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Abstract 

In this paper, the unique capabilities and advantages of SCWR technology for cleaner oil 
sands development are discussed from two perspectives: lower temperature steam generation 
by supercritical water for steam assisted gravity drainage (SAGD), and hydrogen production 
for oil sands upgrading by coupling SCWR with the thermochemical copper-chlorine (Cu-Cl) 
cycle. The heat requirements for bitumen extraction from the oil sands and the hydrogen 
requirements for bitumen upgrading are evaluated. A conceptual layout of SCWR coupled 
with oil sands development is presented. The reduction of CO2 emissions due to the use of 
SCWR and thermo chemical hydrogen production cycle is also analyzed. 
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1. Introduction 

With the world population aiming at improving its living standards, the demand on oil 
supplies is increasing to meet these aspirations. According to past studies [1-4], oil today 
accounts for 35% percent of global energy supply, which is the largest share of any form of 
energy. The world demand for oil has multiplied from 11 million barrels per day (mbd) in 
1950, to 57 mbd in 1970, to around 85 mbd today. According to the report of CERA in 2009 
[2], oil will still have a central role in the world energy supply in 2035 and Alberta's oil sands 
will likely move from the fringe to the center. The oil sands have become one of the most 
important sources of oil supply growth in the past decade, as production has more than 
doubled from 0.6 mbd in 2000 to 1.3 mbd by 2009. By 2035, oil sands production is 
projected to range from 2.3 mbd to 6.3 mbd [2]. 

However, reducing the negative impacts of oil sands development on the environment is a 
major responsibility, particularly with the concerns about climate change. A balance between 
the will of improving our living standards, and worsening our environment, is needed. The oil 
sands, as a source of petroleum, encapsulate the challenges of approaching the balance [5]. 
The environmental and efficiency challenges for Alberta's oil sands are compelling cases for 
research and development into cleaner extraction and upgrading technologies. 

There are various techniques and technologies for oil extraction. In addition to surface mining, 
steam assisted gravity drainage (SAGD, [9, 10, 16]) was developed in the 1980s as an in situ 
technology and was adopted quickly since the mid 1990s. In SAGD, a pair of horizontal 
wells is drilled in the oil sands and steam is injected into the upper well (injection well). After 
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the oil sands region is soaked and softened, bitumen flows to the lower well (production well) 
and it is then pumped to the surface for further processing. Cyclic Steam Stimulation (CSS, 
[8]) is another method using steam, but with only one well. The steam is injected to the well 
for a certain amount of time to heat the oil in the surrounding reservoir, and then oil is 
produced out of the same well after soaking and softening of the oil sands. 

Like CSS and SAGD, in the technology of toe to heel air injection (THAI, [12]), THAI 
technology also uses heat to soften the bitumen. But heat is generated underground by the 
combustion of a small portion of the bitumen in the ore body. Air is injected into an injection 
well to provide oxygen for the combustion. The THAI technology is expected to produce 
fewer GHGs and lower water use. Another technology is vapor extraction (VAPEX, [11]). 
The principle is similar to SAGD but instead of steam, hydrocarbon solvents are injected into 
the upper well to dilute and slightly upgrade the bitumen. 

Cold heavy oil production with sand (CHOPS) is used as an important production approach 
in unconsolidated sandstones. Thousands of wells in Canada are now stably producing oil 
through CHOPS [6, 7]. 

Regardless of the differences of the above methods, immense heat or steam is required to 
soak, soften and upgrade the oil sands by most of the methods. After the extraction of 
bitumen from underground, further upgrading is required to convert bitumen to conveyable 
and usable synthetic crude oil. This upgrading not only needs much heat, but also needs large 
amounts of hydrogen for hydrotreating [13]. 

To provide the thermal energy, steam and hydrogen for oil sands development, a nuclear 
power plant that links to thermochemical hydrogen production can be used [18]. The focus of 
this paper will examine the energy and hydrogen requirements of the oil sands development. 
Then, according to the estimates, the role and arrangement of SCWR for the oil sands 
development will be discussed. 

2. Steam temperature in SAGD and bitumen upgrading 

In the technology of SAGD, the temperature of steam injected into the well is influenced by 
various factors such as the bitumen composition, bitumen properties, sand type, the 
composition and the oil well pressure. The maximum temperature is limited by its pressure, 
which should be below the fracture pressure of the rock mass [16]. In the production well, the 
steam is controlled just below saturated conditions to prevent steam vapor from entering the 
well bore and diluting oil production. 

