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Abstract 

A thermal load from the molten pool in the lower plenum to the reactor vessel during a severe 
accident has been analyzed. The configuration of the molten pool was considered as a two-layer. 
A heat flux distribution, crust thickness and vessel thickness were mainly investigated in this 
study. Non-linear Newton-Raphson iteration method was easily applied to solve a set of 
governing equations. Of many severe accident sequences, SBLOCA (Small Break Loss-Of-
Coolant Accident) and LBLOCA (Large Break Loss-Of-Coolant Accident) without SI (Safety 
Injection) in the APR1400 were considered. From the results, the focusing effect in light metallic 
layer could be seen and other important parameter was also explained. 

1. Introduction 

A thermal load response from a molten pool to the outer RPV (Reactor Pressure Vessel) in the 
lower plenum during a severe accident is very important to evaluate reactor vessel failure 
mechanism and to determine the safety margin for an IVR-ERVC (In-Vessel corium Retention 
through External Reactor Vessel Cooling) success. The Thermal load analysis is concentrated on 
a heat flux distribution in consideration of a thermal barrier effect in the thin metallic layer. A 
focusing effect of the metallic layer is mainly determined by the molten pool configuration in the 
lower head of the RPV. The melt pool configuration inside the lower plenum of the RPV affects 
an initial thermal load to the outer RPV and plays a key role to determine the integrity of the 
reactor vessel. 

Of the previous researches to evaulate the robustness of the RPV, INEEL [1] developed the 
VESTA model for the thermal response of the lower head. In the ref [1], they examined the 
vessel integrity by using UCSB-assumed FIBS. Esmaili et al [2] derived a simple mechanistic 
model based on the existing constitutive relations and investigated the vessel failure for AP1000. 
Kim et al. [3] developed FVM-based module, named LILAC-meltpool, to simulate thermo-
hydraulic behaviour of core melt relocated in the lower vessel during severe accident. LILAC-
meltpool is based on an unstructured mesh technology to discretize solution domain of the vessel 
and molten pool. Kim et al. [4] derived LILAC-LP (lumped-parameter) that is simple approach 
for an analysis of the molten pool and investigated various accident scenarios in the APR1400 
(Advanced Power Reactor 1400MWe). 

In this study, a numerical model for thermal load response to the outer RPV during a severe 
accident has been adopted as a similar procedure of ref [2]. The governing equations were solved 
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using a non-linear Newton-Raphson method. The numerical scheme and heat transfer correlation 
used in this study was benchmarked against the results of other studies [1, 2] for AP600. The 
present results were good agreement with other results in the benchmark analysis. Finally, a 
thermal load response in the lower plenum of the APR1400 reactor vessel was analysed. Initial 
conditions such as corium mass and composition, volumetric heat source of the decay heat were 
achieved from the SCDAP/RELAP5 and GEMINI calculation. [5] A configuration of the molten 
pool in the lower plenum of the APR1400 RPV was assumed as a two-layer melt pool with a 
light metallic layer of Fe-Zr on top of a ceramic pool of UO2-ZrO2. The heat flux distribution 
from the molten pool to the outer RPV was determined from the thermal load analysis of the 
APR1400. 

2. Mathematical Model 

Figure 1 shows a conceptual schematic of the two-layered melt pool configuration. The upper 
layer is assumed to be a light metallic layer of Fe-Zr and the lower to be an oxidic layer of UO2-
ZrO2. Since the metallic layer is assumed to contain no uranium, the heat generation is totally 
provided by lower oxidic layer. In this study, other configuration such as three layer system is not 
considered. 

Other structures 
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\ 
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qi.lb 

q,„ 

O. 
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Oxidic layer 
0,14.

Figure 1 Schematic of the melt pool configuration in the lower head (two layers) 

The governing equations for a given configuration as shown in Figure 1 are categorized into the 
conservation of energy equation in each layer and the heat flux equation between each layer with 
various heat transfer correlations. 

