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Abstract 

The non-intrusive ultrasonic cross correlation flow meter CROSSFLOW, developed and 
manufactured by Advanced Measurement and Analysis Group Inc. (AMAG) is installed in 
nuclear reactors in Canada and around the world. AMAG and De Monfort University (UK) are 
cooperating in an ongoing research project to develop a theoretical basis for cross correlation 
flow measurement technology, with the goal of improving measurement accuracy. The project 
involves theoretical development, laboratory testing, and computational flow simulations. 
This paper describes the recent progress of this project. 

1. Introduction 

Measuring turbulent pipe flow is of great importance in the nuclear power industry. The 
ultrasonic cross correlation flow meter is non-intrusive, and can be used in environments of high 
radiation, temperature, and temperature variation. Advanced Measurement and Analysis Group 
Inc. (AMAG) is a developer and manufacturer of the non-intrusive ultrasonic cross correlation 
flow meter CROSSFLOW, which is used in Canadian reactors and all over the world for feed-
water flow measurements, reactor coolant flow measurements, and other applications [1,2]. The 
ultrasonic cross correlation flow meter measures the velocity of turbulent eddies in the flow, and 
not the average flow velocity. There are methods for determining the average flow velocity from 
information provided by the ultrasonic cross correlation flow meter, though these methods are 
mostly empirical [1,2,3]. To expand the capability of cross correlation flow measurement 
technology, it is necessary to derive a theoretical model that is based on turbulence in a pipe. To 
meet growing demand for higher accuracy and reliability of flow measurements in nuclear power 
plants, in 2009 AMAG and De Montfort University (DMU) started a joint project to develop a 
mathematical model of the cross correlation flow meter, based on accurate description of the 
dynamics of turbulent eddies, and on the effect of the eddies on the ultrasonic wave generated by 
the meter. 

This paper first explains the operating principals of cross correlation flow measurement 
technology, and then gives a description of the research conducted in the ongoing project. 
Theoretical analysis of cross correlation flow measurement and related fluid dynamics 
phenomena is in progress. Laboratory testing on the AMAG flow loop, and computational 
simulations of the laboratory set up, were conducted to verify qualitative theoretical predictions, 
and predictions were confirmed. Results of the theoretical model can be used to predict the effect 
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of flow disturbances, such as upstream elbows, on meter readings. This paper concludes with 
describing current and future stages of the project. 

2. Operating prindpals of cross correlation flow measurement 

This section briefly describes the phenomena responsible for the operation of non-intrusive 
ultrasonic cross correlation flow measurement technology. Details of meter setup and 
electronics may be found in papers referenced. 

Ultrasonic beams are continuously sent through two different cross-sections of a pipe, 
perpendicular to the pipe wall. The beams are continuously received on the other end of the 
pipe. The transmitters and receivers are set up outside of the pipe, allowing non-intrusive 
operation of the meter, and installation without cutting pipes. The distance between the 
upstream and downstream beams is called transducer spacing, is typically represented as L, 
and is of order magnitude of one pipe diameter. Figure 1 shows a diagram of a transmitter and 
receiver set up. 

Receivers 

Ultrasonic Beams Flow 

Transmitters 
Figure 1: Ultrasonic transmitters and receivers on a pipe. 

As the ultrasonic signals pass through the pipe cross-section, they are altered by turbulent 
eddies passing through the pipe. A simplified version of this effect is shown in figure 2, where 
the beam frequency is altered by a single eddy. In reality, the transmitted signal is altered by a 
turbulent flow consisting of many eddies. 
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Figure 2: Eddy altering an ultrasonic signal, as it passes through. 
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As an ensemble of eddies passes though the upstream and downstream ultrasonic beams, both 
beams will be altered nearly identically. The reason the two beams will not be altered identically 
is that eddies can deform while between the two beams [4]. The received signals are 
demodulated, removing the effect of carrier frequencies, and leaving only the signatures of 
turbulent eddies. The result is two demodulated signals, as functions of time. The downstream 
demodulated signal is very similar to the upstream demodulated signal, if shifted in time by the 
amount of time it took the turbulent picture to move from one beam to the next. 

