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Abstract

The response of bubbles-cloud in thermodynamically meta-stable liquid influences all acoustic
processes in multiphase flows. System computer codes with single pressure concept widely used
in the industry does not take this into account. This paper demonstrates the need of extension of
the existing computer codes to at least two-pressure concepts in order to adequately describe for
instance condensation oscillations of steam in sub-cooled liquid. Review of the state of the art is
given in Appendixes. The symmetric bubble dynamics mathematical description is proposed
based on “two-phase” Rayleigh-Plesset equation together with analytical model for the bubble
parameters and high accuracy numerical solution of the heat conduction problem. The model is
validated on evaporation and condensation experiments. Finally self-triggered oscillation system
is demonstrated for 5 mm bubbles in strong sub-cooled water resulting in high internal bubble
pressure

1. INTRODUCTION

If liquid is heated for whatever reason at temperatures higher than the saturation temperature at
the local pressure generates bubbles. Vapour enclosed in cavity with interface colder than the
saturation temperature at the bubble inside pressure condenses and causes bubble-collapse. In
principle, the pressure difference between the inside and outside of a bubble cause the
mechanical movement resisted by the viscosity and surface tension. Simultaneously, heat and
mass transfer at both sites of the interface cause pressure change and then again this pressure
change has a feed back on bubble interface motion. After more than 80 years of research we
finally know the phenomena and the equations describing it. The literature describing bubble
radius as a function of initial parameters and time by solving these equations with different
degree of complexity is huge, mainly because of the attempts to obtain closed analytical
solutions for which obtaining simplifications are inevitable. But now the computers are so
powerful that direct numerical simulation of the one-dimensional problem is easily quickly done.
The subject of this paper is to demonstrate such a solution, to relate it to the state of the art and to
compare it with experimental data. Finally, a discussion is provided how to couple such on small
scale physics with large scale physics in multi-phase flow computer codes.

2. THE SYSTEM OF PDE’S DESCRIBING THE PROBLEM

Consider a symmetric bubble in incompressible liquid. The equations describing the process are:
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see [18, 42].

Equation 1 is the momentum equation for an incompressible liquid integrated from the radius
of the bubble to infinity. This equation is known as the Rayleigh-Plesset equation. Appendix 1
gives its derivation.

Equation 2 is the energy conservation equation for a symmetric incompressible liquid in
spherical coordinates. The origin of the coordinate system is at the inter-face of the bubble. The
spatial coordinate transformation used to eliminate the convective term is x=r—-R(7r), see

Appendix 2.

Equation 3 is the so called pressure equation or volume conservation equation for the bubble.
Its derivation is given in Appendix 3.

Equation 4 is the energy conservation equation in pseudo-entropy form. The derivation is given
in Appendix 4.

The change of the bubble radius with the time consists of the mechanical component

(dR [dr) = (Rl’”' -R, ) /Ar dictated by the force balance (Eq. 1) and by a component depending on

the mass transfer as given with Equation 5.

The interfacial heat fluxes are defined as follows. The heat flux from the inter-face to the vapor
is defined by Eq. 6. The heat flux from the interface to the liquid is defined by Eq. 7. The
interfacial energy jump condition is expressed by Eq. 8.

mom
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The gas and liquid side heat transfer coefficients are formally izc” and htc}” . Some authors prefer

to use the surface temperature as independent variable by enforcing a kinetic condensation and
evaporation at the surface using the so called accommodation coefficients. The reader will find
such examples in [32] and [24]. The gradient of the liquid temperature field needed in Eq. 7
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results from the solution of the liquid energy conservation equation. The liquid side heat transfer
is essential for single component systems. The gas side heat transfer is important for gas bubbles
and pressure oscillations not allowing mass transfer. The gas side heat transfer coefficient can be
computed either by solving the energy conservation equation for the gas or by means of a not very
accurate empirical relations in which

htc[° 2R,

Nulza =
/1]

€)

where Nuj° =1 for stagnant bubble. For moving bubble |AV],|> 0, which is not the subject of this

consideration, due to the internal circulation the heat transfer improvement is a function of the
relative velocity. [6] correlated their experimental data for condensation on droplets with the
following expression for the Nusselt number,

Nuj® = max(l, 0.53Pel*0'454) (10)

where the definition of the Peclet number 1s used

. DAV
P = AV (11)
q 1,
For bubble interaction one can postulate
. D|AV,
Pe, =ML (12)

instead. Whether the coefficient will remain the same also for bubble internal circulation is not
clear. Nigmatulin [23] derived approximate formula to compute the gas-side heat transfer due to
surface motion of stagnant bubble:

Nu?? =/Pe for Pe>100, (13)
Nu? =10 for Pe<100, (14)
where

Pe=12(x-1) 2 BB o 1y D p2R dRnc, (15)

