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Abstract 

This paper presents a progress report on the derivation of a heat transfer look-up table (LUT) for 
the region near the critical point. The intended range of application of the LUT is sufficiently 
wide to span all conditions for which conventional single-phase correlations do not apply. 

The UO database has been compared to existing correlations for single phase, near-critical (NC) 
and supercritical (SC) heat transfer. The parametric trends of the predicted accuracy of the more 
promising correlations are described. The LUT domain is subdivided into sub-regions such as 
subcritical liquid, subcritical vapour, subcritical two-phase heat transfer, SC liquid-like, SC 
vapour-like and near-critical or pseudo-critical region. For each sub-region, the best correlation 
is identified — this correlation will subsequently be used for the construction of a preliminary 
skeleton LUT, which will be updated by experimental data suitably normalized. 

1. Introduction 

Fluids exhibit large thermodynamic and heat transport property changes near the critical point. 
These property changes become smaller at supercritical pressures but remain evident near the 
pseudo-critical temperature, which is characterized by a maximum in the specific heat capacity. 
Because of these abnormal changes in the properties, the near-critical heat transfer coefficient is 
difficult to predict, especially in the range of relatively low mass velocities and high heat fluxes. 

More than twenty correlations are available in the literature for the prediction of heat transfer in 
the near-critical and supercritical region; most of the available correlations are modified versions 
of the Dittus-Boelter (1930) equation. Although these correlations account for the change in 
properties in the near critical region, they usually do not account for heat transfer enhancement 
or deterioration in the vicinity of the pseudo-critical temperature Tpc. Some prediction methods 
considered the enhancement and deterioration in heat transfer when Tb < Tw < Tpc, where Tw is 
the wall temperature and Tb is the bulk temperature. The objective of this work is to construct a 
trans-critical heat transfer look-up table (LUT), which will cover a wide range of flow 
conditions, whereas each of the current correlations is bounded by a much narrower range. In 
addition, this trans-critical LUT will include the high pressure subcritical region and will thus 
provide for the transition from the subcritical into the supercritical region. 
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2. Trans-critical heat transfer database 

2.1 Range of interest 

The derivation of a reliable heat transfer prediction method requires a data base which covers all 
conceivable conditions that can be encountered in a supercritical water reactor (SCWR) during 
normal and abnormal operation. For the subcritical single-phase and two-phase regions, they 
have been thoroughly investigated and the available heat transfer prediction methods are deemed 
to be of sufficient accuracy. The trans-critical region of interest to SCWR thermal analysis has 
been defined in this investigation as follows: 

(i) pressure: 19-30 MPa, 

(ii) mass velocity 100-5000 kg 111-2S-1, 

(iii) bulk enthalpy: corresponding to 100K below and above the critical or pseudo-critical 
temperature. 

2.2 Available data sets 

Many heat transfer experiments using SC water have been reported during the past sixty years. 
Most of these SCHT data were obtained in support of the SC fossil fired plants, which have been 
constructed around the world since the early nineteen sixties. Pioro and Duffey (2005) reviewed 
the literature of SCHT experiments in water and found more than a hundred data sets. Although 
these data should, in principle, be available to investigators worldwide, in practice data 
availability is a real problem for the following reasons. 

• Several data sets have been lost, especially those data obtained prior to 1965, when 
computers were not used in the laboratory. Most of the early investigators have died or 
retired, and, in many cases, their data have never been properly archived. In other cases, 
the laboratories where the data were obtained have ceased to exist (e.g., UKAEA), 
making it very difficult to retrieve the archived data. 

• The data are classified as proprietary or commercial. 

• The data may still be available, but it would require significant motivation, effort, and 
expense to retrieve them from archives and have them restored in a usable form. 

• The data are only available in graphical form, often created manually. Values can be 
extracted from the graphs using data digitization software, but they would generally be 
less accurate than tabulated values, because of loss of resolution in small-size graphs, 
averaging of data on plots, and averaging of flow conditions for each graph. 

An exhaustive literature review that was performed at the University of Ottawa (UO) has 
revealed 28 data sets containing 6663 trans-critical heat transfer data. The data sets and their 
ranges of conditions that have been used in this study were presented previously by Groeneveld 
and Zahlan (2009). Figure 1 shows the ranges of the trans-critical water data in normalized 
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coordinates, by plotting P/Pc vs. Reb and T/Tc. Figure 2 presents the ranges of the data expressed 
as T/Tc vs. Reb and Pravg,b vs. P/Pc. 
Additional data sets, tabulated and/or identified by Lowenberg et al. (2005, 2008; University of 
Stuttgart), and by Cheng (2009; Shanghai JiaoTong University) have been included in the 
expanded UO trans-critical heat transfer database of Figures 1 and 2. Some of these data were 
extracted from graphs using data digitization software (as were some of the data included in the 
original UO database) but these data sets are subject to the inaccuracies mentioned previously. 
The reason for including more than one set of SCHT data set for the same flow conditions was to 
enhance the reliability of the LUT. 