The value of this time shift, called time delay and represented as Tm, is determined by taking 
the cross correlation of the two demodulated signals. The cross correlation of two functions 
x(t) and y(t) is, 

x(t)0y(t) = x(t)y(t+T)dt (1) 

and has an absolute maximum, hence forth reffered to as peak, at T = 

By knowing the time delay, and the transducer spacing L, one may determine the axial 
velocity of the turbulent structures through the pipe, with the formula, 

Um _ 
Tm

(2) 

Um is close to the bulk flow velocity, but not necessarily equal to it. The research presented in 
this paper is conducted to develop a mathematical model for deriving the bulk flow velocity 
from information provided by the cross correlation flow meter. 

3. Theoretical development 

The demodulated signal, derived form the received signal, may be represented as 

CX,O,t) = f v(x,r,O,t)dr 
-R 

(3) 

where R is the pipe radius, x is the position of the transducer along the pipe (typically taken at 
the midpoint between the two beams), r is the radial spacial component, 0 is the orientation of 
the transducer, t is time, and v is the radial component of velocity, that is, the component of 
velocity along the ultrasonic beam [1]. For most of the analysis in this paper, the value of 0 
remains constant, and the dependence on 0 is not written in formulas. 

The Navier-Stokes equations govern the motion of fluid. In cartisian coordinates, and index 
summation notation, the Navier-Stokes equations are [5] 
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Ui 
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As an ensemble of eddies passes though the upstream and downstream ultrasonic beams, both 
beams will be altered nearly identically. The reason the two beams will not be altered identically 
is that eddies can deform while between the two beams [4]. The received signals are 
demodulated, removing the effect of carrier frequencies, and leaving only the signatures of 
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T
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and has an absolute maximum, hence forth reffered to as peak, at τ = τm.

By knowing  the  time  delay,  and  the  transducer  spacing  L,  one  may determine  the  axial 
velocity of the turbulent structures through the pipe, with the formula,
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L
m

(2)

Um is close to the bulk flow velocity, but not necessarily equal to it. The research presented in 
this paper is conducted to develop a mathematical model for deriving the bulk flow velocity 
from information provided by the cross correlation flow meter.

3. Theoretical development

The demodulated signal, derived form the received signal, may be represented as

x , , t  =∫
−R

R

v x , r , , t dr  (3)

where R is the pipe radius, x is the position of the transducer along the pipe (typically taken at 
the midpoint between the two beams), r is the radial spacial component, θ is the orientation of 
the transducer, t is time, and v is the radial component of velocity, that is, the component of 
velocity along the ultrasonic beam [1]. For most of the analysis in this paper, the value of θ 
remains constant, and the dependence on θ is not written in formulas.

The Navier-Stokes equations govern the motion of fluid. In cartisian coordinates, and index 
summation notation, the Navier-Stokes equations are [5]
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where ut is velocity, p is pressure, p is the density, and v is viscosity. When analysing turbulet 
flow far from solid boundaries, the viscosity term may be set to zero, because such flows may 
be considered inviscous. The Navier-Stokes equations with the viscocity term set to zero are 
called the Euler equations. Since the turbulence forming the demodulated signal exists far 
from the pipe walls, this approximation is justified in the presented research. 

The Euler equation for the radial velocity component, in cylindrical coordinates, is 

2 
aV aV U0 ay aV U0 1 ap 

V —  U —  — = 
at ar r also ax par 

where v is the radial velocity, u is the axial velocity, and uo is the angular velocity. 

Velocity u can be represented as a sum of three functions: 

u(x,r,t) = U + up(x,r) + ut(x,r,t) 

(5) 

(6) 

where U is a constant equal to bulk flow velocity, up is the time averaged flow profile with U 
subtracted, and ut is the velocity of turbulent fluctuations. 

Integrating (5) from -R to R with respect to r, considering the fact that velocity is zero at the 
walls, and substituting (3) and (6) into the result, yields the following equation: 

acp(x,t) 
+ u 

acp(x,t) 
+ g(x,t) = 0 at ax 

where 

g(x,t) = f (up+ 
-R 

R R 2 ov ) ch. ± dr 
j 

uoch.± Ap 

ax -R r ae -R r p 

(7) 

(8) 

If g was equal to zero, equation (7) would represent the transport of a non-deforming 
demodulated signal, moving through the pipe with velocity U. Were this the case, the cross 
correlation flow meter would always measure a velocity U. Experimentally, it is known that 
this is not the case, and hence, g is not equal to zero. Analysis of g is essential to 
understanding the behavior of ultrasonic cross correlation flow measurement. 