2.1 Conservation of Energy 

The conservation of energy equation in the lower oxidic layer and upper light metallic layer are 
as (1) and (2). In this study, the light metallic layer is considered to have no heat generation 
(Q;" = 0). Equation (3) and (4) is energy balance in the upper and downward crust region, 

respectively. The heat generation of the crust is assumed to be same as one of the oxidic layer. 
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2.2 Heat Transfer in Oxidic Layer 

(1) 

(2) 

(3) 

(4) 

In the two-layer configuration shown in Figure 1, the heat flux from the oxidic layer is distributed 
into upper light metal layer and the lower hemispheric vessel. First of all, the heat flux into the 
lower vessel wall is defined as (3). 

go" ,w ho,w(T:iax (5) 

where T:a. and T: is the maximum temperature and the melting temperature of the oxidic 

layer, respectively. Since the crust is treated to have same amount of heat generation, the heat 
flux at the inner and outer boundary of the sideward crust can be expressed as follows; 

kc 
= ‘T° T 

=  k  ̀ (Tin T .) + 
cw 

g'ac,w 
2 

(6) 

(7) 

where qw" and q:,0 are the heat flux into the inner and outer vessel wall, respectively, and go, 

is sideward crust thickness. 
The heat flux through the vessel wall is simply expressed as the temperature difference between 
the inner and outer wall. 

qw,i = ks (7'w . — Tw
'00,s 

(8) 

where ks and (5'o, are the thermal conductivity and the thickness of the vessel wall. 

The heat flux from the vessel wall into the reactor cavity water, q0 can be expressed by the 

following nucleate boiling relations; 

w w C boil ( T w,o —T sat) 3 (9) 

Where Cbou is the nucleate boiling coefficient and obtained from properties of saturated cavity 

water; 
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where ''

,iwq  and ''

,owq  are the heat flux into the inner and outer vessel wall, respectively, and 
wc,  

is sideward crust thickness.  

The heat flux through the vessel wall is simply expressed as the temperature difference between 

the inner and outer wall.  
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where 
sk  and 

so,  are the thermal conductivity and the thickness of the vessel wall. 

The heat flux from the vessel wall into the reactor cavity water, ''

,owq , can be expressed by the 

following nucleate boiling relations; 

 
3

,

''

,

''

, )( satowboilowiw TTCqq        (9) 

 

Where boilC  is the nucleate boiling coefficient and obtained from properties of saturated cavity 

water; 
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The other heat flux from the heat generation of the oxidic layer is transferred onto the upper light 
metallic layer; 

qo",, = ho,t (T,L-77.) (11) 

And the heat flux through the upper crust region is defined as the following form which is similar 
with (6) and (7). 

I 
Qc8;ugot =  Tr o0 1 b (12) 

c,u

=  kc  (Ton 
b 

Ti)± Qcgc,u (13)

g c,u  2

2.3 Heat Transfer in Light Metallic Layer 

A thermal load from the light metallic layer is originally from the upward heat flux of the oxidic 
layer since the light metallic layer does not have any heat generation. That is why the heat flux 
from the light metallic layer is dependent on the upward heat transfer coefficient, h01 . The heat 

flux from the light metallic layer spreads two ways: upper structure, sideward vessel. At first, the 
upper surface heat flux can be obtained as; 

q = 111,t (T: - T,t) (14) 

where T: is the bulk temperature of the metal pool, and Ti t is the temperature of the upper 

surface of the light metallic layer. The heat transfer from the top surface of the light metallic 
layer to other structure in the RPV is assumed to be accomplished by radiation. Hence, the heat 
flux in (14) is also expressed as follows; 

a  [7,14:t _ Tsai 

=  
1 1—es  Ait1

e t e s As il

(15) 

Since the light metallic layer does not form the crust region at the contact area with sideward 
vessel wall, The heat flux from the light metallic layer to the sideward vessel wall can be simply 
obtained as; 

= h1,,,„(7;,1 (16) 
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Since the light metallic layer does not form the crust region at the contact area with sideward 

vessel wall, The heat flux from the light metallic layer to the sideward vessel wall can be simply 

obtained as; 
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And also, the heat flux can be transferred through the vessel wall without any thermal loss since 
the vessel wall is considered to have no heat generation. Therefore, the heat flux through the 
vessel wall is provided as; 