Data compilation has proceeded by following these steps: 

• Review of all relevant SCHT papers and identification of data sources not tabulated 
previously. 

• Extraction of data from graphs. 

• Determination of data selection criteria (ranges of length-to-diameter ratio, diameter, 
mass flux, wall temperature, bulk enthalpy, Reynolds number) needed prior to deriving 
the trans-critical look-up table, 

• Screening of the data for outliers, duplicates and data having high scatter using the so-
called "slicing methodology" developed previously at UO (Durmayaz et al., 2004). 

• Establishment of a secondary data base for SC and NC CO2 to augment the original water 
database at conditions for which water data are missing of unreliable. 

• Normalization of the data to account for variations in diameter and possibly other 
parameters deemed to be important in SCHT. 

2.3 Data screening for duplicates 

2.3.1 The dissimilarity measure criterion 

When working with a large data base that consists of many data sets, some duplication can be 
expected. Data duplication occurs because large data compilations do not always clearly specify 
the origins of the data sets and because some authors report their data in more than one 
publication. To identify duplicate data, several methodologies have been developed. Shan et al. 
(2004) proposed a criterion called "dissimilarity measure" for a CHF (critical heat flux) data 
base. They defined a modified Euclidean distance between two data points xi and x2 as: \IP 

DiS(X 1,X 2 )= E w . - x2, . „., (1) 

where p is the number of parameters in the data base, x is a normalized multi-variable vector, 
which has p dimensions, and wi is the weight given to each parameter. A different weight is 
assigned to each parameter such that the sum of all weights is equal to unit. Then, two data 
points are considered as duplicates if Dis < 0.01. To apply this technique to the trans-critical data 
base, the following parameters were identified: diameter, heated length, pressure, mass flux, heat 
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flux, local bulk enthalpy, inlet enthalpy or temperature, and wall temperature. This approach 
may occasionally identify two data sets as duplicates, although they may not be so. This might 
happen, for example, if the weighted difference in one parameter is relatively large and the 
others are very small. To prevent this, an improved methodology, to be described in the 
following subsections, was used in the assessment of the UO SCHT database. 

2.3.2 Identification of duplicate data points within each data set 

Duplicate data pairs inside each data set are defined as a pair of data points for which all 
screening parameters identified previously have identical values. The method is based on the 
assumption that, even for the same author and the same experimental conditions (system 
geometry, pressure, mass flux, inlet temperature, and measuring devices), it is highly unlikely 
that results would be identical for all recorded parameters, because even for repeat runs some 
differences in the measurements would normally be recorded. These duplicates are not removed 
from the database; they are labeled as duplicates and one of the duplicates is ignored during 
subsequent LUT development steps. 

2.3.3 Identification of duplicate runs and points between two data sets 

Directly measured parameters, including diameter, heated length, pressure, inlet temperature and 
wall temperature, would be unaffected by fluid property subroutines and might only be slightly 
affected by conversion errors and round-off or truncation errors. Therefore, margins for the 
differences between the values of such parameters for duplicate points were set to small values 
(< 0.1%). The calculated parameters, including bulk enthalpy, mass flux and heat flux, could be 
influenced by conversion subroutines and/or fluid property subroutines. Consequently, the 
margins for differences in these parameters were set to higher values (1 - 3%). The criterion to 
determine whether a data point was duplicate is defined such that all parameters for the point 
under consideration must fall within the specified margins. Additional confirmation of whether a 
suspected data point is a duplicate will be made visually using the slice method. Sometimes, 
entire runs were found to be duplicates. 

2.3.4 Additional screening concerns 

Many of the data from the collected data sets are questionable and may need to be qualified prior 
to their use for the development of the look-up table. Some of the reasons for questioning the 
validity of these data are the following. 

• The data display significant scatter and do not follow a smooth trend. This suggests 
that flow conditions in the tests may have been unstable. 

• At locations near the inlet or outlet, the temperature distribution suddenly changes. 
This is usually due to significant axial conduction due to the presence of a nearby 
heat source/sink, e.g., a copper power clamp with large power copper cables, or a 
high contact resistance (poor electrical contact) of the power terminals, which causes 
high local heat generation. 

• The data demonstrate some obvious inconsistencies, e.g., local or outlet enthalpies 
that cannot be reproduced from a simple heat balance. 
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• Data sets obtained at roughly comparable conditions do not have comparable wall 
temperatures. 

• The experimenter provided inadequate documentation regarding flow conditions or 
geometry and the missing information was extracted from calculations. 

• The data were reconstructed from graphs of poor quality. 

• The data were obtained in the entrance region where the boundary layers were not 
sufficiently developed. 

