = (CA [1 — exp Y+ /211 ) 3 j 

where Cis a model constant, A = 521: 3 , is the cube root of the element volume, ISk = :5;./ 
24' = 26 y+ = yzi, / v , = f7, and r„, is the wall shear stress. Note y+ may not be a local 

quantity depending on its interpretation and code implementation. The model used in this study 
is called wall adapting local eddy-viscosity (WALE). The WALE model introduced by Nicoud 
and Ducros [1] is an modified Smagorinsky eddy viscosity model where the filter width is based 
on the square of the deviatoric stress tensor and requires only "local data" to construct. In 
addition to being a "local" model, it recovers the proper y3 near-wall scaling for the eddy 
viscosity so eddy that it inherently decays to zero as the wall is approached without using a 
dynamic procedure or wall model. The eddy-viscosity model is defined as; 

y2 

V, = (CwAY (3; 7, y2 ± (sa3;14 

n— 1 ( art art/1 
— ax./  ()xi ) 

where 3;.' is the square of the deviatoric stress tensor, CZ, is the rotation tensor and Cw = 0.55 

2. Spatial and temporal discretization 

The code is designed to solve the low-flow Mach number Navier-Stokes system. In this section 
we very briefly describe the stabilized FE methods used for discretization of the Navier-Stokes 
equations for incompressible and isothermal transient flow. The governing PDEs for the flow are 
presented in Table 1. 

2.1 Stabilized FE discretization 

The stabilized FE formulation in Table 2 [10,11] allows the use of equal order interpolation for 
both velocity and pressure and removes spurious pressure oscillations from the null space of the 
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operator and also implements a streamline-upwind capability to limit oscillations that can be 
generated due to unresolved gradients in high grid Reynolds number flows. The stabilized FE 
formulation has been shown numerically to be 2nd order accurate in space and time on smooth 
solutions when combined with an appropriate semi-discrete time discretization (e.g. Trapezoidal 
rule, BDF2, or Midpoint rule). 

Governing 
Equation 

Stabilized FE Weak Form Residual Equation for Low Mach Number Flow 

Momentum Fmi = foR„,,,au+Ifrjuvev„,,id52 
la e Q,

Continuity Fp = fORp AZ + 1 f ircny(to R. at2 
12 e gle

Table 2. Stabilized FE weak form residuals for the governing PDEs. The first term is the 
Galerkin term, followed by the SUPG term. 

2.2 Preconditioned Newton-Krylov method 

The result of a fully-implicit solution technique is the construction of very large, coupled highly 
nonlinear algebraic system(s) that must be solved. Therefore, these techniques place a heavy 
burden on both the nonlinear and linear solvers and require robust, scalable, and efficient 
nonlinear solution methods. In the present code, Newton-based iterative nonlinear solvers [12] 
are employed to solve the nonlinear systems that result in this application. These solvers can 
exhibit quadratic convergence rates independently of the problem size when sufficiently robust 
linear solvers are available. For the latter, we employ Krylov iterative techniques. A Newton-
Krylov (NK) method [13,14] is an implementation of Newton's method in which a Krylov 
iterative solution technique is used to approximately solve the linear systems, .1 — 4- — k+1= —Fk, that 

are generated at each step of Newton's method. The Jacobian matrix, Jk, that is used for the 
Jacobian-vector products in the Krylov solvers, and as the basis for computing the 
preconditioners described here, is developed from automatic differentiation (AD) techniques. 

For the considered class of linear systems described above, convergence is only achieved with 
preconditioning due to ill-conditioning in the underlying matrix equations [15]. Traditionally, 
Schwarz domain decomposition (DD) with block incomplete factorization, ILU(k) has been used 
to precondition the systems. However, these techniques do not scale well as the problem size is 
increased. In fact, the number of iterations required, to solve the linear system, increases as the 
number of processors is increased. Instead, algebraic multi-grid (AMG) solution methods will 
be used [16]. The advantage of AMG is that coarsened representations of the operators are used 
to effectively transfer information across the global domain and increase the convergence rate of 
the fine mesh iterative solvers. Using these techniques, the growth in the iteration count can be 
limited as the number of unknowns, and also as the number of processors is increased. In many 
cases these methods can lead to optimally converging iterative methods where the number of 
iterations to solution is independent of problem size and processor count [17,18]. 
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3. Description of the problem 

This section describes the computational domain, grids, flow conditions and boundary conditions 
used to define the flow problem in an idealized sub-assembly reactor core fuel rod bundle model. 
A portion of the geometry is presented in Figure 1 and a summary of flow conditions and 
boundary conditions are listed in Table 3. The image on the left of Figure 1 shows the center rod 
surface and the surrounding support grid spacers and mixing vanes. The domain spans 17.86 rod 
diameters with 3.11 diameters upstream of the spacer and 10.74 diameters downstream of the 
spacer. The original geometry was 54.94 diameters, however, was shortened to reduce the mesh 
sizes and computational cost. Exploratory simulations were conducted demonstrating that the 
mean pressure decays nearly to zero ten diameters downstream of the mixing vanes [18]. The 
right side of Figure 1 shows a top view of the grid spacer with mixing vanes and the proximity of 
the inner and outer rods. The location and orientation of the periodic boundaries are also labeled. 