1,-T]a, dr ,-1] n dr 4

3. NUMERICAL SOLUTION METHOD

The Rayleigh equation is discretized by using a second order method
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The liquid energy conservation equation is solved using a second order method of Lax and
Vendroff, see in [30], applied as follows. First, an explicit half time step is made and all
temperatures are computed

n+ 1 a,A7 Ax
T, v -1, _E?{Tz.m —2L,+ 1 +T(T2

T )} 0. (19)

i

With the new temperature values the spatial terms are computed again and a complete time step
is then made

2 2,i+1 2,i-1

=
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The dimensionless time a,Ar/Ax* is called grid Fourier number. Ax/r, indicates the importance
of the sphericity close to the bubble. The ordinary partial differential equations 3 and 4 are
solved by first order Euler method giving the new pressure p, and temperatures 7, inside the
bubbles in both steps. Then the bubble side interface temperature is the saturation temperature at
the vapour pressure p, and at the other end no heat flux is specified: 7,;"?=7"(p,) and

shmax  Slmax ™ Solmax olmax

conservation equation is integrated is associated with the density of the bubbles per cubic meter
n, as follows
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Actually Nigmatulin proposed in 1978 the so called concept of “cellular medium” considering
the processes within the sphere with R, = R,e,"*. This allows taking into account the effective

thickness of liquid layer around each bubble. The larger the bubble concentration at a given
initial radius is, the smaller the thickness of the effective layer. This leads to different behaviour
of the bubbles depending on the bubble number density. Note the difference to [19] using

3 Ax,=0.002 m

which does not couple the problem to the multiphase flows.
4. VALIDATION OF THE METHOD
4.1 Bubble collapse

I will first validate the method by using the bubble collapse experiments by [7] for water. Given
was the initial pressure, subcooling and bubble radius, see Table 1.

Table 1. Initial and boundary conditions for the experiment by [7]

Figs. in [7] pinbar R inmm  T'-T, inK
9 3.657580 12.2

1
10 1 3.185503 8.7
11 1 2.983309 8.3
12 1 4.372804 5.6
13 1 3.990081 5.0

Measured was the bubble radius as a function of time. This is also predicted by the method and
compared in Figs. 1 to 5. First of all we observe from Fig. 1 that there are residual non-
condensable gases in the bubble because otherwise the stable final diameter of 0.25 mm can not
be explained. Having this in mind, the very good agreement with the initial bubble collapse
period and the complete condensation for a single component system is well understood. The
most remarkable feature is that the selected numerical method does not damp the natural
oscillations contained in the Rayleigh equation. The inertia leads to overshooting. The surface
tension acts like a spring. The viscosity introduces little damping. The accuracy of the integration
influences the resolution of the pressure amplitudes as seeing from Fig. 1. The experiment on
Fig. 2 also indicates residual gases sufficient to stop the condensation at 0.5 mm. Similar is the
situation with the experiment presented on Fig. 3 where the final radius is about 0.4 mm.
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Fig. 1. Florschuetz and Chao [7] experiment for water: a) Bubble radius as function of time; b)
Bubble interface temperature as a functions of time; ¢) Pressure inside the bubble as a function of
time, time step of integration 0.001 ms; time; d) Pressure inside the bubble as a function of time,
time step of integration 0.01 ms
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Fig. 2. Florschuetz and Chao [7] experiment for water: a) Bubble radius as function of time; b)
Bubble interface temperature as a functions of time; c) Pressure inside the bubble as a function of
time, time step of integration 0.01 ms

Figures 5 and 6 indicate excellent agreement with the data.

Conclusion: The so formulated numerical method is in a good position to adequately describe
bubble collapse without limiting simplifying assumptions characteristic for closed analytical
solutions.

Now let as see the influence of the increasing subcooling on the collapse process. Fig. 6 presents
a computed collapse of initially Smm-bubble in water at atmospheric pressure with subcooling
from 5 to 80 K. In small subcoolings there are only slight oscillations of the bubble radius. The
amplitudes increase with the increasing subcooling.
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Fig. 3. Florschuetz and Chao [7] experiment for water: a) Bubble radius as function of time; b)
Bubble interface temperature as a functions of time; c) Pressure inside the bubble as a function of
time, time step of integration 0.01 ms
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Fig. 4. Florschuetz and Chao [7] experiment for water: a) Bubble radius as function of time; b)
Bubble and interface temperature as a functions of time; c) Pressure inside the bubble as a
function of time, time step of integration 0.01 ms
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Fig. 5. Florschuetz and Chao [7] experiment for water: a) Bubble radius as function of time; b)
Bubble and interface temperature as a functions of time; c) Pressure inside the bubble as a
function of time, time step of integration 0.01 ms
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Fig. 7. Computed bubble pressures and temperatures as functions of time for water at 1 bar and
different subcoolings. Void 0.1

Figures 7 show the corresponding pressures and temperatures inside the bubble. At 80 K
subcooling we see strong pressure and temperature amplitudes. This explains the observed
triggering of steam explosions in melt-water mixtures in which the water is strongly subcooled.
The collapsing bubbles generate pressure waves which may lead to such a local pressure pulse
generation that can trigger thermal explosion of a molten drop falling in water.

