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Abstract 

The response of bubbles-cloud in thermodynamically meta-stable liquid influences all acoustic 
processes in multiphase flows. System computer codes with single pressure concept widely used 
in the industry does not take this into account. This paper demonstrates the need of extension of 
the existing computer codes to at least two-pressure concepts in order to adequately describe for 
instance condensation oscillations of steam in sub-cooled liquid. Review of the state of the art is 
given in Appendixes. The symmetric bubble dynamics mathematical description is proposed 
based on "two-phase" Rayleigh-Plesset equation together with analytical model for the bubble 
parameters and high accuracy numerical solution of the heat conduction problem. The model is 
validated on evaporation and condensation experiments. Finally self-triggered oscillation system 
is demonstrated for 5 mm bubbles in strong sub-cooled water resulting in high internal bubble 
pressure 

1. INTRODUCTION 

If liquid is heated for whatever reason at temperatures higher than the saturation temperature at 
the local pressure generates bubbles. Vapour enclosed in cavity with interface colder than the 
saturation temperature at the bubble inside pressure condenses and causes bubble-collapse. In 
principle, the pressure difference between the inside and outside of a bubble cause the 
mechanical movement resisted by the viscosity and surface tension. Simultaneously, heat and 
mass transfer at both sites of the interface cause pressure change and then again this pressure 
change has a feed back on bubble interface motion. After more than 80 years of research we 
finally know the phenomena and the equations describing it. The literature describing bubble 
radius as a function of initial parameters and time by solving these equations with different 
degree of complexity is huge, mainly because of the attempts to obtain closed analytical 
solutions for which obtaining simplifications are inevitable. But now the computers are so 
powerful that direct numerical simulation of the one-dimensional problem is easily quickly done. 
The subject of this paper is to demonstrate such a solution, to relate it to the state of the art and to 
compare it with experimental data. Finally, a discussion is provided how to couple such on small 
scale physics with large scale physics in multi-phase flow computer codes. 

2. THE SYSTEM OF PDE'S DESCRIBING THE PROBLEM 

Consider a symmetric bubble in incompressible liquid. The equations describing the process are: 
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see [18, 42]. 
Equation 1 is the momentum equation for an incompressible liquid integrated from the radius 

of the bubble to infinity. This equation is known as the Rayleigh-Plesset equation. Appendix 1 
gives its derivation. 

Equation 2 is the energy conservation equation for a symmetric incompressible liquid in 
spherical coordinates. The origin of the coordinate system is at the inter-face of the bubble. The 
spatial coordinate transformation used to eliminate the convective term is x=r—R(r) , see 

Appendix 2. 
Equation 3 is the so called pressure equation or volume conservation equation for the bubble. 

Its derivation is given in Appendix 3. 
Equation 4 is the energy conservation equation in pseudo-entropy form. The derivation is given 

in Appendix 4. 
The change of the bubble radius with the time consists of the mechanical component 

(a/dr).  =(Rr1 — Or dictated by the force balance (Eq. 1) and by a component depending on 

the mass transfer as given with Equation 5. 
The interfacial heat fluxes are defined as follows. The heat flux from the inter-face to the vapor 

is defmed by Eq. 6. The heat flux from the interface to the liquid is defmed by Eq. 7. The 
interfacial energy jump condition is expressed by Eq. 8. 

.•7'1' = h4cr (T26 —T) , 

4216 = /12 ( 
aT

) = htC12cr (T 216 — T 2 ), 

ax x=o

htc126 (7';' — T2 )+ htc °. (T126 — T) 
(Pw)2 = 11126 hi26 

The gas and liquid side heat transfer coefficients are formally htc26 and htc216 . Some authors prefer 
to use the surface temperature as independent variable by enforcing a kinetic condensation and 
evaporation at the surface using the so called accommodation coefficients. The reader will fmd 
such examples in [32] and [24]. The gradient of the liquid temperature field needed in Eq. 7 
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results from the solution of the liquid energy conservation equation. The liquid side heat transfer 
is essential for single component systems. The gas side heat transfer is important for gas bubbles 
and pressure oscillations not allowing mass transfer. The gas side heat transfer coefficient can be 
computed either by solving the energy conservation equation for the gas or by means of a not very 
accurate empirical relations in which 

M4' = htc2' 2Ri

•11 
(9) 

where Nui2cr = 1 for stagnant bubble. For moving bubble IA v12 1 > 0 , which is not the subject of this 

consideration, due to the internal circulation the heat transfer improvement is a function of the 
relative velocity. [6] correlated their experimental data for condensation on droplets with the 
following expression for the Nusselt number, 

Nui2c1 = (max I, 0.53pe7.454) 

where the definition of the Peclet number is used 

D 3 1 A Vi3 1 rli
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For bubble interaction one can postulate 
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instead. Whether the coefficient will remain the same also for bubble internal circulation is not 
clear. Nigmatulin [23] derived approximate formula to compute the gas-side heat transfer due to 
surface motion of stagnant bubble: 

Nui2°. =  Pe for Pe >100 , 

Nu;' =10 for Pe 100 , 

where 
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3. NUMERICAL SOLUTION METHOD 

The Rayleigh equation is discretized by using a second order method 
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The liquid energy conservation equation is solved using a second order method of Lax and 
Vendroff, see in [30], applied as follows. First, an explicit half time step is made and all 
temperatures are computed 

T 2n-IF1/2 
2

aAx2 A2i-
I; - 27'2i ± ± —& (/'2,i+i - T2 i-1)1 = 0 • (19) 

With the new temperature values the spatial terms are computed again and a complete time step 
is then made 

a2Ar +1/2 n+1/2 n+1/2 AX n+1/2 Tn+112 n7,n+1 - T T" -2T . +T . + —(T2,1+1 = " • 2,i 2 2,1+1 2,, 2,i-1 
Ax 