„ kw 
q =  (Ty — T ) ,w A m ,0 

1,s 
(17) 

Where gis is vessel thickness in the top metallic layer and considered to be same as 450s in 

this study. The heat flux to the outer water through the vessel wall is the same as qilw; 

q," ,„ 0 = hboa (Tv, —Ts„,) = cboil — Tsa, )3 (18) 

The heat flux from the top oxidic crust to the light metallic layer, q lib , can be obtained as 

follows; 

ql,b = h l,b(T I,b —Tb1) 

2.4 Solution methodology 

(19) 

At first, the heat partitioning from the heat generation of the oxidic layer into the lower 
hemispheric vessel wall and upper light metallic layer should be defined. By substituting (5) and 

(11) into (2), the maximum temperature, T I: ax , becomes the only unknown variable by using the 

heat transfer coefficients from Table 1 so that it can be easily obtained. By inserting T,L, in (5) 

and (11) again, the heat flux onto both upper light metallic layer and the lower vessel wall can be 
calculated. It is important that since the heat partitioning into the upper side and the lower side is 
mathematically decoupled, the following procedure to obtain physical variables for the upward 
and downward is conducted separately. 

For the heat partition to the lower hemispheric vessel wall, the main physical variables we are 
interested in are the heat flux to water, the inner/outer temperature and the crust thickness. 
Equations (6) — (9) are used to achieve these unknown variables. It should be noted that for this 
study, the angular variation of a heat transfer coefficient in the oxidic layer has been used. 
Therefore, since the heat flux and the crust thickness as well as the vessel wall thickness are a 
function of the heat transfer coefficient, they are also expressed as the angular variation form. 
Since the system of equations (6) through (9) is non-linear, it is solved by using a Newton-
Raphson method as follows; 

p(k) = p(k-1) _[j(p(k-1))]-1 Rp(k-1)) 

Where P, F(P) and J(P) are as follows; 

(20) 
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2.4 Solution methodology 

At first, the heat partitioning from the heat generation of the oxidic layer into the lower 

hemispheric vessel wall and upper light metallic layer should be defined. By substituting (5) and 

(11) into (2), the maximum temperature, 
oTmax , becomes the only unknown variable by using the 

heat transfer coefficients from Table 1 so that it can be easily obtained. By inserting oTmax  in (5) 

and (11) again, the heat flux onto both upper light metallic layer and the lower vessel wall can be 

calculated. It is important that since the heat partitioning into the upper side and the lower side is 

mathematically decoupled, the following procedure to obtain physical variables for the upward 

and downward is conducted separately.  

For the heat partition to the lower hemispheric vessel wall, the main physical variables we are 

interested in are the heat flux to water, the inner/outer temperature and the crust thickness. 

Equations (6) ~ (9) are used to achieve these unknown variables. It should be noted that for this 

study, the angular variation of a heat transfer coefficient in the oxidic layer has been used. 

Therefore, since the heat flux and the crust thickness as well as the vessel wall thickness are a 

function of the heat transfer coefficient, they are also expressed as the angular variation form. 

Since the system of equations (6) through (9) is non-linear, it is solved by using a Newton-

Raphson method as follows;  

)()]([ )1(1)1()1()(   kkkk PFPJPP      (20) 

Where P, F(P) and J(P) are as follows; 
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The inner temperature of the vessel wall, Tw  , should be less than a melting temperature of the 

vessel wall. If it exceeds the melting temperature of the vessel wall, then the inner wall is 
assumed to be ablating and the ablating thickness of the lower vessel wall should be calculated. 

The procedure to obtain the physical variables involving the upper light metallic layer from the 
heat partition is same as those involving the lower vessel wall as explained above. Six unknown 
variables can be derived; heat fluxes, top/bottom surface temperate and bulk temperature, upper 
crust thickness, side vessel wall thickness and outer surface temperature of the vessel wall. 
Equations (11) through (19) are used to obtain the unknown variables. 