Conclusions: The presented numerical method does not damp the strong bubble oscillations in
strong subcooling which is very remarkable.

4.2 Bubble growth

The experimental data by Plesset and Zwick [24] presents the bubble size as a function of time
for sub-atmospheric pressure. The bubbles are generated on heated surface at sub-atmospheric
pressure and wall superheat given in Table 2.

Table 2. Bubble growth experiments on heated plate performed by Plesset and Zwick [24]

pinPa T'inK T,-T"inK Ja
H-0/Na H>0/Na
101325 373.12/1154.6 3.1 9.3/2.78
101325 373.12/1154.6 4.5 13.48/4.04
101325 373.12/1154.6 5.3 15.9/4.76
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The initial size in the computations was set to the critical size computed as follows
R, =[20,T'(p)]/(p"AhAT,, ) . The predicted sizes are presented in Figs. 8, 9 and 10.
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Fig. 8. Bubble diameter as function of time. Bubble generated at heated wall. Experimental data
for water by Plesset and Zwick [24]. Comparison with the theoretical prediction
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Fig. 9. Bubble diameter as function of time. Bubble generated at heated wall. Experimental data
for water by Plesset and Zwick [24]. Comparison with the theoretical prediction
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Fig. 10. Bubble diameter as function of time. Bubble generated at heated wall. Experimental data
for water by Plesset and Zwick [24]. Comparison with the theoretical prediction

The comparisons show that the model predicts the initial bubble growth period well and then
starts to deviate at higher bubble sizes — probably because the bubbles detach and the relative
motion not taken into account here improve the interfacial heat transfer. Note, that the
evaporation is a much more stable process compared to the condensation.
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4.3 USE IN COMPUTER CODES OPERATING WITH LARGE COMPUTATIONAL
STEPS

This author does not know a system computer code simulating multiphase flows by using more
than one pressure in a cell. Although 30 years ago it was found that two pressure systems recover
hyperbolicy etc. this still did not find application in modern code design. Now if we are about to
resolve acoustic processes the question arises: is it possible with single pressure models? “The
answer is no, it is not.” See the pressure inside the bubble from Figures 1 through 5. Obviously,
only a separate pressure field for the vapour can have the memory along the time axis at which
moment the mono-disperse bubble system in a cell is being during its dynamics. What is possible
now is to trace the processes in and around the bubble with a much smaller time step, to compute
the integral heat and mass transfer terms and to supply them to the macro-scale solver. An
example for a mixture with 0.1 volumetric part void is given in figures 11 a) and b). Figure 11 a)
shows the local instantaneous mass source term and figure 11 b) the mass source term averaged
over the elapsed time since the beginning of the process. Using the second term in a system
computer code using locally time averaged equations is the correct way to reach ultimate
stability. But the accuracy control remains a question of proper selection of the time step.
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Fig. 11. Condensed mass per unit mixture volume and unit time as a function of the time for 0.1
volume concentration saturated void with initial bubble size Smm. Liquid pressure 1bar.
Parameter: water subcooling. a) Instantaneous mass source; b) Averaged over the elapsed time

In any case I should emphasize once again that without the second pressure for the vapor an
important acoustic part of the processes can not be simulated in system computer codes. Such is
the case for the well known dependence of the travel velocity of oscillations that is depending on
the frequencies.

5. COMPARISON WITH THE STATE OF THE ART

The best review to this subject is given by [21] and I will not repeat it here. Rayleigh [28]
considered the zero-pressure cavity collapse controlled only by the equality of the compression
energy and the kinetic energy of the liquid resulting in

i(dR‘ jz +£(R—‘3°—1j=0 (22)

20dr ) p,\ R

and after integration computed the time necessary for the complete collapse
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3/2
At =R, /23’02 2 _aB~09168R, |22, (23)
P 3(1-4) p

where g=(R/R,) . Then Rayleigh evaluated the pressure field around the bubble during the

bubble collapse by integrating the mass and momentum equation of the liquid

0, =ﬁ[ﬁj : (24)
r

dr

Oty g, P2 1P,

=0. 25
ot or p, or (25)

So the main direction for the description of the mechanical interaction in the incompressible
liquid was given by Rayleigh and remained up to now. Equation 25 is equation 1 with neglected
viscosity surface tension and set bubble pressure equal to zero. Therefore the result by Rayleigh
is already contained in our system of PDEs.