The bitumen is upgraded after it is extracted from the oil sand wells. The temperature 
required by the upgrading depends strongly on the bitumen properties, cracker types, 
processing methods and upgrading degree [18, 39, 46]. For example, the bitumen can be 
either upgraded into synthetic crude oil, or into more transportable and lighter oils after 
cracking and addition of hydrogen. 
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Table 1 lists various temperatures under different conditions for bitumen extraction and 
upgrading, including lab, oil field and refinery data. Since the steam for bitumen extraction 
and the heat for upgrading may be directly transferred from a nuclear power station, it is 
important to know the temperature level of the power plant. Table 2 gives the temperature of 
current CANDU reactors of Canada, and future supercritical water-cooled reactors (SCWRs) 
that are being investigated by various countries. 

The practical operating temperature in the oil fields for bitumen extraction is in the range of 
200-300°C, which is equivalent to the outlet temperature of current Canada's CANDU 
reactors. If the steam for bitumen extraction in SAGD is directly generated from the outlet 
stream of nuclear reactors, the current CANDU temperature may not be high enough to 
supply the steam for the bitumen extraction. That explains some investigators are searching 
for lower temperatures for SAGD as shown in the lab experiments of Table 1. 

If the steam for bitumen extraction from oil wells is generated from electrical power, the 
required temperature can be achieved. However, the maximum overall thermal efficiency to 
generate steam is unlikely to exceed 30-35% because this range is also the conversion 
efficiency from nuclear heat to electrical power [29-32]. 

By comparison, the temperature range of SCWRs is 467-650°C, which is at least 150°C 
higher than the temperature level of SAGD, indicating that the steam for bitumen extraction 
in SAGD can be directly generated from the heat of the supercritical water of SCWRs. The 
SCWR maximum temperature of 620-650 °C can provide a 300°C temperature difference 
with the temperature of SAGD. 

The overall thermal efficiency of using supercritical water to generate steam also depends on 
the conveying distance of the supercritical water. Figure 1 shows the conceptual layout of the 
integration of SCWR and oil extraction. A bypass line is opened at the outlet of the SCWR 
core (point A) to convey the supercritical water to generate steam for SAGD. The conveying 
distance of lines LEc and LDE may have a significant influence on the heat loss. Since the 
CANDU SCWR has the maximum temperature of all SCWRs, it is anticipated that the heat 
can be transferred over a longer distance than other SCWRs. 

From the aspect of reducing heat losses, it is advantageous that the SCWR is constructed 
close to oil fields if the steam for SAGD is directly generated from supercritical water. The 
dependence of the heat loss on the conveying length in under investigation at the University 
of Ontario Institute of Technology (UOIT). 

As to the upgrading of bitumen, similar conclusions can be obtained. The required 
temperature lies in the range of 350-550°C, which can only be satisfied by CANDU SCWR if 
the heat for upgrading is directly supplied by the nuclear reactor coolant. 
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Table 1 Temperature of bitumen extraction and upgrading 

Bitumen extraction temperature in steam assisted gravity drainage (SAGD) 
T, °C 

(Steam used 

in SAGD) 

Type of extracted 

bitumen 

Sand type Oil field / 

lab data 

Reference 

240-300 N/A N/A oil field Alberta [15] 

270 N/A N/A oil field Alberta [26] 

> 200 Viscosity < 2000cps N/A oil field Alberta [27, 28] 

139 - 144 12.4 API Limestone Lab [21] 

106 0.12 Pas 

at 106°C 

glass beads Lab [20] 

115 N/A Silica sand Lab [22-24] 

132 - 147 12.8 API limestone Lab [25] 

Bitumen upgrading temperature 
T, °C 

(Upgrading 

/cracking) 

Type of upgraded oil Processing / 

reactor type 

Refinery plant/ 

lab data 

Reference 

350 - 530 Athabasca bitumen Thermal cracking, 

fluidized bed 

Lab [40] 

380 - 460 Canada bitumen hydrothermal 

visbreaking, in 

supercritical water 

Lab [41] 

400 Fort McMurray (Alberta) 

oil sands 

Natural zeolite cracking Lab [42] 

450 - 550 Heavy oil Treated zeolite catalytic 

cracking 

Refinery plant [43] 

500 Alberta bitumen Delayed coking Refinery plant [13] 

300-400 Alberta bitumen hydrotreating Refinery plant [13] 

450 heavy oil API 618 standards 

upgrading 

Refinery plant [44] 

525 Alberta bitumen hydrocracking Refinery plant [45] 

300-400 Canada bitumen Fixed bed, removal of S, 

N and 0. 