3. RESULTS AND DISCUSSION 

3.1 Results of Benchmarking Calculations 

The present model described in above is compared with the results of the INEEL [1] and ERI [2] 
studies for AP600. The material properties and geometrical information are used in ref. [2]. 
Figure 2 shows the a few important physical variables from the benchmarking calculation. Figure 
2(a)—(c) show the angular variation of the Heat flux to water, crust thickness and vessel wall 
thickness of the oxidic layer, whereas Figure 2(d)—(f) are informations for light metallic layer. 
All results are in good agreements with the previous references and even less than 5% error in the 
oxidic layer. In the Figure 2(a)—(c), both Park and Dhir [6] and mini-ACOPO correlations were 
considered as follows; 

Park & Dhir 

Mini-ACOPO 

hd(9)= hd(
8 — 9 cotho + cos300

9.12(1— cosO, ) 
 sin2 0 + 0.24 J 

0.1+1.08(±)— 4.5( 11 2 + 8.6(± )3 for 0.1 ( 
e 

j 0.6 
Nud . 0,0, 0 , °tot Ow, 

0.41+ 0.35( 11+ (±) 2
Ow, Ow, 

Nud
for 0.64 e)<_1.0 

0,,,, 

(22) 

(23) 

However, one could notice that the mini-ACOPO correlation was in good agreement with 
previous researches. The reason for differences in physical variables shown in Figure 2(d)—(f) is 
most likely due to the differences in the values for some of the parameter used in heat transfer 
coefficients. 
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The inner temperature of the vessel wall, iwT , , should be less than a melting temperature of the 

vessel wall. If it exceeds the melting temperature of the vessel wall, then the inner wall is 

assumed to be ablating and the ablating thickness of the lower vessel wall should be calculated. 

The procedure to obtain the physical variables involving the upper light metallic layer from the 

heat partition is same as those involving the lower vessel wall as explained above. Six unknown 

variables can be derived; heat fluxes, top/bottom surface temperate and bulk temperature, upper 

crust thickness, side vessel wall thickness and outer surface temperature of the vessel wall. 

Equations (11) through (19) are used to obtain the unknown variables.  

3. RESULTS AND DISCUSSION 

3.1 Results of Benchmarking Calculations 

The present model described in above is compared with the results of the INEEL [1] and ERI [2] 

studies for AP600. The material properties and geometrical information are used in ref. [2]. 

Figure 2 shows the a few important physical variables from the benchmarking calculation. Figure 

2(a)~(c) show the angular variation of the Heat flux to water, crust thickness and vessel wall 

thickness of the oxidic layer, whereas Figure 2(d)~(f) are informations for light metallic layer. 

All results are in good agreements with the previous references and even less than 5% error in the 

oxidic layer. In the Figure 2(a)~(c), both Park and Dhir [6] and mini-ACOPO correlations were 

considered as follows; 
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However, one could notice that the mini-ACOPO correlation was in good agreement with 

previous researches. The reason for differences in physical variables shown in Figure 2(d)~(f) is 

most likely due to the differences in the values for some of the parameter used in heat transfer 

coefficients.  
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3.2 Results of APR1400 

SBLOCA (2.0 inch) 

- 002 mass = 99.6 ton 
- UlZr 

• Zr oxidation ratio = 60% 
- Pool temperature = 3083 K 

Metal Layer Hie„= 0.464 m 

Oxidic Pool Ho = 1.46 m 

LBLOCA (9.6 inch) 
- UO2 mass = 107.3 ton 
-1.1/2r = 5.4 

- Zr oxidation ratio = 31% 
• Pool temperature = 3150 K 

Metal Layer H im = 0.493 m 

Oxidic Pool H4 = 1.385 m 

(a) SBLOCA (b) LBLOCA 

Figure 3 schematic for the relocation of melting pool of the APR1400 

This study, of various severe accident scenarios, focused on the SBLOCA and LBLOCA without 
SI (Safety Injection) in the APR1400. The inner radius and thickness of the vessel are 2.37 m and 
0.165 m, respectively. The thermal conductivity and melting temperature of the reactor vessel are 
40.57 W/mK and 1760 K, respectively. The other geometrical configuration such as the height of 
each layer was obtained from the result of the GEMINI calculation which analyzes a 
thermodynamics phase diagram. [5] Figure 3 shows the schematics of two-layered configuration 
for both SBLOCA and LBLOCA of the APR1400. The heat generation from the oxidic layer was 
2.2 MW/m3 for SBLOCA and 3.75 MW/m3 for LBLOCA which were achieved from the result of 
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3.2 Results of APR1400 
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Figure 3 schematic for the relocation of melting pool of the APR1400 