3.1 Behavior of the demodulated signal along the pipe. 

Equation (7) may be solved by introducing a change of variables, from (x,t) to ( ), where 
and =x-Ut. Changing while holding constant is equivalent to moving along the pipe with 
velocity U. Changing while holding constant is equivalent to changing t while holding x 
constant. Applying such a change of variables to (7) yields the equation 

118.13(c, ) + g(c, ) = 0 (9) 

where ui is velocity, p is pressure, ρ is the density, and ν is viscosity. When analysing turbulet 
flow far from solid boundaries, the viscosity term may be set to zero, because such flows may 
be considered inviscous. The Navier-Stokes equations with the viscocity term set to zero are 
called the Euler equations. Since the turbulence forming the demodulated signal exists  far 
from the pipe walls, this approximation is justified in the presented research.

The Euler equation for the radial velocity component, in cylindrical coordinates, is
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where v is the radial velocity, u is the axial velocity, and uθ is the angular velocity.

Velocity u can be represented as a sum of three functions:

u x , r , t  = U  u px , r   u tx , r , t  (6)

where U is a constant equal to bulk flow velocity, up is the time averaged flow profile with U 
subtracted, and ut is the velocity of turbulent fluctuations.

Integrating (5) from -R to R with respect to r, considering the fact that velocity is zero at the 
walls, and substituting (3) and (6) into the result, yields the following equation:

∂x , t 
∂ t

 U ∂x , t 
∂ x

 g x , t  = 0  (7)

where

g x , t  =∫
−R

R

upu t
∂ v
∂ x

dr  ∫
−R

R u

r
∂ v
∂

dr −∫
−R

R u
2

r
dr   p


 (8)

If  g  was  equal  to  zero,  equation  (7)  would  represent  the  transport  of  a  non-deforming 
demodulated signal, moving through the pipe with velocity U. Were this the case, the cross 
correlation flow meter would always measure a velocity U. Experimentally, it is known that 
this  is  not  the  case,  and  hence,  g  is  not  equal  to  zero.  Analysis  of  g  is  essential  to 
understanding the behavior of ultrasonic cross correlation flow measurement.

3.1 Behavior of the demodulated signal along the pipe.

Equation (7) may be solved by introducing a change of variables, from (x,t) to (ζ,ξ), where ζ=x 
and ξ=x-Ut. Changing ζ while holding ξ constant is equivalent to moving along the pipe with 
velocity U. Changing ξ while holding ζ constant is equivalent to changing t while holding x 
constant. Applying such a change of variables to (7) yields the equation

U ∂ ,
∂

 g , = 0   (9)



Assuming that g changes little with changing as is held constant, by integrating (9) with 
respect to , and setting =a as the location of the upstream beam and=b as the location of 
the downstream beam, one may obtain, 

cp(b, )= cp(a, ) — —uL g(a, ) 

Returning to variables x and t, one obtains, 

cp(b,t)= 4( a,t— It; ) — it g( a,t- 111" ) 

3.2 The cross correlation of demodulated signals 

(10) 

As mentioned above, the measured velocity is obtained from the time delay, which is obtained by 
finding the peak of the cross correlation of the upstream and downstream demodulated signals. 
This cross correlation may be written as, 

L 
cp(a,t)043(b,t) = cp(a,t)00(a,t-1-0 ) — 

U 
—43(a,t)og(a,t-1-0) (12) 

where To=L/U. If g was equal to zero, the second term on the right side of (12) would equal zero, 
and the result of the cross correlation would be a function with the shape of the auto correlation 
of (p(a,t) shifted by a time delay that corresponds to the bulk flow velocity. An auto correlation is 
a cross correlation between a function and itself. The second term on the right side of (12) is 
responsible for the deviation of measured velocity from bulk flow velocity U, and analysis of this 
term is essential to developing a theoretical basis for cross correlation flow measurement 
technology. One may define, 

G(x,t) = 4(x,t)®g(x,t — T0) , 

E(x,t)= 
U

G(x,t) , 

and 

(13) 

(14) 

C(x,t) = 413(x,t)0 43(x,t — To) (15) 

The function C has a peak at t o, and the function E is responsible for shifting this peak of from t o
to a different value. Without fully decomposing E, it is possible to make conclusions about its 
contribution. The contribution of E may be divided into two categories, spacing dependence, and 
flow profile dependence. 
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and the result of the cross correlation would be a function with the shape of the auto correlation 
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a cross correlation between a function and itself. The second term on the right side of (12) is 
responsible for the deviation of measured velocity from bulk flow velocity U, and analysis of this 
term is essential to developing a theoretical basis for cross correlation flow measurement 
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flow profile dependence.