N/A [18] 

410-420 Canada bitumen Single cracker, increase 

H/C ratio, 

N/A [18] 

470-510 Canada bitumen Fluid catalytic cracker N/A [18] 

N/A: Not applicable because the information was not reported in the reference. 
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Table 2 Temperature of current CANDU reactors of Canada and future SCWRs 
Temperature 

of coolane), 

°C 

310 324 330 620-650 565-600 467-565 500 

Reactor type CANDU-6 

Heavy 

water 

cooled 

CANDU ACR 

Heavy water 

cooled 

CANDU-6 

Heavy water 

cooled, with 

Calandria 

reduction 

SCWR 

Light 

water 

cooled 

SCWR 

Light 

water 

cooled 

SCWR 

Light 

water 

cooled 

SCWR 

Light 

water 

cooled 

Time Current Current & 

future, 

Gen III+ 

Current & 

future 

Future 

Gen IV 

Future 

Gen IV 

Future 

Gen IV 

Future 

Gen IV 

Fuel type Natural 

fuel 

Slightly 

enriched fuel 

Natural fuel Enriched 

fuel 

Enriched 

fuel 

Enriched 

fuel 

Enriched 

fuel 

Country Canada Canada Canada Canada US Japan China 

Reference [29, 30] [31] [32] [33, 34] [35] [36, 37] [38] 

(a): The temperature refers to the temperature of the coolant that exits the reactor core, as this temperature 

determines the maximum temperature that the turbine steam can achieve. 

By comparison, if using electrical power to generate the heat for upgrading, the temperature 
requirement by SAGD can be achieved. The integration layout of SCWR and upgrading is 
also shown in Figure 1. It can be found that the conveying distance of line LFGH may also 
have a strong influence on the heat loss, and it is advantageous that the SCWR is constructed 
close to the refinery. 

3. Reduction of CO2 emissions with the SCWR and Cu-Cl cycle 

3.1 Heat requirements for bitumen extraction 

From operating data of bitumen production, it was reported that about 28 cubic meters 
(1,000 cubic feet) of natural gas was used to generate heat to produce one barrel of bitumen 
from in situ projects, and about 14 cubic metres (500 cubic feet) for integrated projects [47]. 
The use of natural gas for the heat source not only consumes a portion of bitumen, but it also 
produces a vast amount of CO2 emissions. Table 3 estimates the heat requirements in bitumen 
extraction, based on the predicted future production scales [2, 47] and the combustion heat of 
natural gas [48-49]. The CO2 emissions are approximated on the basis of one mole of CH4
producing one mole of CO2, since the major composition of natural gas is CH4 [49]. 

The number of nuclear reactors in Table 3 is estimated based on the assumption that each 
SCWR unit is around 1,000 MWe and the overall power generation efficiency is 45% [33-35]. 
The efficiency of the Generation III CANDU reactors for the estimate is 30% [30, 33-35]. As 
an approximation, if the heat for bitumen production is directly obtained from the SCWR 
coolant, then it is assumed that the nuclear heat of SCWR is not used to generate electricity, 
and the thermal efficiency of heat extraction for bitumen production is 100%. Conversely, if 
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the heat for bitumen production is generated from electricity of SCWR, then it is assumed 
that the thermal efficiency of using the electricity to generate heat is 100%. These are 
idealizations that will provide basic and conceptual understanding of the challenges of oil 
sands development. 

Table 3 shows that large amount of heat required to extract bitumen from oil sands. If each 
SCWR unit can generate 1,000 MWe power and each nuclear power plant has 6 units and all 
heat carried by SCWR coolant is used to produce hydrogen, then the total heat required from 
year 2015 to 2030 is equivalent to 3-6 SCWR plants. In comparison, if the heat is generated 
from electricity of SCWR plants, then the number of SCWR plants is about 7-14. If using the 
electricity of Generation III CANDU nuclear plants, then the number of plants is about 10 to 
20. 
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Figure 1 Conceptual layout of CANDU SCWR for bitumen extraction and upgrading 
(Steam for SAGD is directly generated from supercritical water of SCWR) 
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Table 3 Reduction of CO2 emissions due to the use of SCWR to supply heat for bitumen 
extraction from oil sands 