(20) 

The dimensionless time a2AT/Ax2 is called grid Fourier number. Axk indicates the importance 
of the sphericity close to the bubble. The ordinary partial differential equations 3 and 4 are 
solved by first order Euler method giving the new pressure p, and temperatures Ti inside the 
bubbles in both steps. Then the bubble side interface temperature is the saturation temperature at 
the vapour pressure p1 and at the other end no heat flux is specified: T2n1+1/ 2 = r (pi ) and 
T 271+1 = r (p,) and T 2z1/ 2 = TLF.a.1/21 and T 2nL1 = 7,271_1 The x-region along which the liquid energy 

conservation equation is integrated is associated with the density of the bubbles per cubic meter 
n, as follows 
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Actually Nigmatulin proposed in 1978 the so called concept of "cellular medium" considering 
the processes within the sphere with R ll = Rioai-1/3 • This allows taking into account the effective ce 
thickness of liquid layer around each bubble. The larger the bubble concentration at a given 
initial radius is, the smaller the thickness of the effective layer. This leads to different behaviour 
of the bubbles depending on the bubble number density. Note the difference to [19] using 

E Ax, = 0.002 m 

which does not couple the problem to the multiphase flows. 

4. VALIDATION OF THE METHOD 

4.1 Bubble collapse 

I will first validate the method by using the bubble collapse experiments by [7] for water. Given 
was the initial pressure, subcooling and bubble radius, see Table 1. 

Table 1. Initial and boundary conditions for the experiment by [7] 

Figs. in [7] pin bar R10 in mm T' — T 2 in K 

9 1 3.657580 12.2 
10 1 3.185503 8.7 
11 1 2.983309 8.3 
12 1 4.372804 5.6 
13 1 3.990081 5.0 

Measured was the bubble radius as a function of time. This is also predicted by the method and 
compared in Figs. 1 to 5. First of all we observe from Fig. 1 that there are residual non-
condensable gases in the bubble because otherwise the stable final diameter of 0.25 mm can not 
be explained. Having this in mind, the very good agreement with the initial bubble collapse 
period and the complete condensation for a single component system is well understood. The 
most remarkable feature is that the selected numerical method does not damp the natural 
oscillations contained in the Rayleigh equation. The inertia leads to overshooting. The surface 
tension acts like a spring. The viscosity introduces little damping. The accuracy of the integration 
influences the resolution of the pressure amplitudes as seeing from Fig. 1. The experiment on 
Fig. 2 also indicates residual gases sufficient to stop the condensation at 0.5 mm. Similar is the 
situation with the experiment presented on Fig. 3 where the fmal radius is about 0.4 mm. 
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Fig. 2 also indicates residual gases sufficient to stop the condensation at 0.5 mm. Similar is the 
situation with the experiment presented on Fig. 3 where the final radius is about 0.4 mm.  
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Figures 5 and 6 indicate excellent agreement with the data. 

Conclusion: The so formulated numerical method is in a good position to adequately describe 
bubble collapse without limiting simplifying assumptions characteristic for closed analytical 
solutions. 

Now let as see the influence of the increasing subcooling on the collapse process. Fig. 6 presents 
a computed collapse of initially 5mm-bubble in water at atmospheric pressure with subcooling 
from 5 to 80 K. In small subcoolings there are only slight oscillations of the bubble radius. The 
amplitudes increase with the increasing subcooling. 
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Figures 5 and 6 indicate excellent agreement with the data. 
 
Conclusion: The so formulated numerical method is in a good position to adequately describe 
bubble collapse without limiting simplifying assumptions characteristic for closed analytical 
solutions.  
 
Now let as see the influence of the increasing subcooling on the collapse process. Fig. 6 presents 
a computed collapse of initially 5mm-bubble in water at atmospheric pressure with subcooling 
from 5 to 80 K. In small subcoolings there are only slight oscillations of the bubble radius. The 
amplitudes increase with the increasing subcooling. 
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Figures 7 show the corresponding pressures and temperatures inside the bubble. At 80 K 
subcooling we see strong pressure and temperature amplitudes. This explains the observed 
triggering of steam explosions in melt-water mixtures in which the water is strongly subcooled. 
The collapsing bubbles generate pressure waves which may lead to such a local pressure pulse 
generation that can trigger thermal explosion of a molten drop falling in water. 

Conclusions: The presented numerical method does not damp the strong bubble oscillations in 
strong subcooling which is very remarkable. 

4.2 Bubble growth 

The experimental data by Plesset and Zwick [24] presents the bubble size as a function of time 
for sub-atmospheric pressure. The bubbles are generated on heated surface at sub-atmospheric 
pressure and wall superheat given in Table 2. 

Table 2. Bubble growth experiments on heated plate performed by Plesset and Zwick [24] 

p in Pa T' inK T —T' inK Ja 
wH20/Na H20/Na 

101325 373.12/1154.6 3.1 9.3/2.78 
101325 373.12/1154.6 4.5 13.48/4.04 
101325 373.12/1154.6 5.3 15.9/4.76 
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Fig. 7. Computed bubble pressures and temperatures as functions of time for water at 1 bar and 
different subcoolings. Void 0.1 

Figures 7 show the corresponding pressures and temperatures inside the bubble. At 80 K 
subcooling we see strong pressure and temperature amplitudes. This explains the observed 
triggering of steam explosions in melt-water mixtures in which the water is strongly subcooled. 
The collapsing bubbles generate pressure waves which may lead to such a local pressure pulse 
generation that can trigger thermal explosion of a molten drop falling in water.  
 
Conclusions: The presented numerical method does not damp the strong bubble oscillations in 
strong subcooling which is very remarkable.  