3.2.1 Spacing dependence 

Since C has a peak at To, it has a first derivative of 0 at t o. For E to shift this peak, E must have a 
non-zero first derivative within a neighborhood of t o. The greater the first derivative of E, the 
greater the shift of the peak generated by C. This principal is demonstrated in figure 3, with a 
simplified representation of the peak of C shifted by E and F. 
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Figure 3: Simplified representation of peak of C shifted by E and F. 

The first derivative of E is the first derivative of G multiplied by L and divided by U. The first 
conclusion that may be drawn from this, is that greater transducer spacing results in greater 
deviation of Um from U. This relation is observed in laboratory testing, and is explained 
physically, because greater distance between ultrasonic beams allows more time for eddies to 
deform while traveling between beams. 

A second conclusion may also be drawn. Changing L will change To, and hence will change the 
position of G along the T axis, but will not change the shape of G aside form this shift. It will 
change the shape of E, though, by increasing the magnitude of it first derivative proportionally to 
L. The greater the first derivative of G within a neighborhood of to, the more sensitive the shift of 
the peak of C will be to changing L. In other words, if a cross correlation flow meter 
demonstrates greater sensitivity to spacing at a certain location along a pipe, it is an indicator of 
greater first derivative of G at that location, and therefore greater deviation of Um from U. 

There is an important note on this conclusion. Since Tin is proportional to L, if the shift of the 
peak generated by C is also proportional to L, the measured velocity Um=L/Tin may remain the 
same with changing L. Therefore, zero spacing dependence does not imply that Uin=U. 
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0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1

0

1

2

3

4

5

6

Simplified E
Simplified C 
Simplified E+C
Simplified E'
Simplified E' + C

 
Figure 3: Simplified representation of peak of C shifted by E and E'.



3.2.2 Flow profile dependence 

It can be shown that for many practical situations, the most significant term in g is, 

aV(X,r,t — T 0 ) f U (x r) 
P ' a - R X

calculated at x=a. 

In two dimensions, 

R 

f u(x,r)dr = 0 
- R 

dr (16) 

(18) 

for all x. As a result, the flow profile approaching flatness is equivalent to up approaching the 
zero function, and hence G approaching the zero function, and the peak of C+E approaching the 
peak of C. 

In three dimensions, 

R Tr 

f f u p(x ,r,O)rd0 dr = 0 
- R 0 

(19) 

for all x and 0, but for a fixed value of 0 (18) is not necessarily true. One may define, in three 
dimensions, 

up(x,r,0)= u'p(x,r,O) + D(x,0) 

where 

R 

f U i p (X,r,O)dr =0 

- R 

for all x and 0. 

For a fixed 0, and x=a, equation (7) may be rewritten, 

ack(
a

x
t a

' t) 
+ ( U+D(x) )

ack(x,t) + 
g'(x,t) =

0
x 

(20) 

(21) 

(22) 

3.2.2 Flow profile dependence  
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∂ x
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∫
−R
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∫
−R

R

∫
0



u px , r , r d dr = 0 (19)

for all x and θ, but for a fixed value of θ (18) is not necessarily true. One may define, in three 
dimensions,

upx , r , = u 'px , r ,  Dx ,  (20)

where

∫
−R

R

u 'px , r ,dr = 0 (21)

for all x and θ. 

For a fixed θ, and x=a, equation (7) may be rewritten,

∂x , t 
∂ t

  UDx  ∂x , t
∂ x

 g 'x , t  = 0  (22)



where 

R R 
UeO 
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Equation (12) may then be rewritten, 

L 
cp(a,t)00(b,t) = cp(a,t)043(a,t—T'0) — U-43(a,t)og'(a,t—T'0) 

where 

L 
T '0

U+D(a) 

and in the general case, 

T'0(x,0) = L 
U + D(x,0) 

(23) 

(24) 

(25) 

(26) 

The first term on the right side of equation (24) will be shaped like an auto correlation of (p(a,t), 
with the peak located at T'o. As the flow profile approaches flatness, the second term in equation 
(24) will approach zero, but Tm will approach t'°, not To. Also, in two dimensions, as L approaches 
zero, Tm will approach To, but in three dimensions it will approach T'o. It is important to 
understand that To is a constant for constant bulk flow velocity, while T'o is different for different 
values of x and 0. 