Plesset and Zwick [24] introduced the liquid energy equation for incompressible liquid. They
found the following solution for the surface temperature

Tlcr
7 (z)-T, = \/Zj{ r dz’ (26)

which, for very small radius changes, reduces to
dT](r

17 (¢)-1, = \/Zj 1/2 7' (27)

The combination of momentum and energy equation is at this point still not used. Plesset and
Zwick [24] assumed no difference between the surface and vapor temperature and therefore

lo aT
- 28
(ow), = Ah( ox j (28)
In this case the vapor mass conservation

e (pli j““”R( W), (29)

gives the relation between bubble radius and temperature gradient. Neglecting the
compressibility of the vapour the authors used
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(%j __PARdR, (30)
ox )., A dr

in Eq. 26 resulting in

)
re(e)-n -2 e I 31)
0 |:le4 (T**)dT**:I

T

assuming that p, = p'(7,") in Eq. 1,

0, (32)

N 2
R’ [25 +%R1 (fi_lij +4’72%+${202+R‘ [p.-p (1))
2

results in the famous integral-differential equation describing bubble dynamics. Furthermore,
with several additional simplifications they come to an equation for the so called thermal
controlled bubble growth

dR, 3a ,
AhPIEﬂ/ﬁ—;chpz [,-T'(p)]. (33)
Plesset and Zwick estimated also that the diffusion of non-condensable gases in the liquid is

much slower process and therefore has not to be considered for intensive evaporation or
condensation processes.

Dergarabedian (1953) introduces the surface tension of the momentum equation and considered
the non-condensible gas component inside the vapour keeping its mass constant during the
process and behaving isothermal

Pin = Pron (RIO/RI )3 :

He reported valuable bubble growth experiments for water used later by many authors. He used
Plesset and Zwick’s solution for the surface temperature and then used a quadratic dependence
between saturation temperature and saturation pressure. Then, the pressure inside the bubble was
set to the saturation pressure and the momentum equation is integrated.

Forster and Zuber [8] followed the same approach as Plesset and Zwick and Dergarabedian but
their solution of the liquid heat conduction problem was different

«\[ dR
P Ak ’R](T)[drl)
17 (z)-1, =1y -1, -2 :

Pa cpz\/”iaz '!; R, (T)(T—r*)m
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(R (2)-A ()] (R (2)+& ()]

t|\dR, /dT).
x{exp| ————————= |—exp| ————— = d‘[*sz]O‘T—Tz—ﬂ Ak ( 1/ )T dr’ (34)

4a2(r—r*) 4a2<f—r*) £, cpz\/a(J (T_z-*)m

The results compared very well with the experiments by Dergarabedian for water with
subcooling between 1.4 and 4.5 K. Finally the authors obtained the following approximation for
bubble growth

dR
Mo =

PrCpo |:Tz —T'(p)] . (35)

Scriven [31] compared both equations 33 and 35 with the data of Dergarabedian and concluded
that Plesset and Zwick’s equation is in better agreement. The idea how to couple analytically, not
numerically, the heat conduction problem with the momentum equation attracted the attention of
Mikic, Rohsenhow and Griffith [20]. They simplified the equation 1 to

é[ﬂ} Sl R (36)
2\ dr &p,

The pressure difference can be replaced by temperature difference using the linearized Clausius
and Clapeyron equation

b= P - dp’ _ 1 Ah (37)
T’(pl)—T'(pz) T T'(pz) V' —y'

resulting in

A4\ dr 7,-T'(p,)

where 4° = 3L[T2 -7'(p, )1% . The Plesset and Zwick [24] equation (33) is then used. By setting
&p,

Tvzlc _ T!(pl)

dR /3(1 ,
Ahpl d_z'l = ﬂ_;pchz [Tz -T (p] ):' .

Excluding the interface temperature results in analytical expression for the time derivative of the
bubble radius

2
Lz(@) Y ) S AL (38)
A\ dr 3a, [TZ—T (pz)Jpch2 dr

This result reduces to Rayleigh’s results with strong non-equilibrium and to the thermal
controlled bubble size change for small non-equilibriums. In any case, the non-linarities like
(13/28)
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non-monotonic temperatures profiles around the surface, surface tension, viscosity and second
order terms in the momentum equation describing oscillation processes are excluded which is the
main limitation of this, in many practical cases, very useful approach.

Coming back to the 60s: Scriven [31] formulated the problem already in 1959 with equations 1
and 2. In addition to the heat transfer he considered also the heat diffusion by the mass
conservation equation having the same form as the Fourier equation. As already stated by
Plesset and Zwick, the mass diffusion is much slower than heat diffusion. Scriven uses his own
substitutions and come also to integral solution of the Fourier equation which was then estimated
numerically for variety of situations. Later on this solution is serving as benchmark for some
authors for checking their approximations. In his numerical estimate the coupling with equation
1 is not made. Therefore, dynamic oscillation effects can not be derived only from the heat
transfer solution. I have to note that computationally the work for estimation of the Scriven’s
integral is larger then for the solution of Eq. 19 and 20.

Zuber [39] discussed first the Fritz and Ende [9] solution

dR,

az ’
wip e [ e [ -7(0)] (39

and then considered growth and subsequent collapse in subcooled liquid near heated wall. With
the observation that the thermal boundary layer was displaced by the growing bubble the authors
come to the conclusion that as the bubble size reaches a maximum the condensation heat per unit
time and unit wall surface almost equals the wall heat flux.

Jra At =4,(T,-T")/q. . (40)

With this idea they obtained a maximum of the bubble size. The maximum radius is then
computed by the thermal bubble growth formula. For the collapse phase the authors proposed to
use Eq. 1 together with bubble growth equation in which the heat flux is reduced by the wall heat
flux considered as a condensation heat flux. This mechanism is difficult to imagine because
bubble growth and departure happens in much more complex circumstances and the collapse
happens not at the place where the bubble was born.