4.2 Bubble growth 

The experimental data by Plesset and Zwick [24] presents the bubble size as a function of time 
for sub-atmospheric pressure. The bubbles are generated on heated surface at sub-atmospheric 
pressure and wall superheat given in Table 2. 

Table 2. Bubble growth experiments on heated plate performed by Plesset and Zwick [24] 

p in Pa T   in K 
H2O/Na 

wT T   in K Ja 
H2O/Na 

101325 373.12/1154.6 3.1 9.3/2.78 
101325 373.12/1154.6 4.5 13.48/4.04 
101325 373.12/1154.6 5.3 15.9/4.76 
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The initial size in the computations was set to the critical size computed as follows 
R„ =[2(3-27' (p)11(p"AhATup ) . The predicted sizes are presented in Figs. 8, 9 and 10. 
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The comparisons show that the model predicts the initial bubble growth period well and then 
starts to deviate at higher bubble sizes — probably because the bubbles detach and the relative 
motion not taken into account here improve the interfacial heat transfer. Note, that the 
evaporation is a much more stable process compared to the condensation. 
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The initial size in the computations was set to the critical size computed as follows 
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The comparisons show that the model predicts the initial bubble growth period well and then 
starts to deviate at higher bubble sizes – probably because the bubbles detach and the relative 
motion not taken into account here improve the interfacial heat transfer. Note, that the 
evaporation is a much more stable process compared to the condensation. 
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4.3 USE IN COMPUTER CODES OPERATING WITH LARGE COMPUTATIONAL 
STEPS 

This author does not know a system computer code simulating multiphase flows by using more 
than one pressure in a cell. Although 30 years ago it was found that two pressure systems recover 
hyperbolicy etc. this still did not fmd application in modern code design. Now if we are about to 
resolve acoustic processes the question arises: is it possible with single pressure models? "The 
answer is no, it is not." See the pressure inside the bubble from Figures 1 through 5. Obviously, 
only a separate pressure field for the vapour can have the memory along the time axis at which 
moment the mono-disperse bubble system in a cell is being during its dynamics. What is possible 
now is to trace the processes in and around the bubble with a much smaller time step, to compute 
the integral heat and mass transfer terms and to supply them to the macro-scale solver. An 
example for a mixture with 0.1 volumetric part void is given in figures 11 a) and b). Figure 11 a) 
shows the local instantaneous mass source term and figure 11 b) the mass source term averaged 
over the elapsed time since the beginning of the process. Using the second term in a system 
computer code using locally time averaged equations is the correct way to reach ultimate 
stability. But the accuracy control remains a question of proper selection of the time step. 
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In any case I should emphasize once again that without the second pressure for the vapor an 
important acoustic part of the processes can not be simulated in system computer codes. Such is 
the case for the well known dependence of the travel velocity of oscillations that is depending on 
the frequencies. 

5. COMPARISON WITH THE STATE OF THE ART 

The best review to this subject is given by [21] and I will not repeat it here. Rayleigh [28] 
considered the zero-pressure cavity collapse controlled only by the equality of the compression 
energy and the kinetic energy of the liquid resulting in 
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and after integration computed the time necessary for the complete collapse 
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the case for the well known dependence of the travel velocity of oscillations that is depending on 
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and after integration computed the time necessary for the complete collapse  
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where /3 =(R i l R io ) 3 . Then Rayleigh evaluated the pressure field around the bubble during the 

bubble collapse by integrating the mass and momentum equation of the liquid 
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So the main direction for the description of the mechanical interaction in the incompressible 
liquid was given by Rayleigh and remained up to now. Equation 25 is equation 1 with neglected 
viscosity surface tension and set bubble pressure equal to zero. Therefore the result by Rayleigh 
is already contained in our system of PDEs. 

Plesset and Zwick [24] introduced the liquid energy equation for incompressible liquid. They 
found the following solution for the surface temperature 
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The combination of momentum and energy equation is at this point still not used. Plesset and 
Zwick [24] assumed no difference between the surface and vapor temperature and therefore 
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gives the relation between bubble radius and temperature gradient. Neglecting the 
compressibility of the vapour the authors used 
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gives the relation between bubble radius and temperature gradient. Neglecting the 
compressibility of the vapour the authors used  
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results in the famous integral-differential equation describing bubble dynamics. Furthermore, 
with several additional simplifications they come to an equation for the so called thermal 
controlled bubble growth 

Ahpi dRi = \13a2 pc 2 ry; T, (1711. (33) 
dr irr L

Plesset and Zwick estimated also that the diffusion of non-condensable gases in the liquid is 
much slower process and therefore has not to be considered for intensive evaporation or 
condensation processes. 

Dergarabedian (1953) introduces the surface tension of the momentum equation and considered 
the non-condensible gas component inside the vapour keeping its mass constant during the 
process and behaving isothermal 

Pl,n — 13 10,n ( R 10 / R 1)3 • 

He reported valuable bubble growth experiments for water used later by many authors. He used 
Plesset and Zwick's solution for the surface temperature and then used a quadratic dependence 
between saturation temperature and saturation pressure. Then, the pressure inside the bubble was 
set to the saturation pressure and the momentum equation is integrated. 