4. Laboratory testing and computational simulations 

Laboratory testing and computational simulations were conducted to validate qualitative 
predictions made by theoretical developments. When testing and simulation began, the theory 
was in a simplified two dimensional state, and the predictions made were as follows: 

-The cross correlation flow meter demonstrating greater measurement sensitivity to spacing at a 
particular location along a pipe, is an indicator of greater deviation of measured velocity Um from 
U at that location. In other words, reduced sensitivity to spacing coincides with reduced value of 
(Uin-U). 

-Locations along the pipe where the flow has a flatter flow profile, are location where the cross 
correlation flow meter demonstrates smaller values of (Um-U), if the axial component of the flow 
velocity is predominant. 

Both predictions were confirmed. Details of experiments and numerical simulations are given in 
this section. 
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The first term on the right side of equation (24) will be shaped like an auto correlation of φ(a,t), 
with the peak located at τ'0. As the flow profile approaches flatness, the second term in equation 
(24) will approach zero, but τm will approach τ'0, not τ0. Also, in two dimensions, as L approaches 
zero, τm  will approach τ0, but in three dimensions it will approach τ'0. It is important to 
understand that τ0 is a constant for constant bulk flow velocity, while τ'0 is different for different 
values of x and θ. 

4. Laboratory testing and computational simulations
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predictions made by theoretical developments. When testing and simulation began, the theory 
was in a simplified two dimensional state, and the predictions made were as follows: 

-The cross correlation flow meter demonstrating greater measurement sensitivity to spacing at a 
particular location along a pipe, is an indicator of greater deviation of measured velocity Um from 
U at that location. In other words, reduced sensitivity to spacing coincides with reduced value of 
(Um-U). 

-Locations along the pipe where the flow has a flatter flow profile, are location where the cross 
correlation flow meter demonstrates smaller values of (Um-U), if the axial component of the flow 
velocity is predominant. 

Both predictions were confirmed. Details of experiments and numerical simulations are given in 
this section.



4.1 Experimental results 

Tests were conducted on the AMAG flow loop, measuring flow at 8 locations along a straight 
pipe run downstream of a 90-degree elbow, with three different transducer spacings at each 
location . The 8 locations along the pipe were spread between 6 and 50 pipe diameters from the 
upstream elbow, as shown in figure 4. 
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Figure 4: Piping configuration for laboratory testing. 

Flow 

The bulk flow velocity for these tests was calculated from previously developed methods [1]. For 
each location along the pipe, three values for measured velocity were obtained, one for each 
transducer spacing. The average of these three measured velocity values was taken and will 
hence fourth be referred to as average measured velocity. The three measured velocity values 
were also plotted against transducer spacing, and a linear regression was made, fitting very well 
with the three plotted points in all cases. The magnitude of the slope of the linear regression is an 
indicator of dependence of measured velocity on transducer spacing, and is hence forth referred 
to as spacing dependence. 

Figure 5 plots the normalized difference between the average measured velocity and U, against 
spacing dependence, for each of the 8 locations along the pipe. Each point on the plot is 
generated by data from one of the locations along the pipe where measurements were conducted. 
The normalized difference between the average measured velocity and U is hence fourth referred 
to as deviation from U. If theoretical predictions are true, experimental results should show that 
deviation from U increases as spacing dependence increases. Figure 5 clearly illustrates that this 
is in fact the case. 
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Figure 5: Normalized deviation of measured velocity from bulk flow velocity vs spacing 
dependence, obtained from laboratory testing. 
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4.2 Computational simulation results 

Computational simulations of the AMAG flow loop were conducted. The flow velocity profile 
was calculated at 5 locations along the section of the pipe where flow measurements were 
performed at during laboratory testing. All 5 locations are farther from the elbow than 12 pipe 
diameters, because close to the upstream elbow, the radial component of the velocity is 
comparable to the axial component, and hence, the axial component is not predominant, and the 
necessary conditions for the theoretical prediction described above are not present. 