Hewit and Parker [10] performed liquid nitrogen experiments and concluded that thermally
controlled bubble growth models agree with data within a 25% error band but thermally
controlled bubble collapse models do not represent satisfactorily the reality.

A complete numerical treatment was first made by Theofanous et al. [32, 33]. Equation 1 is used
coupled with the thermal solution. The authors assumed a kinetic molecular transfer across the
interface and come to the conclusion that the temperature is always close to the saturation
temperature at the vapour pressure which was an important finding used later by many other
authors including me. The solution of the Fourier equation was performed by assuming a thin
boundary layer and monotonic quadratic temperature profile at the boundary.

r-13" =(T2—T;°){2(”‘R‘)—[“R' M (41)

1) o
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with

T(R.t)=T, T(R +6,7)=T,, (Z_fj ~0, 42)
R +6

as proposed before by Bornhorst and Hatsopoulos [3]. Inserting the profile in the energy
equation and integrating between R and R +J results in an ordinary differential equation

connecting the change of the boundary layer thickness with time with the change of the bubble
radius and of the bulk temperature. The so obtained equation was then included in the model
instead of the Fourier equation. The model very well predicted the condensation and evaporation
data obtained with superheats or subcoolings of few degrees which were the first proof that this
direction of development is very fruitful. Such method was used also by Casadei [5] who used

(7-17) /(1 -17) = [ (R, —r)/5}2 instead of Eq. 41. The limitations are in the assumptions made

by resolving the temperature profile. Lee and Merte [19] used equations 1 and 2 exactly in the
same form. They designed a Runge-Kutta method for solving the momentum equation and the
Patankar finite volume method for resolving the temperature field dropping the assumption of
monotonic profile. They also designed a non-equidistant grid having better resolution close to the
interface. Naude and Mendez [41] reported that second order discretization in time and third
order in space is needed to resolve the liquid temperature profile especially in the final collapse
stage. The energy conservation equations for the bubble was not used by these authors and
replaced with the saturation condition at the surface temperature at any time. This assumption
does not allow having a non-equilibrium temperature in the bubble for very strong oscillations.
This makes the main difference to our method. Therefore, the method I use here omits the
disadvantages of assuming a monotonic profile in the liquid and not using the energy
conservation for the vapour. This together with the simplicity of the numerical method is the
main step forwards with respect to these authors.

In their detailed review of the state of the art up to 1977 Plesset and Prosperetti [26] used as a
starting point the combined equation 1 and 2 as derived by Plesset and Zwick [24] to study
oscillation behavior of such systems. Assuming that the gas state change is isentropic

Pin = Proa(Ro/R)™ the authors derived the Eigen frequency of oscillation to be

o =Kkp _ 20 (43)
PR, PRy

Jones and Zuber [12] pointed out that the vapour density change in Eq. 29 is important especially
in pressure transients and proposed an approximation to compute the saturation vapour density
following the surface temperature change. Further they used the Carlsow and Jaeger [4] solution
of the Fourier equation for heat slab with variable temperature difference at the one boundary

2

74"2(”’7)

— = X i lo _ —e
T(x,T) Tz 2\/@.([(772 Tz)(r_n)}/z

dn (44)
to compute the heat flux at the bubble surface
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d AT(n)
rrlo’ _ k A’Z AT .[ (45)

T T

with 7, =const , AT(r)=T,°(r)-T,, AT(0) =T'(p,)-T, and k, the sphericity correction: /2 by
Foster and Zuber, \[3 by Plesset and Zwick. Assuming different functions for the pressure
change and therefore for the surface temperature change the authors integrated Eq. 45
analytically and derived expressions for the bubble size change without connection to the
momentum equation. Interestingly, the authors obtained good comparisons for bubble growth in
variable pressure field. A very similar approach was used by Toda and Kitamura [34]. They also
allow for the vapour density to change and derive an integral solution for the thin boundary
layer. Alamgir [2] proposed an analytical approximation for the density change combined with
the Jones and Zuber solution. Again not coupling with the momentum equation they obtained
acceptable accuracy for 4 experiments performed by them self with water at about 3 bar and
superheating of about 4 to 6 K. Wang and Bankoff [36, 37] extended the Jones and Zuber [12]
solution to bubble growth at the wall by modifying the equivalent volume of the bubble attached
at the wall. Good comparison with their data for decompression experiments is reported. 7Tsung-
Chang and Bankoff [35] considered the problem with linear pressure change and provided an
approximate analytical solution to the Plesset and Zwick integral considering variable vapour
density

1 (r)-T, = ”‘Ahﬁf o IRe D, (46)

{l l(r#)drﬁ]”

Winters and Merte [38] are also interested in describing the bubble behaviour in variable
pressure fields. The authors concluded that for bubble growth the monotonic temperature profile
is a good approximation but for bubble collapse the temperature field should be considered as
non monotonic. In this case they write the Carlsow and Jaeger [4] approximate solution of the
Fourier equation in the following form