Forster and Zuber [8] followed the same approach as Plesset and Zwick and Dergarabedian but 
their solution of the liquid heat conduction problem was different 

Ri (r*l(dR1
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The results compared very well with the experiments by Dergarabedian for water with 
subcooling between 1.4 and 4.5 K. Finally the authors obtained the following approximation for 
bubble growth 

dR \lira Ahpi = 
dr 4r 

p2cP 2 [T2 —T'(p)]. (35) 

Scriven [31] compared both equations 33 and 35 with the data of Dergarabedian and concluded 
that Plesset and Zwick's equation is in better agreement. The idea how to couple analytically, not 
numerically, the heat conduction problem with the momentum equation attracted the attention of 
Mikic, Rohsenhow and Griffith [20]. They simplified the equation 1 to 

3 (dRi p2 —  
—0 

2 dr ) 673'2 
(36) 

The pressure difference can be replaced by temperature difference using the linearized Clausius 
and Clapeyron equation 
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resulting in 
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(37) 

where A2 = 2 [T2 - T'(p2 )1—dll  . The Plesset and Zwick [24] equation (33) is then used. By setting 
36132 d7' 

7,21a = Tr (pi ) 

dR 3a Ahpi = \I p2cP 2 ET2 — 
dr gr 

Excluding the interface temperature results in analytical expression for the time derivative of the 
bubble radius 

1 ( dRi )2 g Nir AhPi  dR 
1 1=0 

A2 dr ) 3a2 —T'(p2 )1p2cp2 dr 
(38) 

This result reduces to Rayleigh's results with strong non-equilibrium and to the thermal 
controlled bubble size change for small non-equilibriums. In any case, the non-linarities like 
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This result reduces to Rayleigh’s results with strong non-equilibrium and to the thermal 
controlled bubble size change for small non-equilibriums. In any case, the non-linarities like 
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non-monotonic temperatures profiles around the surface, surface tension, viscosity and second 
order terms in the momentum equation describing oscillation processes are excluded which is the 
main limitation of this, in many practical cases, very useful approach. 
Coming back to the 60s: Scriven [31] formulated the problem already in 1959 with equations 1 
and 2. In addition to the heat transfer he considered also the heat diffusion by the mass 
conservation equation having the same form as the Fourier equation. As already stated by 
Plesset and Zwick, the mass diffusion is much slower than heat diffusion. Scriven uses his own 
substitutions and come also to integral solution of the Fourier equation which was then estimated 
numerically for variety of situations. Later on this solution is serving as benchmark for some 
authors for checking their approximations. In his numerical estimate the coupling with equation 
1 is not made. Therefore, dynamic oscillation effects can not be derived only from the heat 
transfer solution. I have to note that computationally the work for estimation of the Scriven' s 
integral is larger then for the solution of Eq. 19 and 20. 

Zuber [39] discussed first the Fritz and Ende [9] solution 

Ahioi 
dr 

= P2c 2 ET 2 - r (Pin 
dR 

\lgr ' 
(39) 

and then considered growth and subsequent collapse in subcooled liquid near heated wall. With 
the observation that the thermal boundary layer was displaced by the growing bubble the authors 
come to the conclusion that as the bubble size reaches a maximum the condensation heat per unit 
time and unit wall surface almost equals the wall heat flux. 

Vira20r.=.1 2 (Tw -T')14:. (40) 

With this idea they obtained a maximum of the bubble size. The maximum radius is then 
computed by the thermal bubble growth formula. For the collapse phase the authors proposed to 
use Eq. 1 together with bubble growth equation in which the heat flux is reduced by the wall heat 
flux considered as a condensation heat flux. This mechanism is difficult to imagine because 
bubble growth and departure happens in much more complex circumstances and the collapse 
happens not at the place where the bubble was born. 

Hewit and Parker [10] performed liquid nitrogen experiments and concluded that thermally 
controlled bubble growth models agree with data within a 25% error band but thermally 
controlled bubble collapse models do not represent satisfactorily the reality. 

A complete numerical treatment was first made by Theofanous et al. [32, 33]. Equation 1 is used 
coupled with the thermal solution. The authors assumed a kinetic molecular transfer across the 
interface and come to the conclusion that the temperature is always close to the saturation 
temperature at the vapour pressure which was an important fmding used later by many other 
authors including me. The solution of the Fourier equation was performed by assuming a thin 
boundary layer and monotonic quadratic temperature profile at the boundary. 

T - T21' =(T2 - T21') 
2(r-Ri ) (  r- R1 )21

8 8 
' J

(14/28) 
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coupled with the thermal solution. The authors assumed a kinetic molecular transfer across the 
interface and come to the conclusion that the temperature is always close to the saturation 
temperature at the vapour pressure which was an important finding used later by many other 
authors including me. The solution of the Fourier equation was performed by assuming a thin 
boundary layer and monotonic quadratic temperature profile at the boundary.  
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with 
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as proposed before by Bornhorst and Hatsopoulos [3]. Inserting the profile in the energy 
equation and integrating between RI and RI - + 8 results in an ordinary differential equation 
connecting the change of the boundary layer thickness with time with the change of the bubble 
radius and of the bulk temperature. The so obtained equation was then included in the model 
instead of the Fourier equation. The model very well predicted the condensation and evaporation 
data obtained with superheats or subcoolings of few degrees which were the first proof that this 
direction of development is very fruitful. Such method was used also by Casadei [5] who used 

(T - T;cr)/(T2 - T211 = [(R1 — 1-)16]2 instead of Eq. 41. The limitations are in the assumptions made 

by resolving the temperature profile. Lee and Merte [19] used equations 1 and 2 exactly in the 
same form. They designed a Runge-Kutta method for solving the momentum equation and the 
Patankar finite volume method for resolving the temperature field dropping the assumption of 
monotonic profile. They also designed a non-equidistant grid having better resolution close to the 
interface. Naude and Mendez [41] reported that second order discretization in time and third 
order in space is needed to resolve the liquid temperature profile especially in the fmal collapse 
stage. The energy conservation equations for the bubble was not used by these authors and 
replaced with the saturation condition at the surface temperature at any time. This assumption 
does not allow having a non-equilibrium temperature in the bubble for very strong oscillations. 
This makes the main difference to our method. Therefore, the method I use here omits the 
disadvantages of assuming a monotonic profile in the liquid and not using the energy 
conservation for the vapour. This together with the simplicity of the numerical method is the 
main step forwards with respect to these authors. 