For each of the selected locations, a measure of non-flatness of the flow velocity profile was 
determined as follows: The velocity values close to the pipe wall where the velocity goes to zero 
were discarded. The mean value of the remaining velocity values was calculated, the deviation of 
remaining velocity values from the mean was determined, and the root mean square of these 
deviations was calculated. This final value, the root mean square of the deviations, will hence 
fourth be referred to as non-flatness. 

According to theoretical predictions, as non-flatness of the flow velocity profile increases, the 
deviation from U should also increase. Figure 6 plots the deviation of the average measured 
velocity from U against the non-flatness of the flow velocity profile. Each point on the plot is 
generated by data from one of the locations along the pipe where the flow velocity profile was 
calculated. The results show a clear linear relation confirming the third prediction. 
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Figure 6: Normalized deviation of measured velocity from bulk flow velocity vs flow profile 
non-flatness, obtained from laboratory testing and computational simulation. 
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4.3 Comparison of theory to laboratory testing and simulation results 

The theoretical developments described above, predict that reduced spacing sensitivity and flatter 
flow profile coincide with the reduction of the difference between Um and UV°, not necessarily 
reducing the different between Um and U. The only way that the theoretical developments can 
agree with laboratory testing and computational simulation results, is if Um>LHo and Uni>U. 
Laboratory testing demonstrates that Uni>U. Analysis of the effect of a three dimensional flow 
profile on a one dimensional ultrasonic beam supports the inequality Lit'o>U. 

The upstream and downstream ultrasonic beams are transmitted through the pipe axis, and 
parallel to each other. As a result, the cross correlation flow meter measures the transport 
velocity of turbulent structures through a two dimensional plane intersecting the axis of a three 
dimensional pipe. The time averaged flow profile U+D+u'p = U+up influencing measurement, is a 
two dimensional shape laying on that plane, and dropping to zero near the pipe walls. The 
average velocity over this flow profile, that is the average velocity over the pipe diameter, would 
be U+D. The bulk flow velocity U is the average velocity over a three dimensional flow profile, 
extending from the cross-section of a pipe, dropping to zero along the circumference of the pipe-
cross section. Consider the following equations based on the simplified case of a symmetrical 
flow profile: 

1 
f ' average flow velocity over pipe diameter' = U+ D = —u(r ) dr = f u (y) d y (27) 

2R -R 0 

R 1 

'average flow velocity over pipe cross— section ' = U 

2Tr R 1 

= 1 2 f Jr  U(r)r drd0 = 2 f u(y)ydy 
n R o o o 

where, 

y = —Rr , u(r) = U + up(r) 

and a typical symmetrical flow profile is, 

1 
U(r) = u.(1 — y)n

(28) 

(29) 

(30) 

where un, is the maximum value of the flow profile, and n is a positive integer. Equations (27)-
(30) demonstrate that D>0, and therefore L/VG>U. For laboratory testing and computational 
simulations to agree with the model, the inequality Um>LHo must hold. Locations along the pipe 
with reduced spacing sensitivity, and a flatter flow profile, are locations where there is a smaller 
deviation of U rn from L/Vo , but minimizing this deviation does not guarantee that U rn will reach 
U. Also, reducing transducer spacing will approach Um to Lh'0, but there is no guarantee that Um
will reach U. 
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where umax is the maximum value of the flow profile, and n is a positive integer. Equations (27)-
(30) demonstrate that D>0, and therefore L/τ'0>U. For laboratory testing and computational 
simulations to agree with the model, the inequality Um>L/τ'0 must hold. Locations along the pipe 
with reduced spacing sensitivity, and a flatter flow profile, are locations where there is a smaller 
deviation of Um from L/τ'0  , but minimizing this deviation does not guarantee that Um will reach 
U. Also, reducing transducer spacing will approach Um to L/τ'0, but there is no guarantee that Um 

will reach U.



5. Current developments 

The final goal of this research is to develop a mathematical model that will predict the cross 
correlation flow meter's velocity measurement values, based on physical properties of the flow. 
This requires a model capable of making quantitative predictions. Theory capable of allowing 
quantitative predictions to be made is being developed. Numerical simulations of measured 
velocity, based on theoretical results, are being conducted to advance the theory. Non-steady 
computational simulations, and laboratory testing, are also being conducted to validate 
theoretical results. 
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