Heat source for bitumen 

production 

Year 2015 2020 2025 2030 

Bitumen production scale 

(106 barrels/day) 

2.2 3.4 4.1 4.3 

Natural gas Natural gas volume for heating(a)

(109 Ft3/day) 

3.3 5.1 6.2 6.5 

Natural gas Heat supplied by natural gas(b)

(MWt) 

40,233 62,178 74,979 78,636 

Natural gas CO2 emissions resulting from its 

combustion for heat (106 tons/yeae 

67.0 103.5 124.9 131.0 

Natural gas Compared with 2006 CO2 emissions 

(% of 2006)(d)

12.3% 19.0% 22.9% 24.0% 

If heat is directly extracted 

from SCWR coolane 

Number of SCWRs required 

(2,222 MWt/unit, 

equivalently 1,000 MWe/unit) 

18.1 28.0 33.7 35.4 

If heat is directly extracted 

from SCWR coolane 

Number of SCWR plants required 

(6 SCWRs per plant) 

3.0 4.7 5.6 5.9 

From the electricity of 

SCWR 

Number of SCWRs required 

(2,222 MWt/unit, 

equivalently 1,000 MWe/unit) 

40.2 62.2 75.0 78.6 

From the electricity of 

SCWR 

Number of SCWR plants required 

(6 SCWRs per plant) 

6.7 10.4 12.5 13.1 

From the electricity of 

Gen-III Candu plants(d)

Number of Gen-III CANDU plants 

required (6 nuclear reactors per plant) 

10.1 15.5 18.7 19.7 

(a) To produce 1 barrel bitumen requires 1,500 ft3 natural gas [43]. 

(b) The lower heating value of 1 standard ft3 of natural gas is 252 kilocalories [48, 49]. 

(c) 1 mole CH4 produces 1 mole CO2. 

(d) In 2006, the total CO2 emissions of Canada were about 544.68 million tons [50]. 

It can be found from Table 3 that the CO2 emissions from 2015 to 2030 are 12-24% of 2006 
Canada's total CO2 emissions, if natural gas is still used as the major heat source for bitumen 
extraction. To adopt SCWR to supply the heat for bitumen production can significantly 
reduce the CO2 emissions. 

3.2 Hydrogen requirements for bitumen upgrading 

The hydrogen for bitumen upgrading can be supplied either from steam methane reforming, 
electrolysis, Cu-Cl thermochemical cycle or other methods. Operating data shows that 
upgrading a barrel of bitumen usually takes 2.4 - 4.3 kg of hydrogen [18, 51, 52]. For 
simplification purposes, in this paper, an average value of 3.3 kg H2/barrel bitumen is adopted 
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Table 3  Reduction of CO2 emissions due to the use of SCWR to supply heat for bitumen 

extraction from oil sands 

Heat source for bitumen 

production 

Year 2015 2020 2025 2030 

 Bitumen production scale 

(10
6
 barrels/day) 

2.2 3.4 4.1 4.3 

Natural gas Natural gas volume for heating
(a) 

(10
9 
Ft

3
/day) 

3.3 5.1 6.2 6.5 

Natural gas Heat supplied by natural gas
(b) 

(MWt) 

40,233 62,178 74,979 78,636 

Natural gas CO2 emissions resulting from its 

combustion for heat (106 tons/year)(c) 

67.0 103.5 124.9 131.0 

Natural gas Compared with 2006 CO2 emissions 

(% of 2006)
(d)
 

12.3% 19.0% 22.9% 24.0% 

      

If heat is directly extracted 

from SCWR coolant
(c)
 

Number of SCWRs required 

(2,222 MWt/unit,  

equivalently 1,000 MWe/unit) 

18.1 28.0 33.7 35.4 

If heat is directly extracted 

from SCWR coolant
(c)
 

Number of SCWR plants required 

(6 SCWRs per plant)  

3.0 4.7 5.6 5.9 

      

From the electricity of 

SCWR 

Number of SCWRs required 

(2,222 MWt/unit,  

equivalently 1,000 MWe/unit) 

40.2 62.2 75.0 78.6 

From the electricity of 

SCWR 

Number of SCWR plants required 

(6 SCWRs per plant)  

6.7 10.4 12.5 13.1 

From the electricity of 

Gen-III Candu plants
(d)
 

Number of Gen-III CANDU plants 

required (6 nuclear reactors per plant) 

10.1 15.5 18.7 19.7 

(a) To produce 1 barrel bitumen requires 1,500 ft
3
 natural gas [43]. 