In their detailed review of the state of the art up to 1977 Plesset and Prosperetti [26] used as a 
starting point the combined equation 1 and 2 as derived by Plesset and Zwick [24] to study 
oscillation behavior of such systems. Assuming that the gas state change is isentropic 

Pl,n = 1310,n( R 10 1 R1)3' the authors derived the Eigen frequency of oscillation to be 

2 3K p 2o 
wo = 3 ' 

P2 R 120 P R  10 

(43) 

Jones and Zuber [12] pointed out that the vapour density change in Eq. 29 is important especially 
in pressure transients and proposed an approximation to compute the saturation vapour density 
following the surface temperature change. Further they used the Carlsow and Jaeger [4] solution 
of the Fourier equation for heat slab with variable temperature difference at the one boundary 
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to compute the heat flux at the bubble surface 
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stage. The energy conservation equations for the bubble was not used by these authors and 
replaced with the saturation condition at the surface temperature at any time. This assumption 
does not allow having a non-equilibrium temperature in the bubble for very strong oscillations. 
This makes the main difference to our method. Therefore, the method I use here omits the 
disadvantages of assuming a monotonic profile in the liquid and not using the energy 
conservation for the vapour. This together with the simplicity of the numerical method is the 
main step forwards with respect to these authors. 
 
In their detailed review of the state of the art up to 1977 Plesset and Prosperetti [26] used as a 
starting point the combined equation 1 and 2 as derived by Plesset and Zwick [24] to study 
oscillation behavior of such systems. Assuming that the gas state change is isentropic 

 3

1, 10, 10 1n np p R R
  the authors derived the Eigen frequency of oscillation to be  

 
2
0 2 3

2 10 10

3 2p

R R

 
 

  .         (43) 

 
Jones and Zuber [12] pointed out that the vapour density change in Eq. 29 is important especially 
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to compute the heat flux at the bubble surface 
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with T2 = const , AT(r) = T; )̀. (r)— T2 , AT(0) = (Pio) — T2 and ks the sphericity correction: g I 2 by 

Foster and Zuber, by Plesset and Zwick. Assuming different functions for the pressure 
change and therefore for the surface temperature change the authors integrated Eq. 45 
analytically and derived expressions for the bubble size change without connection to the 
momentum equation. Interestingly, the authors obtained good comparisons for bubble growth in 
variable pressure field. A very similar approach was used by Toda and Kitamura [34]. They also 
allow for the vapour density to change and derive an integral solution for the thin boundary 
layer. Alamgir [2] proposed an analytical approximation for the density change combined with 
the Jones and Zuber solution. Again not coupling with the momentum equation they obtained 
acceptable accuracy for 4 experiments performed by them self with water at about 3 bar and 
superheating of about 4 to 6 K. Wang and Bankoff [36, 37] extended the Jones and Zuber [12] 
solution to bubble growth at the wall by modifying the equivalent volume of the bubble attached 
at the wall. Good comparison with their data for decompression experiments is reported. Tsung-
Chang and Bankoff [35] considered the problem with linear pressure change and provided an 
approximate analytical solution to the Plesset and Zwick integral considering variable vapour 
density 

p Ah de LA(,-.)R(i- )] 
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re 

Winters and Merte [38] are also interested in describing the bubble behaviour in variable 
pressure fields. The authors concluded that for bubble growth the monotonic temperature profile 
is a good approximation but for bubble collapse the temperature field should be considered as 
non monotonic. In this case they write the Carlsow and Jaeger [4] approximate solution of the 
Fourier equation in the following form 

4;1. - = k  A2 
s

T' (pm ) — T2 n + 2 (,rm) _ 7;, ,,.(i.m 1)1 

J - m=1 I" —am J — 
(47) 

Reynolds and Berthoud [29] solved the Fourier equation by making the same transformation as 
Plesset and Zwick 

1 - 
h = —3 (1-3 — =I[Ri(11

4 
dr*

0 

and assuming a thin thermal boundary layer. Their result for the accumulated heat in J 
transferred from the surface into the liquid is 
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allow for the vapour density to change and derive an integral solution for the thin boundary 
layer. Alamgir [2] proposed an analytical approximation for the density change combined with 
the Jones and Zuber solution. Again not coupling with the momentum equation they obtained 
acceptable accuracy for 4 experiments performed by them self with water at about 3 bar and 
superheating of about 4 to 6 K. Wang and Bankoff [36, 37] extended the Jones and Zuber [12] 
solution to bubble growth at the wall by modifying the equivalent volume of the bubble attached 
at the wall. Good comparison with their data for decompression experiments is reported. Tsung-
Chang and Bankoff [35] considered the problem with linear pressure change and provided an 
approximate analytical solution to the Plesset and Zwick integral considering variable vapour 
density 
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and assuming a thin thermal boundary layer. Their result for the accumulated heat in J 
transferred from the surface into the liquid is 
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6. CONCLUSIONS 

(48) 

This work demonstrates how important is considering a bubble pressure separately from the 
system pressure as a dependent variable in multiphase fluid dynamics. Inserting this concept in 
future system computer codes will allow resolution of acoustical processes which are still not 
resolved in existing system computer codes widely used in the industry. The key problem in this 
step is fast and accurate solver of the transient Fourier equation around the bubble with variable 
boundary conditions. 

APPENDIX 1: THE RAILEIGH-PLESSET EQUATION 

Consider the

n

 liquid mass and momentum conservation equations valid in R1 < r < 1?2,,e,„ where 

2,ce11 =[31( Lig1)11/3
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u

2 
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au au ap a2u Momentum: 2712 2 = 0 . az- 2
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(1-2) 

The main idea by the derivation of the equation describing the bubble interface motion with 
respect to the centre, is to integrate the momentum equation along R1 < r < 1?2cen . It will be 

assumed that at Rzcell the pressure is the liquid pressure. First I will present the known formalism 

for incompressible liquid and then I will extend the formalism for large time changes of pressure 
with the time. 