 

This study, of various severe accident scenarios, focused on the SBLOCA and LBLOCA without 

SI (Safety Injection) in the APR1400. The inner radius and thickness of the vessel are 2.37 m and 

0.165 m, respectively. The thermal conductivity and melting temperature of the reactor vessel are 

40.57 W/mK and 1760 K, respectively. The other geometrical configuration such as the height of 

each layer was obtained from the result of the GEMINI calculation which analyzes a 

thermodynamics phase diagram. [5] Figure 3 shows the schematics of two-layered configuration 

for both SBLOCA and LBLOCA of the APR1400. The heat generation from the oxidic layer was 

2.2 MW/m
3
 for SBLOCA and 3.75 MW/m

3
 for LBLOCA which were achieved from the result of 
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SCDAP/REALP5. [5] The other data such as thermal properties of both layers were assumed to 
be same as given in benchmark calculation. [2] In this study, various combinations of the heat 
transfer correlations were estimated for the robustness of the reactor vessel. Table 1 is a set of 
heat transfer correlations used in this study. [2] 

Table 1 Heat transfer correlation 

Model Top surface Bottom surface Side wall 
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First of all, the heat partitioning from the oxidic layer into the vessel wall and upper light metal 
layer is evaluated. Of various heat transfer correlations, three sets of correlations suggested by 
ERI, DOE and INEEL model are considered to evaluate the heat partitioning for the APR1400. 
Figure 4 shows the heat partitioning from the oxidic layer into the vessel wall and upper light 
metal layer. The ERI and DOE model show similar results and indicate that the heat flux into 
upper light metal layer is almost one and half times larger than that into lower vessel wall. 
Meanwhile, the INEEL model predicts the heat flux toward the metal layer about 15% larger than 
those of other two models. This is mainly because the heat transfer correlation toward the bottom 
vessel wall in INEEL predicts less than other two models. 

Since the IVR phenomenon has been investigated in terms of focusing effect, it is far important 
to check the heat partitioning in the light metal layer. In this study, a few correlations are tested 
in order to evaluate the heat partitioning in the metal layer. For the given example such as 2-layer 
configuration, the heat partitioning from the decay heat of the ceramic pool is dependent on 
which heat transfer coefficient has been applied. And also, with considering focusing effect 
which may occur in the metal layer, it is desirable to expect less amount of heat flux toward 
metal layer. Among given models as shown in Figure 4, the INEEL model expects larger amount 
of heat flux toward metal layer than other two models. 
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First of all, the heat partitioning from the oxidic layer into the vessel wall and upper light metal 

layer is evaluated. Of various heat transfer correlations, three sets of correlations suggested by 

ERI, DOE and INEEL model are considered to evaluate the heat partitioning for the APR1400. 

Figure 4 shows the heat partitioning from the oxidic layer into the vessel wall and upper light 

metal layer. The ERI and DOE model show similar results and indicate that the heat flux into 

upper light metal layer is almost one and half times larger than that into lower vessel wall. 

Meanwhile, the INEEL model predicts the heat flux toward the metal layer about 15% larger than 

those of other two models. This is mainly because the heat transfer correlation toward the bottom 

vessel wall in INEEL predicts less than other two models.  