(b) The lower heating value of 1 standard ft
3
 of natural gas is 252 kilocalories [48, 49]. 

(c) 1 mole CH4 produces 1 mole CO2. 

(d) In 2006, the total CO2 emissions of Canada were about 544.68 million tons [50]. 

It can be found from Table 3 that the CO2 emissions from 2015 to 2030 are 12-24% of 2006 

Canada’s total CO2 emissions, if natural gas is still used as the major heat source for bitumen 

extraction. To adopt SCWR to supply the heat for bitumen production can significantly 

reduce the CO2 emissions. 

3.2 Hydrogen requirements for bitumen upgrading 

 

The hydrogen for bitumen upgrading can be supplied either from steam methane reforming, 

electrolysis, Cu-Cl thermochemical cycle or other methods. Operating data shows that 

upgrading a barrel of bitumen usually takes 2.4 – 4.3 kg of hydrogen [18, 51, 52]. For 

simplification purposes, in this paper, an average value of 3.3 kg H2/barrel bitumen is adopted 
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to calculate the hydrogen quantity for bitumen upgrading. Table 4 shows the reduction of 
CO2 emissions due to the coupling of the Cu-Cl cycle with SCWR to supply hydrogen for 
bitumen upgrading. 

Table 4 Reduction of CO2 emissions due to the linkage of the Cu-Cl cycle with SCWR to 
supply hydrogen for bitumen upgrading 

Hydrogen source Year 2015 2020 2025 2030 

Bitumen upgrading scale 2.2 3.4 4.1 4.3 

(106 barrels/day) 

Steam reforming of natural 

gas 

Hydrogen required for upgrading(e)

(tons/day) 

7,480 11,560 13,940 14,620 

Steam reforming of natural 

gas 

CO2 emissions from methane as 

reactant for SMR (106 tons/year) 

30.0 46.4 56.0 58.7 

Compared with 2006 CO2 emission 5.5% 8.5% 10.3% 10.8% 

(% of 2006)(f)

Cu-Cl cycle + SCWR Heat supplied by SCWR to produce 19,046 29,435 35,495 37,227 

H2, (MW) (g)

(Heat is directly extracted 

from SCWR coolant.) 

Number of SCWR plants required to 

produce H2 

1.4 2.2 2.7 2.8 

(1,000 MWe/unit, 6 units/plant) 

(e) Upgrading of a barrel of bitumen requires 2.4 — 4.3 kg hydrogen [18, 51, 52] In this table, an average 

value 3.3 kg is adopted for approximations. 

(f) In 2006, the total CO2 emissions of Canada were 544.68 million tons [50]. 

(g) Using the Cu-Cl cycle, 220 MJ is required to produce 1 kg H2 if assuming only 50% of the heat released 

by exothermic reactions of the Cu-Cl cycle is reused inside the cycle [53]. 

The heat required to supply the Cu-Cl cycle to produce hydrogen is calculated on the basis of 
process heat of each step of the Cu-Cl cycle. To produce 1 mole of hydrogen, the total 
required heat by all endothermic reactions is 555 kJ and the total released heat of all 
exothermic reactions is 232 kJ in the Cu-Cl cycle [53]. Therefore, assuming only 50% of the 
heat released by exothermic reactions of the Cu-Cl cycle is reused inside the cycle, to 
produce 1 kg of hydrogen in the Cu-Cl cycle, the net heat input to the cycle is: 

(555 — 232*50%)/2*1000 = 220 MJ/kgH2 (Cu-Cl cycle) (1) 

It can be found from Table 4 that the CO2 emissions from year 2015 to 2030 are 5-11% of 
2006 Canada total CO2 emissions, if natural gas is still used as the major hydrogen source for 
bitumen upgrading. To couple the Cu-Cl cycle with SCWR to supply the hydrogen will 
signigicantly reduce the CO2 emissions. 

Table 5 gives the total reduction of CO2 emissions if the use of natural gas is completely 
stopped. The reduction of CO2 emissions from year 2015 to 2030 could be 18-35% of 2006 
Canada's total CO2 emissions. 
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to calculate the hydrogen quantity for bitumen upgrading. Table 4 shows the reduction of 

CO2 emissions due to the coupling of the Cu-Cl cycle with SCWR to supply hydrogen for 

bitumen upgrading. 