Incompressible liquid: For incompressible liquid the mass conservation simplifies to 
a(r2u2 War = 0 or 

ar R; aR1
— = U2 (r) = . 

r2 az-
(1-3) 

Here the radius is considered to be only a function of time, R1 = RI (r) . Rayleigh (1917) was the 

first to equalized the expansion energy of a bubble from radius R10 to R1 

(p1 - p2 ) 4g J r2 dr = (pi —p2 )34 g (Ri3 —R,30 ) 
Rio 

(1-4) 

to the energy consumed to change the kinetic energy of the surrounding liquid 
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This work demonstrates how important is considering a bubble pressure separately from the 
system pressure as a dependent variable in multiphase fluid dynamics. Inserting this concept in 
future system computer codes will allow resolution of acoustical processes which are still not 
resolved in existing system computer codes widely used in the industry. The key problem in this 
step is fast and accurate solver of the transient Fourier equation around the bubble with variable 
boundary conditions.  
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to the energy consumed to change the kinetic energy of the surrounding liquid 
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and obtained the equation used later in thousands of papers 
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(1-6) 

Red, —>00. 

Equation 1-6 is valid for no mass transfer at the surface. For mass transfer at the surface the 
interface velocity of the liquid is 

20 

Ul2cr = 1,4cr = (1 — }i 2 cr = 
1— 

( P12cr j dR1Acr
pl2a dr 

(1-7) 

Therefore the velocity at any radius in the liquid is related to the bubble radius derivative as 
follows 

u2=(1—e 
1? 

)Pi;  r2 dr r2 dr • (1-8) 

In equation 1-6 the history of the expansion that has to satisfy the momentum equation is not 
reflected. This history can be considered if the momentum equation in the liquid is integrated 
from R1 to Red, . For this purpose we need the participating liquid velocity first and second 
derivatives. 

Assuming non compressible liquid they are obtained by differentiating Eq. (1-8) as follows: 
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Replacing the velocity and its derivatives in the momentum equation 1-2 results in 
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Replacing the velocity and its derivatives in the momentum equation 1-2 results in 
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Integrating between R1 to R, 
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as 

used usually in the so called two pressure models of bubbly flow for analysing of acoustic 
processes e.g. Akhatov et al. [1]. For a l —> 0 which means R2,cell —> op the above equation reduces 

to 
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(1-16) 

which is the so called Rayleigh-Plesset equation used by many authors, compare with Eq. 10 in 
Scriven [31]. 

Hijikata et al. ([11] used in a one dimensional model the Rayleigh-Plesset equation by replacing 
dRi /dr = ul dRi /dx . Following this idea 

dRi = aRi +u VR 
di- az- 1 1

and therefore 

)2 a2R i  a 

2  + 
- 0 . 

ar t  
+U . a z . 

, VR 1 + VR 1 —

aul

+ —

3 (

—aR1 + uivRi + P —P1 4'12 aRi 
az- 2 az- p2s R1 az-

(1-17) 

(1-18) 

Prosperetti and Crum [27], Kamath and Prosperetti [13] tuck into account some compressibility 
effect in the liquid by deriving the equation describing the bubble radius dynamics. 

Compressible liquid: The complete system 1-1 and 1-2 together with the energy conservation in 
the liquid has to be solved in this case. Replacing the density differentials in the mass 
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used usually in the so called two pressure models of bubbly flow for analysing of acoustic 
processes e.g. Akhatov et al. [1]. For 1 0   which means 2,cellR   the above equation reduces 

to 
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which is the so called Rayleigh-Plesset equation used by many authors, compare with Eq. 10 in 
Scriven [31].  
 
Hijikata et al. ([11] used in a one dimensional model the Rayleigh-Plesset equation by replacing 
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and therefore 
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Prosperetti and Crum [27], Kamath and Prosperetti [13] tuck into account some compressibility 
effect in the liquid by deriving the equation describing the bubble radius dynamics.  
 
Compressible liquid: The complete system 1-1 and 1-2 together with the energy conservation in 
the liquid has to be solved in this case. Replacing the density differentials in the mass 
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conservation equation with their equals from the differential form of the equation of state results 
in 

1 (ap2 apt  ) 1 ap2 (as2 as2 ) 1 a 
+ U2 - + —+u2 + r2u )=0.

p2a22 ar ar p2 as2 ar ar r2 ar 2 

Here, only the case for large pressure changes with the time will be considered resulting in 

a (r2u 1 apt 

r2 ar 2 p 2C4 a • 

As in the case of incompressible liquid we have to derive from these equations the velocity and 
its derivatives, to replace in the momentum equation and to integrate it from the interface to the 
end of the cell. The velocity and the derivative are 

142 =s  R i2 dRi 1 ape 1 r r3 _ Ri3) 
r2 dr p2a22 ar 3 

au2 2 1 ape Ri2 dRi 1 aP2- u2 - 2s 
ar r p2a22 ar r3 dr p2a22 az-

a2u2 = 

are r4 dr 

au2 Ri2 a2 R'  HaRif _ 1 a2 p2 1(7.3 _Ri3) 
= 6   2 k ar r2 are R' r2 az- p2a22 are 3 

and therefore 

u R 1  dR )2 
6. 