Since the IVR phenomenon has been investigated in terms of focusing effect, it is far important 

to check the heat partitioning in the light metal layer. In this study, a few correlations are tested 

in order to evaluate the heat partitioning in the metal layer. For the given example such as 2-layer 

configuration, the heat partitioning from the decay heat of the ceramic pool is dependent on 

which heat transfer coefficient has been applied. And also, with considering focusing effect 

which may occur in the metal layer, it is desirable to expect less amount of heat flux toward 

metal layer. Among given models as shown in Figure 4, the INEEL model expects larger amount 

of heat flux toward metal layer than other two models. 
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In the upper metal layer, the heat partitioning is more important than one in the oxidic layer. In 
this study, Globe-Dropkin for top/bottom surface and Churchill-Chu were only tested. The DOE 
model, however, had used far simplified correlation. Since the heat transfer correlation for side 
wall has been issued for the vessel failure mechanism, both Churchill-Chu correlation and 
simplified form was evaluated for a wide range of Pr and Ra. Figure 5(a) shows the profile of 
both correlations. One can notice that the simplified correlation is assumed to be agreement with 
Pr-0.1 for high Ra region. Since a Pr of a liquid metal is O(-2), the simplified correlation may 
expect less heat flux to the side wall than to the top. 
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Before evaluating the heat partitioning in the light metal layer, a heat transfer correlation 
dependency was investigated. Table 2 is the combination of the heat transfer coefficient for both 
upper and side wall direction in the light metal layer and Figure 5(b) shows the result of heat flux 
partitioning. The energy transferred at upper surface is mainly by radiation heat transfer by eq. 
(15), whereas the sideward heat flux is caused by direct contact with the reactor vessel. Thus, the 
thermal energy is dominantly transferred into sideward vessel. And also, less sideward heat flux 
is observed in which simplified Churchill-Chu correlation is applied. (Case 2&4 in SBLOCA and 
LBLOCA, respectively) 

Finally, the dependency of the heat transfer correlations for whole layers was investigated. Table 
3 shows the case option of which heat transfer coefficients are applied. In this calculation, 
Churchill-Chu was used for the sideward heat transfer coefficient for light metal layer for the 
conservative expectation of the heat flux to vessel wall. Figure 6 shows the heat flux to water and 
corresponding reactor vessel wall thickness as a function of the angle. The ERI model expected 
larger amount of the heat flux to water than those of other two in the oxidic layer region, whereas 
smallest amount in the metal layer regardless of which accident scenario it is. The DOE and 
INEEL model are observed to be almost same in the oxidic layer for heat flux to water as shown 
in the Figure 6(a). However, from the Figure 6(b), the vessel thickness profile indicates that ERI 
model does not differ from INEEL model. For the SBLOCA, the remaining thickness of the 
reactor vessel is about 3 cm. On the other hand, the scenario of the LBLOCA has the maximum 
heat flux to water at about 2700 kW/m2 by using INEEL model in the ceramic layer and it has a 
possibility to be beyond the critical heat flux [2]. The reactor vessel, nevertheless, were still 
observed not to be failure. And also, the vessel thickness in the metal layer region for LBLOCA 
was not small compared with the result for SBLOCA. 

Table 3 Combination of heat transfer coefficient for both layers 

Case 
Ceramic layer (Top) Metal layer (Top-Bottom) 

ERI model DOE model INEEL model Globe-Dropkin 
Globe-Dropkin 
„specialized„

1 . . 

2 • • 

3 • • 

4 • • 

5 • • 

6 • • 

4. Conclusion 

The thermal load response from the molten pool to the outer RPV (Reactor Pressure Vessel) in 
the lower plenum during a severe accident was analyzed with the conservation of energy 
equations. The heat partitioning from the oxidic layer, the crust formation and ablating of 
hemispheric vessel wall were physically defined. Non-linear Newton-Raphson iteration method 
was applied to solve the set of equations. In the lower oxidic pool region, the angular variation of 
heat transfer and crust thickness as well as vessel wall thickness was applied. 
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 by using INEEL model in the ceramic layer and it has a 

possibility to be beyond the critical heat flux [2]. The reactor vessel, nevertheless, were still 

observed not to be failure. And also, the vessel thickness in the metal layer region for LBLOCA 

was not small compared with the result for SBLOCA. 