 

Table 4  Reduction of CO2 emissions due to the linkage of the Cu-Cl cycle with SCWR to 

supply hydrogen for bitumen upgrading 

Hydrogen source  Year 2015 2020 2025 2030 

 Bitumen upgrading scale 

(10
6
 barrels/day) 

2.2 3.4 4.1 4.3 

Steam reforming of natural 

gas  

Hydrogen required for upgrading
(e)
 

(tons/day) 

7,480 11,560 13,940 14,620 

Steam reforming of natural 

gas 

CO2 emissions from methane as 

reactant for SMR (10
6
 tons/year) 

30.0 46.4 56.0 58.7 

 Compared with 2006 CO2 emission 

(% of 2006)
(f)
 

5.5% 8.5% 10.3% 10.8% 

      

Cu-Cl cycle + SCWR Heat supplied by SCWR to produce 

H2, (MWt)
 (g)
 

19,046 29,435 35,495 37,227 

(Heat is directly extracted 

from SCWR coolant.) 

Number of SCWR plants required to 

produce H2 

(1,000 MWe/unit, 6 units/plant) 

1.4 2.2 2.7 2.8 

(e) Upgrading of a barrel of bitumen requires 2.4 – 4.3 kg hydrogen [18, 51, 52]. In this table, an average 

value 3.3 kg is adopted for approximations. 

(f) In 2006, the total CO2 emissions of Canada were 544.68 million tons [50]. 

(g) Using the Cu-Cl cycle, 220 MJ is required to produce 1 kg H2 if assuming only 50% of the heat released 

by exothermic reactions of the Cu-Cl cycle is reused inside the cycle [53]. 

 

The heat required to supply the Cu-Cl cycle to produce hydrogen is calculated on the basis of 

process heat of each step of the Cu-Cl cycle. To produce 1 mole of hydrogen, the total 

required heat by all endothermic reactions is 555 kJ and the total released heat of all 

exothermic reactions is 232 kJ in the Cu-Cl cycle [53]. Therefore, assuming only 50% of the 

heat released by exothermic reactions of the Cu-Cl cycle is reused inside the cycle, to 

produce 1 kg of hydrogen in the Cu-Cl cycle, the net heat input to the cycle is: 

 

(555 – 232*50%)/2*1000 = 220 MJ/kgH2  (Cu-Cl cycle)               (1) 

 

It can be found from Table 4 that the CO2 emissions from year 2015 to 2030 are 5-11% of 

2006 Canada total CO2 emissions, if natural gas is still used as the major hydrogen source for 

bitumen upgrading. To couple the Cu-Cl cycle with SCWR to supply the hydrogen will 

signigicantly reduce the CO2 emissions. 

 

Table 5 gives the total reduction of CO2 emissions if the use of natural gas is completely 

stopped. The reduction of CO2 emissions from year 2015 to 2030 could be 18-35% of 2006 

Canada’s total CO2 emissions. 
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Table 5 Emissions of CO2 when using methane to supply heat for bitumen extraction and 
hydrogen for upgrading 

Year 2015 2020 2025 2030 

Bitumen production and upgrading scale (106 barrels/day) 2.2 3.4 4.1 4.3 

CO2 emissions from use of natural gas as the heat source of 

bitumen extraction and hydrogen source of upgrading, 

(106 tons/year) 

97 150 180 190 

Compared with the total CO2 emissions of 2006 (% of 2006)(h) 18% 28% 33% 35% 

(h) In 2006, the total CO2 emissions of Canada were 544.68 million tons [50]. 

4. Conclusions 

The future SCWR of Canada can satisfy the temperature requirements of SAGD for bitumen 
extraction if the heat of SCWR coolant is directly used to generate steam for SAGD. The 
availability of the heat carried by SCWR is also influenced by the conveying distance of 
supercritical water and steam. In terms of thermal efficiency of heat transfer, it is 
advantageous that the SCWR is constructed relatively close to the oil fields. 

This paper found that CO2 emissions would increase by 18-35% from the year 2015 to 2030 
if natural gas is still used as the major source of heat for bitumen extraction and hydrogen for 
bitumen upgrading. The application of SCWR to the oil sands industry can significantly 
reduce the CO2 footprint of Canada, especially if it is coupled with the Cu-Cl hydrogen 
production cycle. The conceptual layout for the integration of CANDU SCWR and bitumen 
extraction and upgrading was also discussed in this paper. 
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