R

1 

 dR i 1 ap 
+2E  

1 ( 3 I) R i2 dRi 1 ap2 1 
ape

 1(r3  
Ri 6,2 1   --- ) 

2 

au 

ar 
= _2 

r dr r2 dr p2a22 ar 3 r3 dr p2a22 
+ 2 

 ar p2a2 ar) 3 

Replacing in the momentum equation I obtain 
2 

(3 

1 

R2 a2 R 1 1 1 ap a2u2 
[ r2

+2 R1
( 

—SR,' = 
)(aR, )2

+— +12772 = ± 1 

p2s ar ar2r2 ar 2 r r' ar 1 3
d- 1 ) 

3e 

2 I? )22 dRi ap2

3 r3 )" dr ar 1
2 = 0 

3 1 ap, 1 a2P2 1 I P2 a 2 
—(= 
p2a22 ar ar L i 

After integration from the surface of the bubble to the end of the cell the momentum equation 
receives the form: 
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As in the case of incompressible liquid we have to derive from these equations the velocity and 
its derivatives, to replace in the momentum equation and to integrate it from the interface to the 
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Replacing in the momentum equation I obtain 
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After integration from the surface of the bubble to the end of the cell the momentum equation 
receives the form: 
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APPENDIX 2: THE LIQUID CONSERVATION EQUATION 

The energy conservation of incompressible liquid in a coordinate system with origin the center of 
the bubble without internal heat sources is 

S-Fi-S—a a 1/-2 S  = 0 . ar ar r2 ar ar 
(2-1) 

Here the liquid temperature is a function of time and radius T2 = T2 (r ,r) and therefore 

dT2 
a 

= dr + aT dr. aT i" a!' 

Setting the coordinate system at the interface, 

r — R(r) 
x= 

8 

(2-2) 

(2-3) 

where 0 < x <1, R 1 (r) <r < Ri (r)+ r=gx+ R(r) the temperature is then a function of the time 

and the distance from the surface 

T2 =T2 [r ,r = 6.x+ R(rn= T2 (r,x) 
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APPENDIX 2: THE LIQUID CONSERVATION EQUATION 
 
The energy conservation of incompressible liquid in a coordinate system with origin the center of 
the bubble without internal heat sources is 
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Setting the coordinate system at the interface,  
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and 

aT aT aT 
dT = ( 2 1 4 2 dr ± 2 dx

2 ar ar ar 

Comparing equations 2-2 and 2-4 we obtain 
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)x ar ' L ax ar 

Solving with respect to the original derivatives we have 
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Applying to the original energy conservation equation for S = const results in 
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(2-4) 

(2-5, 6) 

(2-7-8, 9, 10) 

(2-11) 

(2-12) 

see Lee and Merte [19]. As already mentioned we see that the convection term disappears. 

APPENDIX 3: PRESSURE EQUATION FOR THE BUBBLE 

Equation 3-1 is the so called pressure equation or volume conservation equation for the bubble. It 
is in fact Eq. 5.207 in Kolev [17] written for single gas sphere 
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y, is the ratio of the bubble volume to the initial volume 
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see Lee and Merte [19]. As already mentioned we see that the convection term disappears. 
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Equation 3-1 is the so called pressure equation or volume conservation equation for the bubble. It 
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v  is the ratio of the bubble volume to the initial volume 
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1 dyv 3dR1= 
yv dr RI dr 

(3-4) 

(3-5) 

The change of the bubble radius with the time consists of the mechanical component dictated by 
the force balance (dRich-) m and of a component depending on the mass transfer as follows mo

dRi _r dRi ) 1 (pwr 

dr dr )mom P2 2

Replacing 3-2, 3, 5, 6 into 3-1 results in 

1 dp _ 3 

ai2 dr R1

(3-6) 

1 1 )(pwr (dRi 1+  1  3 f (pwr [T, (pi ) (3-7) 
Pl P2 dr 1,,n J Plcp1T1

Neglecting the mass transfer and assuming perfect gas this equation reduces to the one derived 
by Prosperetti and Crum [27], Kamath and Prosperetti [13] from the mass conservation. The 
heat transfer contribution on the bubble pressure change 

3 lc _1 4,1,2o. 

R1 lc p1

is taken in this form into account by many authors e.g. Prosperetti and Crum [27], Kamath and 
Prosperetti [13], Nigmatulin [23], Kim [14, 15, 16]. Defining the pseudo-isentropic exponent as 
K = p Apa2 ) and rearranging I obtain 

1 
d In (pi" R, = —3

la 
1 1 ) g1

20
g120-(PW)2 Cpl [r (P1 1 T11

-(— 
Pl P2 

-- pw)2 ± dr 
P1 C plT1 

or in fmite difference form 

)3. 
31(A 

pi Rs p10  exp 
Ri 1 Al 1 p 

1 1 ) 
ipw)2a cpi LT, (pi \ 

) 

2 (pw)2 
+

 11 

(3-8) 

(3-9) 

Compared with Eq. 3-7 this equation has the advantage that if numerically evaluated the pressure 
in the bubble remains always positive. 
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The change of the bubble radius with the time consists of the mechanical component dictated by 
the force balance  1 mom
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Replacing 3-2, 3, 5, 6 into 3-1 results in 
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Neglecting the mass transfer and assuming perfect gas this equation reduces to the one derived 
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is taken in this form into account by many authors e.g. Prosperetti and Crum [27], Kamath and 
Prosperetti [13], Nigmatulin [23], Kim [14, 15, 16]. Defining the pseudo-isentropic exponent as 
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or in finite difference form 
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Compared with Eq. 3-7 this equation has the advantage that if numerically evaluated the pressure 
in the bubble remains always positive.  
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For no heat and mass transfer across the interface the equation reduces to the well known 

isentropic pressure volume relation p, z p10 (R10 /R1 )3' , Plesset and Zwick [24] or for isothermal 

state change p, z /310(Rio /RI )3 , Dergarabedian (1953). For isothermal state change of bubbles 

with constant number density pi z /310(aioia1 )K • 

APPENDIX 4: BUBBLE ENERGY CONSERVATION 

The pseudo-entropy form of the energy conservation is 

d7; dPi 3 re.- _(pw):  cpi (Ti2a _T 
i )1 • picpi —dr - dr RI L 1 (4-1) 