Periodic in y No slip on

/ ' tube surfaces 

Periodic in x Periodic in x 

Figure 1. Images of problem geometry. Left image is the coarse 672K CUBIT HEX element 
mesh with mixing vane and center tube. Right image is a schematic of the (x,y) plane boundary 
conditions. 

Quantity Description Value 
Inlet boundary condition (z-plane) Specified constant velocity v = (0,0,5 In / s) 

Outlet boundary condition (z-plane) Zero stress T on = 0 
Rod surface (x,y) No-slip V = 0 

Inner-sub-channel flow surfaces 
(x,y) 

Periodic 

H2O Fluid Properties Temperature 394.2K 
H2O Fluid Properties Viscosity 2.32x10-4 Pa sec 
H2O Fluid Properties Density 942.0 kg/m3

Table 3. Description of boundary conditions and fluid properties. 

The computational grids were generated using Sandia National Laboratories CUBIT [19] mesh 
generating software. The geometry was supplied by Westinghouse Electric Corporation (WEC) 
[2,3] in the form of a CAD file. The meshing strategy consisted of first generating a mesh 
comprising tetrahedral elements and then sub-dividing each tetrahedral into hexahedral elements. 
A smoothing algorithm was then applied to each mesh to improve element quality. 
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Figure 2. Cut-planes (z) of the meshes at probe location A (see Table 6). 

Examples of the cut-planes of the different mesh resolutions as shown in Figure 2. The problem 
domain and boundary conditions are designed to model a subset of a rod bundle "ideally" far 
away from the reactor core walls such that significant cross-flow in the x-y directions can exist. 

At the inflow plane, a uniform velocity is assumed and at the outlet, a stress free condition is 
imposed. All other external flow surfaces are periodic and all solid surfaces are no-slip. The 
Reynolds number based on rod diameter and mean inlet velocity was 192,800. A summary of 
flow conditions is shown on Table 3. 

4. Results 

We now present results for the unsteady turbulent flow field for the WEC 3x3 rod assembly [2,3] 
problem including the grid spacer, for four different mesh resolutions. For the results that follow, 
BDF2, linear equal-order interpolation, SUPG convection stabilization and the WALE LES sub-
grid model are used. The results for this study were obtained on parallel machines running from 
256 to 1024 cores of the SNL Redsky parallel capacity machine. In preparation for this study 
Drekar was also ported and run on up to 9600 cores of the ORNL Jaguar platform. The mesh 
sizes vary from 0.67M to 6M elements (see Table 4). 

Mesh # of 
elements 

Simulated 
time (sec.) 

Flow 
through 
times 

At CFL ave. 
(sectionl/section3) 

Y+ ave. 

672K 671,572 0.88 26 5.0x10-5 9.6/1.3 26 
1M 1,049,228 1.11 33 5.0x10-5 11.1/2.9 19 
3M 2,663,920 0.20 6 2.0x10-5 5.9/2.1 16 
6M 5,832,718 0.32 9 2.0x10-5 7.9/2.2 13 

Table 4. Description of computational details for the different mesh resolutions. 

The LES simulations were initiated by restarting from Navier-Stokes solutions using only the 
kinematic viscosity. Therefore, the initial transients have been greatly minimized. In the context 
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Figure 3. Cut-plane plot of cross-stream velocity. Vectors are colored by cross-stream 
time-averaged velocity magnitude. Left image is at location A (see Table 6). The middle image 
is of the lower-right quadrant of the sub-channel cut-plane image and can be compared 
qualitatively to the Figure 5a and 5b in the WEC simulation of Elmandi et al., [2]. Right image 
is at location E. 

of the time averaged resolved LES solution data, Figure 3 presents the cross-stream velocity field 
on a cut-plane located at two locations downstream of the mixing vane strap trailing edge. On 
the left image (z = 1.8D) recirculation patterns are clearly evident in the sub-channels and 
indicate the persistence of the swirl generated by the mixing vanes upstream. The detailed image 
in the middle is of the lower-right sub-channel and can be compared qualitatively to Figures 5a 
and 5b in the WEC paper of Elmandi et al., [2] and shows reasonable qualitative agreement with 
their simulations. The image on the right is from z = 10.53D. At this location, cross-flow is 
observed. 