T'(po)=-T 1)1 (,)
r/lo' k /12 10 2 2 m 2 m—1 . 47
3a, Jr +,,,Z::' \/r—rm “47)

Reynolds and Berthoud [29] solved the Fourier equation by making the same transformation as
Plesset and Zwick

4

h=1(P-R), F:.:[[Rl ()] ar

and assuming a thin thermal boundary layer. Their result for the accumulated heat in J
transferred from the surface into the liquid is
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IJ T

O(R,.7) =42 \F I REEO-T] . 48)
a9 { }

T
6. CONCLUSIONS

This work demonstrates how important is considering a bubble pressure separately from the
system pressure as a dependent variable in multiphase fluid dynamics. Inserting this concept in
future system computer codes will allow resolution of acoustical processes which are still not
resolved in existing system computer codes widely used in the industry. The key problem in this
step is fast and accurate solver of the transient Fourier equation around the bubble with variable
boundary conditions.

APPENDIX 1: THE RAILEIGH-PLESSET EQUATION

Consider the liquid mass and momentum conservation equations valid in R <r <R, ,, where

R, ., =[3/(47n, ):|1/3 :

op, 1 0
MaSS a—;'f'r—a—(l’ pzuz) 0, (1-1)
2
Momentum: oy —Z+u 6u2 +Laﬁ+2n 0wy =0. (1-2)

ot tor p,or o

The main idea by the derivation of the equation describing the bubble interface motion with
respect to the centre, is to integrate the momentum equation along R <r<R It will be

the pressure is the liquid pressure. First I will present the known formalism

2,cell *

assumed that at R, ,

for incompressible liquid and then I will extend the formalism for large time changes of pressure
with the time.

Incompressible liquid: For incompressible liquid the mass conservation simplifies to
6(r2u2)/6r=0 or

or R2 OR,

a_ . 1-

or w(r)="r P or (1-3)

Here the radius is considered to be only a function of time, R =R (7). Rayleigh (1917) was the
first to equalized the expansion energy of a bubble from radius Rjo to R;

R 4
(pl _p2)47[j ridr =(p1 _pz)g

RIU

7(R - ) (1-4)

to the energy consumed to change the kinetic energy of the surrounding liquid
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ot or J\R R

cell

R, 2 R 2
cell cell aR
lp247r J‘ wirtdr =lp247ZRl4 (%j I izdr :lp247rRl4 (—‘) 1 (1-5)
2 2 2 ,r 2
and obtained the equation used later in thousands of papers

2 3
%@i) [liju[lijo (1-6)
v R P R

cell

Rcell —> 0.

Equation 1-6 is valid for no mass transfer at the surface. For mass transfer at the surface the
interface velocity of the liquid is

2 2

4 ° \dR

ui”:ufG—AuS=[1——pll julzaz[l_pll J_l (1-7)
o p’ ) dr

2

Therefore the velocity at any radius in the liquid is related to the bubble radius derivative as
follows

2 \R! dR R’ dR
u, :(1— P j_;_lzg_;_l. (1-8)
py’ )ro dr r o dr

In equation 1-6 the history of the expansion that has to satisfy the momentum equation is not
reflected. This history can be considered if the momentum equation in the liquid is integrated
from R; to R, . For this purpose we need the participating liquid velocity first and second

derivatives.

Assuming non compressible liquid they are obtained by differentiating Eq. (1-8) as follows:

%:%‘Zﬁ +zgeriz(%)2 (1-9)
%:—25%&2%, (1-10)
@a:‘ —es i L, (1-11)
uz%:—zm;‘ (‘Zi;jri (1-12)

Replacing the velocity and its derivatives in the momentum equation 1-2 results in

2 A2 2
R
—R'z d Ii‘ +2(R1—12 —gR(‘—lSj R LD gy, R ‘R]2—14 =0. (1-13)
r- or r r )\ or P,E€ OF or r
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Integrating between R; to R, ,,

82Rl Rl.wll 1 RZ,LL‘[/ 1 4R2.wll 1 de 2 1 RZ@(*/I aRl ZRZ.CoI] 1
: Ir—zdr+2 R | —dr =R, JFdr =g j dp, +120, LR Rjr—4dr=0 (1-14)

Rl Rl az’ ng R 1
results in
R ’R R R! R, - 4n, OR R’
R|1-— 0 42 i——1+l - (d J c PP +&Ql ~—[=0. (1-15)
R, o or 4 R, 4R, cell or PrE R or R; o
For
Rl /R2,cel/ = a11/3

this equation receives the form

’R
Rl (1—051”3)68 21 +2(§—a11/3 +lal“/3j(ﬂ) pz )4 (1_051)4&%20
‘ 4 4 or psE R or

used usually in the so called two pressure models of bubbly flow for analysing of acoustic
processes e.g. Akhatov et al. [1]. For ¢, —0 which means R, , —« the above equation reduces

2,cell

to

2
g TR 3 (aRj L Pmp A OR (1-16)
or ot Par€ R, ot

which is the so called Rayleigh-Plesset equation used by many authors, compare with Eq. 10 in
Scriven [31].