Table 3 Combination of heat transfer coefficient for both layers 

Case 

Ceramic layer (Top) Metal layer (Top-Bottom) 

ERI model DOE model INEEL model Globe-Dropkin 
Globe-Dropkin 

“specialized” 

1 ■   ■  

2 ■    ■ 

3  ■  ■  

4  ■   ■ 

5   ■ ■  

6   ■  ■ 

 

4. Conclusion 

The thermal load response from the molten pool to the outer RPV (Reactor Pressure Vessel) in 

the lower plenum during a severe accident was analyzed with the conservation of energy 

equations. The heat partitioning from the oxidic layer, the crust formation and ablating of 

hemispheric vessel wall were physically defined. Non-linear Newton-Raphson iteration method 

was applied to solve the set of equations. In the lower oxidic pool region, the angular variation of 

heat transfer and crust thickness as well as vessel wall thickness was applied.  
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The scenario of SBLOCA and LBLOCA in the APR1400 were considered. Various sets of heat 
transfer correlations were applied to evaulate the vessel failure. Since the heat partition toward 
light metallic layer is larger than one to lower vessel, one can observed the heat flux to water has 
a quite large value. Thus, the focusing effect would be happed. Through both scenario, the 
reactor vessel was estimated and found that it did not happen to be failure. 

Further physical models for other layer inversion such as upper oxidic layer on the heavy metallic 
layer or three-layered configuration should be investigated. And also, a variety of the heat 
transfer coefficients should be applied to make this simulation to be more realistic since the heat 
partitioning and corresponding heat fluxes are definitely dependent on the heat transfer 
coefficients. Since this study is just steady state analysis in terms of the comparison of various 
heat transfer correlations, a structural analysis such as a creep or thermal fatigue effect should be 
added for more realistic solution. 
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Nomenclature 

A : Area 

C : nucleate boiling coefficient 

g : gravity acceleration 

h : Heat transfer coefficient 

k : thermal conductivity 

Q : Heat generation 

q : Heat flux 

T : Temperature 

✓ : Volume 

Greek Symbols 

a 

Ii

6 

6. 

: Thermal diffusivity 

: Thermal expansion coefficient 

: thickness 

: emmisivity 
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Nomenclature 

A  : Area 

C  : nucleate boiling coefficient 

g  : gravity acceleration 

h  : Heat transfer coefficient 

k  : thermal conductivity 

Q  : Heat generation 

q  : Heat flux 

T  : Temperature 

V  : Volume 

Greek Symbols 

α  : Thermal diffusivity 

β  : Thermal expansion coefficient 

δ  : thickness 

ε  : emmisivity 
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P : density 

o- : Stefan-Boltzmann constant 

✓ : kinematic viscosity 

Subscript 

b :bulk 

boil : boiling point 

c : crust 

1 : light metal layer 

1, b : bottom wall of light metal layer 

/,s : vessel wall in the top metallic layer 

1, t : top wall of light metal layer 

/,w : side wall of light metal layer 

m : melting 

max : maximum 

o : oxide pool 

o,s : vessel wall in the oxide pool 

o,t : top wall of oxide pool 

s : internal structural area 

sat : saturation 

t : light metal layer — atmosphere 

u : upper 

w : vessel wall 

w, i : inner wall of vessel 

w,o : outer wall of vessel 

Superscript 

I,, : per unit area 
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ρ  : density 

ζ  : Stefan-Boltzmann constant 

ν  : kinematic viscosity 

Subscript 

b  : bulk 

boil : boiling point 

c  : crust 

l  : light metal layer 

l,b  : bottom wall of light metal layer 

l,s  : vessel wall in the top metallic layer 

l,t  : top wall of light metal layer 

l,w  : side wall of light metal layer 

m  : melting 

max  : maximum 

o  : oxide pool 

o,s  : vessel wall in the oxide pool 

o,t  : top wall of oxide pool 

s  : internal structural area 

sat  : saturation 

t  : light metal layer – atmosphere 

u  : upper 

w  : vessel wall 

w,i  : inner wall of vessel 

w,o  : outer wall of vessel 

 

Superscript 

′″  : per unit area 
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II 
: per unit volume 

o : oxide pool 

/ : light metal layer 

v : vessel 
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l  : light metal layer 
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