Defining the pseudo isentropic exponent K = p1cti2 /p1 rt: cd( cs  - R,) and rearranging I obtain 

1,, 1)/K- r
P I lc -1 3Ar [ • t2a  lo" „, i \ „.,\ 

T p.,.. Tio (- 1 X eXp 1- - qi -(pw)2 cs  (/ ' kpi ) - i i )1} . 
Po K Ri pi

(4-2) 

Prosperetti and Crum [27], Kamath and Prosperetti [13] solved numerically the gas energy 
conservation equation for the case of no mass transfer at the interface 

aTi al; api a (2 aTi A
(4-3) pics  Hai. + ui ar --az. - 

1 
r ar r /II  ‘, 

ar 

by considered an uniform pressure inside the bubble in order to compute accurately the bubble 
side heat transfer. Considering processes without mass transfer the liquid energy conservation 
equation was neglected in this case because the main heat transfer resistance is at the gas side. 
This scheme was combined with homogeneous one dimensional model of a bubbly flow by Kim 
[14, 15, 16]. Kim has demonstrated that important non-linear effects of the wave propagation can 
be considered. 

7. NOMENCLATURE 

Latin 
a temperature conductivity, m/s 
cp specific capacity at constant pressure, J/(kgK) 

D1 bubble diameter, m 
D3 droplet diameter, m 
htc heat transfer coefficient, W/(m2K) 
h specific enthalpy, J/kg 
Nu = htc2R1 I A , Nusselt number, dimensionless 
Pe Peclet number, dimensionless 
p pressure 

Q accumulated heat transferred from the surface into the liquid, J 
.472°. heat flux from the liquid interface into the gas, W/m2
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isentropic pressure volume relation  3
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Prosperetti and Crum [27], Kamath and Prosperetti [13] solved numerically the gas energy 
conservation equation for the case of no mass transfer at the interface  
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by considered an uniform pressure inside the bubble in order to compute accurately the bubble 
side heat transfer. Considering processes without mass transfer the liquid energy conservation 
equation was neglected in this case because the main heat transfer resistance is at the gas side. 
This scheme was combined with homogeneous one dimensional model of a bubbly flow by Kim 
[14, 15, 16]. Kim has demonstrated that important non-linear effects of the wave propagation can 
be considered. 
 

7. NOMENCLATURE 

Latin 
a  temperature conductivity, m/s 

pc  specific capacity at constant pressure, J/(kgK) 
D1 bubble diameter, m 
D3 droplet diameter, m 
htc  heat transfer coefficient, W/(m²K) 
h  specific enthalpy, J/kg 
Nu  12htc R  , Nusselt number, dimensionless 
Pe  Peclet number, dimensionless 
p  pressure 
Q  accumulated heat transferred from the surface into the liquid, J 

2
1q   heat flux from the liquid interface into the gas, W/m² 
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4;la heat flux from the gas interface into the liquid, W/m2
i bubble radius, m 
✓ radius, m 
T temperature, K 
U radial velocity, m/s 
X = r - R, (z) , distance from the bubble surface, m 

Greek 

/3 = (RdRia , dimensionless 

6 density ratio, dimensionless 

Tv (Rd Rio )3 , ratio of the bubble volume to the initial volume, dimensionless 

Az- time step, s 
Ah evaporation specific enthalpy, J/kg 
Au12 = tii2a — u2a , difference between the gas interface velocity and the liquid interface velocity. 
A Vi2 bubble velocity minus liquid velocity, m/s 

8 normalizing length, m 
K isentropic exponent, dimensionless 
A thermal conductivity, W/(mK) 

/7 dynamic viscosity, kg/(ms) 

coo eigen frequency of bubble oscillation, 1/s 
a- surface tension, N/m 

P density, kg/m3

(pw)12a mass flow rate from the liquid interface into the gas, kg/(m2s) 

(pw)2la mass flow rate from the gas interface into the liquid, kg/(m2s) 

✓ time, s 

Subscripts 
1 Gas, bubble 
2 Liquid 
0 Initial 
mom computed by use of the momentum equation 

Superscripts 
saturated liquid 

saturated vapour 
lo inside the liquid interface to the gas 2 

20 inside gas interface to the liquid 
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1
2q   heat flux from the gas interface into the liquid, W/m² 

1R  bubble radius, m 
r  radius, m 
T  temperature, K 
u  radial velocity, m/s 
x   1r R   , distance from the bubble surface, m 

 
Greek 
 
   3

1 10R R , dimensionless 

  density ratio, dimensionless 

v    3

1 10R R , ratio of the bubble volume to the initial volume, dimensionless 

  time step, s 
h  evaporation specific enthalpy, J/kg 

12u  2 1
1 2u u   , difference between the gas interface velocity and the liquid interface velocity. 

12V  bubble velocity minus liquid velocity, m/s 
  normalizing length, m 
  isentropic exponent, dimensionless 
  thermal conductivity, W/(mK) 
  dynamic viscosity, kg/(ms) 

0  eigen frequency of bubble oscillation, 1/s 
  surface tension, N/m 
  density, kg/m³ 

 2

1
w

  mass flow rate from the liquid interface into the gas, kg/(m²s) 

 12w
  mass flow rate from the gas interface into the liquid, kg/(m²s) 

  time, s 
  
Subscripts 
1 Gas, bubble 
2 Liquid 
0 Initial 
mom computed by use of the momentum equation 
 
Superscripts 
'  saturated liquid 
''  saturated vapour 
1
2
  inside the liquid interface to the gas 

2
1
  inside gas interface to the liquid 
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