Hijikata et al. ([11] used in a one dimensional model the Rayleigh-Plesset equation by replacing
dR, /dr =u, dR, /dx . Following this idea

dR__ 2R,

+u,VR 1-17
o= TuVk (1-17)
and therefore
2
R |ZR IR SR vr 2 Ou |, (aR +u VRJ c P A OR (1-18)
or 6 or 2 0 PE R Ot

Prosperetti and Crum [27], Kamath and Prosperetti [13] tuck into account some compressibility
effect in the liquid by deriving the equation describing the bubble radius dynamics.

Compressible liquid: The complete system 1-1 and 1-2 together with the energy conservation in
the liquid has to be solved in this case. Replacing the density differentials in the mass
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conservation equation with their equals from the differential form of the equation of state results
in

%{%w%}L%[%w%)%iwz):o,
pa, \ Ot or ) p, 0s,\ 0t or ) r°or

Here, only the case for large pressure changes with the time will be considered resulting in

1o, 1o
(ru)— P 6;'

As in the case of incompressible liquid we have to derive from these equations the velocity and
its derivatives, to replace in the momentum equation and to integrate it from the interface to the
end of the cell. The velocity and the derivative are

Gy 2,1 P, RdR__1
or r o pal or ¥ dr  pa; ot
or’ rt dr

1
or r or? P’

2
%_8R_1262R1 2 i(%j _ 1 32p2 l(r3_Rl3>

and therefore

R*(dR'Y R!dR R® dR ’
u %:_282_1 dRr, _g_lﬂ_l P, +zgl(r3_R3) L dR, 1 + 523 1(r3—R3).
> or dr ‘ !

r P dr pya; 0t \ p,a; 0t ) 3

2_1 2R \pdR Op,
ou, " dr or 1

2 A2 2
R_1261§1+2(R1L2_6_R14L5j(%J + 1 8p+ =7t 2 —=0
r- or r r )\ or P,€ OF or +i(r3—R3) 1 (%J _62p2 0,4,
Y pal\ or or’
After integration from the surface of the bubble to the end of the cell the momentum equation
receives the form:
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2
1__ 62R +2 E_i+l R]4 ﬁ +p2_p]
R, )07 4 R

—+4i% 1- Rj
or PrE R ot R

cell
ER 1_i _i 1_i _lR 1— R12 1#@%
3 cell Rcell Rl R 3 1 1

cell Rczezl dr 0t 1
JRU(1_R 3R 1 () _2p, paa;
35 | 4 Ri” 4Ru” p,a;\ ot or?

Again using R /R, =« results in

2
Rl<1—a1”3)a ISI 12 3 —a +la1 dR, PP
or 4 4

+(1_a)4772 OR, f(apz asz 0
or P2E

R ot

or’ ar’
[0-¢”{ERM‘1J‘1&(1 zmﬂRzﬂ?@%
f(% azsz: | 3 R ) 3 dr ot
or 62_2 /0202 Rjell 1 3 4/3 1 sz ’ 62p2
——a, +—a, — 2|l = | 2
3¢\ 4 4 pa;\ 0t ) 0Ot

APPENDIX 2: THE LIQUID CONSERVATION EQUATION
The energy conservation of incompressible liquid in a coordinate system with origin the center of
the bubble without internal heat sources is
(B 0f 200 ) 2-1
r or (r or j (2-1)

Here the liquid temperature is a function of time and radius 7, =7, (z,r) and therefore

o7, 6T
4
or ar

ar, aTd ard

T r

(2-2)
Setting the coordinate system at the interface
LI R(7) ’
o

(2-3)

where 0<x<1, R (7)<r<R(7r)+6, r=5x+R(r) the temperature is then a function of the time
and the distance from the surface

T, :Tz[r,rzé‘x+R(r)]:T T x)
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and

ar, = (aT aTjd v gy (2-4)
0 or

T or

Comparing equations 2-2 and 2-4 we obtain

[%j _on oL [aTj _s9h (2-5, 6)
or ). oOr 6 Ox or

Solving with respect to the original derivatives we have

T, (OT]’GT (GTJ (aTJ or @ di (2-7-8, 9, 10)
6r 5 ox or or o\ ox or dr dr

Applying to the original energy conservation equation for & = const results in

(5 -# ;(5]{ {3 }0 (2-11)

or for §=1

(5] A o

see Lee and Merte [19]. As already mentioned we see that the convection term disappears.
APPENDIX 3: PRESSURE EQUATION FOR THE BUBBLE

Equation 3-1 is the so called pressure equation or volume conservation equation for the bubble. It
is in fact Eq. 5.207 in Kolev [17] written for single gas sphere