The average pressure drop across the spacer grid, for four different grid resolutions, is shown in 
Figure 4. The lines were extracted from the time averaged pressure fields. Clearly, the spacer 
grid is responsible for most of the pressure drop. The average pressure drop across the grid 
spacer computed for different mesh resolutions is presented in Table 5. These values were 
extracted from a single grid point upstream and downstream of the mixer grid. 
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Figure 4. Time-averaged pressure profiles across spacer grid for different grid resolutions. 
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Mesh Mean 
Pressure 

Drop (Pa) 
667K 23,400 
1M 26,780 
3M 23,800 
6M 22,042 

Table 5. Overall time-averaged pressure drop across mixing vane as a function of mesh 
resolution. 

The time averaged turbulence intensity and eddy viscosity along the center of a sub-channel 
downstream from the strap trailing edge for various mesh resolutions is plotted in Figure 5. The 
intensity plot shows non-monotonic behavior between the different solutions near the trailing 
edge, and then converging further downstream. The eddy viscosity plot correctly demonstrates 
that as the mesh becomes finer, less and less eddy viscosity is produced. 
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Figure 5. Average turbulence intensity and eddy viscosity along a line in the center of a sub-
channel starting at the strap trailing edge. 

The time history of the pressure at five locations on the center rod surface for different mesh 
resolutions is presented in Figure 6. The locations of the probes relative to the spacer grid strap 
trailing edge are listed in Table 6. Several spikes appearing in the trace data are due to a restart 
issue. Apart from the coarsest resolution case 672K, the three finer resolution cases show 
convergence of the average pressure at roughly 5 diameters downstream of the mixer strap 
trailing edge. 

Probe 
Probe location relative to 

strap t.e. (0.00475,0.0,z) m 
Probe location relative 
to strap t.e. normalized 

by rod diameter 
A 0.017 1.80 
B 0.030 3.18 
C 0.050 5.26 
D 0.074 7.78 
E 0.100 10.53 

Table 6. Trace probe location relative to spacer grid strap trailing edge. 
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Figure 6. Point-wise data for pressure time history at various locations downstream of the mixing 
vane. 

The fast Fourier transform (FFT) and power spectral density (PSD) of the pressure on the surface 
of the center rod for the 6M mesh resolution case at probe location A are shown in Figure 7. The 
maximum frequency of the FFT is roughly the Nyquist frequency. While still only preliminary 
at this time, the characteristic turbulent cascade is evident in the PSD. 
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Figure 7. Initial time series analysis of transient pressure signal on center tube of the 
3x3 rod assembly. Left image is the FFT and right image is the PSD. 

5. Discussion 

In this work, a stabilized finite element method has been used compute the flow field in a 3x3 
rod bundle including the spacer grid and mixing vanes. Solutions on four mesh resolutions have 
been presented. From Table 3 summarizing the computational details, Figure 2 showing a cut-
plane of the mesh and Figure 4 showing the pressure drop across the spacer grid, it is clear that 
the 672K mesh is inadequate to resolve the behavior of pressure for this geometry. On the other 
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hand, the other three solutions start to show signs of convergence in the mean for pressure drop, 
upstream of the spacer grid and also approximately six diameters downstream of the strap 
trailing edge. The mean pressure appears to be less sensitive to spatial and temporal resolution 
than the velocity field. Considering the average CFL at which time was advanced and the y+
which gives and indication of how well the boundary layers were resolved, these solutions are 
not well resolved LES. The lack of spatial resolution is probably responsible for the over 
prediction of turbulence intensity (-18% at three diameters compared with —11% predicted by 
Benhamadouche et al. [5]) and non-monotonic behavior just downstream of the strap trailing 
edge. However, at three diameters downstream, the turbulence intensity predicted by the three 
finer solutions show convergence and at 10 diameters, our prediction of 10% is closer in line 
with 8 1/2% predicted by Benhamadouche et al. [5]. In addition, the average eddy viscosity in 
the sub-channel is showing the correct trend; as the mesh becomes finer less eddy viscosity is 
produced by the sub-grid model. These results seem to suggest that the present solutions are 
significantly under-resolved in the vicinity of the spacer grid strap trailing edge. They also 
suggest that the FE method is not overly dissipative. Higher resolution simulations of this 
geometry are planned for the future. 

The next step in this study of the application of unstructured stabilized FE methods, to sub-
assembly reactor core modeling, is to purse a detailed performance and parallel scaling study of 
this fully-implicit, fully-coupled NK solution method with AMG preconditioners. In addition, the 
code infrastructure supports higher order (e.g., up to 8th order in space and 5th order in time) 
discretizations so that studies of the effectiveness of higher order approximations on resolution 
requirements, accuracy and time to solution for a given solution accuracy can also be carried out. 
A comparison of the current SUPG stabilized finite element discretization against a complete 
variation multiscale stabilization [20] is planned. Finally, alternate solution strategies that 
involve using a modified Newton method (freezing the Jacobian at each Newton step), a one-step 
Newton method and semi-implicit variants of time-stepping are all possible within the code's 
solver infrastructure and will be pursued. These modifications have the potential to significantly 
improve run time performance. 
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