1 dp 13 lo 1 ﬂpl 3 c o lo ' 1 d}/,

13 3 fgme_ r(p)-1 =L 9% 3-1
pal dr  p R (o), = T P [é’s SR {ql (ow), c‘”[ () 1]} 7, dr -1
Here
[%j :[@j i (3-2)

s, ) T, L Cp
P P (3-3)
), T

7, 1s the ratio of the bubble volume to the initial volume
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V 3
A/ 3.4
e [ j (3-4)

and therefore

A dy, 3 dR

y, dr R drt ' (3-5)

The change of the bubble radius with the time consists of the mechanical component dictated by
the force balance (dR, /dr) and of a component depending on the mass transfer as follows

4R _ (ﬂj _L( o). (3-6)

Replacing 3-2, 3, 5, 6 into 3-1 results in

L 3[(1 1Y) e (dR U 3 e (e o )
el e ()|t e 69

P P plcpIY; R,

Neglecting the mass transfer and assuming perfect gas this equation reduces to the one derived
by Prosperetti and Crum [27], Kamath and Prosperetti [13] from the mass conservation. The
heat transfer contribution on the bubble pressure change

Kb
is taken in this form into account by many authors e.g. Prosperetti and Crum [27], Kamath and

Prosperetti [13], Nigmatulin [23], Kim [14, 15, 16]. Defining the pseudo-isentropic exponent as
x = pf(pa’) and rearranging I obtain

dn [pl'l(Rf] :i{_(i_iJ(/Dw)la + qre —(PW); Ch [T’(Pl)_ ﬂ]]dr (3-8)

R, P P : PiCp T,

or in finite difference form

pena( ) p{ﬂ“ L Ly £ (o) [T'(pl)‘ﬂ]} (3-9)

R R P P pic, T

Compared with Eq. 3-7 this equation has the advantage that if numerically evaluated the pressure
in the bubble remains always positive.
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For no heat and mass transfer across the interface the equation reduces to the well known
isentropic pressure volume relation p, ~ plO(Rw /R, )3K, Plesset and Zwick [24] or for isothermal

state change p, ~ p,,(R,/R )3, Dergarabedian (1953). For isothermal state change of bubbles

with constant number density p, ~ p, (/) -

APPENDIX 4: BUBBLE ENERGY CONSERVATION

The pseudo-entropy form of the energy conservation is

dT dp 3 o o o
P g g = L4 =) (1)) (@-1)

Defining the pseudo isentropic exponent « = pa;/p, ~c,, / (cp1 - Rl) and rearranging I obtain

(o k—13A7 |
Lo L] e g (r()-1)]. (42)

Prosperetti and Crum [27], Kamath and Prosperetti [13] solved numerically the gas energy
conservation equation for the case of no mass transfer at the interface

oT  oT\ ap, 1 0( ,, o
pen( Eovu T -2 L2 24 %00 (43)

by considered an uniform pressure inside the bubble in order to compute accurately the bubble
side heat transfer. Considering processes without mass transfer the liquid energy conservation
equation was neglected in this case because the main heat transfer resistance is at the gas side.
This scheme was combined with homogeneous one dimensional model of a bubbly flow by Kim
[14, 15, 16]. Kim has demonstrated that important non-linear effects of the wave propagation can
be considered.

7. NOMENCLATURE

Latin

a temperature conductivity, m/s

c, specific capacity at constant pressure, J/(kgK)
D, bubble diameter, m

Ds droplet diameter, m

hte heat transfer coefficient, W/(m?K)
h specific enthalpy, J/kg

Nu = htc2R, /A, Nusselt number, dimensionless

Pe Peclet number, dimensionless

p pressure

0 accumulated heat transferred from the surface into the liquid, J

¢ heat flux from the liquid interface into the gas, W/m?

(24/28)



The 14" International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14)
Hilton Toronto Hotel, Toronto, Ontario, Canada, September 25-29, 2011.

e heat flux from the gas interface into the liquid, W/m?
R, bubble radius, m

r radius, m

T temperature, K

u radial velocity, m/s

x =r—R (r), distance from the bubble surface, m

Greek

B =(R//R,) , dimensionless

& density ratio, dimensionless

7, (R,/R,) , ratio of the bubble volume to the initial volume, dimensionless

At time step, s
Ah evaporation specific enthalpy, J/kg

Log Number: 311

Auf, =u" —u)” , difference between the gas interface velocity and the liquid interface velocity.
AV,,  bubble velocity minus liquid velocity, m/s

) normalizing length, m

K isentropic exponent, dimensionless

A thermal conductivity, W/(mK)

n dynamic viscosity, kg/(ms)

o, eigen frequency of bubble oscillation, 1/s

o surface tension, N/m

el density, kg/m?

(pw)” mass flow rate from the liquid interface into the gas, kg/(m?s)
(pw),” mass flow rate from the gas interface into the liquid, kg/(m?s)
T time, s

Subscripts

1 Gas, bubble

2 Liquid

0 Initial

mom computed by use of the momentum equation

Superscripts
' saturated liquid
saturated vapour
L inside the liquid interface to the gas
2 inside gas interface to the liquid
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