3. Prediction methods 

Several authors have reviewed or tabulated correlations that have been used to predict SCHT. 
Hall et al. (1968) and Jackson and Hall (1979a, 1979b) have presented overviews of SCHT 
correlations and assessments of SC heat transfer correlations against both SC water and SC CO2
data. Pioro et al. (2004) recently presented a more up-to-date review of such correlations that 
have been applied to SC conditions. In this paper, four single-phase correlations and nine SCHT 
correlations) have been assessed against the UO database. The correlations were tabulated by 
Groeneveld and Zahlan (2009). These correlations are described below. 

3.1 Single-phase correlations 

Most of the correlations used have a form similar to that of the Dittus-Boelter (1930) equation, 
but with different exponents. The Dittus-Boelter equation was originally based on water data 
only and evaluates the fluid properties at the bulk fluid temperature, whereas the Sieder-Tate 
(1936) equation includes a viscosity ratio term to account for the difference in fluid viscosity at 
the wall and in the bulk flow. The Hadaller and Banerjee (1969) equation is based on high-
pressure superheated steam data. The most recent single phase heat transfer equation is that of 
Gnielinski (1976) for fully developed turbulent flows, which includes a friction factor term to 
account for the increasing heat transfer with an increase in friction factor. 

3.2 SCHT correlations 

One of the earliest SCHT correlations is that of Bishop et al. (1965) who modified the Dittus-
Boelter (1930) equation by including a density ratio (ratio of the density at wall temperature and 
the density at bulk fluid temperature) and replacing the specific heat in the Prandtl number by the 
effective integrated specific heat capacity. The Swenson et al. (1965) correlation has similar 
parameters to the Bishop et al. (1965) correlation, except that Tw was used as the reference 
temperature for Nu, Re, and averaged Pr number. Krasnoscheckov et al. (1967) proposed a 
modified version of a SCHT correlation previously derived in 1959 and 1960. Jackson's (2002) 
correlation is basically a modified form of the Krasnoscheckov et al. (1967) equation. Yamagata 
et al. (1972) introduced a correction factor to the Dittus-Boelter equation, which is a function of 
the Eckert (E = (Tpc-Tb)/(Tw-Tb)) and Prandtl numbers at the pseudo-critical temperature or the 
effective integrated specific heat capacity ratio. Watts and Chou (1982) correlated mixed 
convection (forced and natural) water and CO2 data for upwards and downwards flows; they 
used the deterioration criterion of Jackson and Hall (1979b) in the development of their 
correlations for normal and deteriorated heat transfer. Griem (1996) modified the Dittus-Boelter 
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equation by considering Cp at five reference temperatures from Tb to Tw; the selected Cp is based 
on excluding the largest two Cp values and averaging the other three. Griem also introduced a 
correction factor to cover the whole enthalpy range; this factor is a function of Hb. 

Kuang et al. (2008) used their SCHT databank for water in vertical upwards flow in tubes to 
develop their correlation. They investigated the enhanced and deteriorated heat transfer region 
based on the normal heat transfer coefficient predicted by Dittus-Boelter (1930). Kuang et al. 
used the modified Grashof number term Gr* first introduced by Jackson et al. (1989) to account 
for buoyancy effects (strong variations in density causing mixed instead of pure forced 
convection). In addition they used the McEligot et al. (2004) non-dimensional heat-flux number 
q+ to consider the streamwise thermal acceleration effect from heating on the HTC. Gospodinov 
et al. (2008) used the SCHT water data of Kirillov et al. (2005; 89 runs with 81 data points per 
run) in deriving their correlation. In the development of their correlation, Gospodinov et al. 
(2008) excluded the data with both enhanced and deteriorated heat transfer. Cheng et al. (2009) 
derived a simple SCHT correlation to predict the deviation from the normal heat transfer 
predicted by the Dittus-Boelter (1930) equation. This correlation is a function of the 
dimensionless acceleration number lEA. 

3.3 Assessment of the heat transfer prediction methods 

Initially, the prediction accuracy of all correlations was assessed based on a comparison against 
the UO SCHT databank and the most promising six heat transfer correlations were selected for 
further assessment. As expected, the agreement of the single-phase correlations with the data 
obtained near the pseudo-critical temperature is poor, whereas the agreement with the data 
obtained at higher temperatures is much better (Groeneveld and Zahlan, 2009). Subsequently, 
five additional SCHT correlations and two additional single-phase correlations were included for 
evaluation against the expanded database. The results for single-phase correlations (Table 1) 
show that the Gnielinski (1976) correlation provided the best agreement with the data for the 
subcritical subcooled liquid region, while the Hadaller and Banerjee (1969) correlation presented 
the best agreement for the superheated steam region. The SCHT region was divided into three 
distinctive sub-regions: (i) high density state (liquid-like) region (T, Tb< Tpc - AT), (ii) near-
critical or near-pseudo-critical region (Tpc - AT < Tw and Tb < Tpc + AT), and (iii) low density 
state (gas-like) region (Tpc+ AT < Tw, Tb), where the numerical value of AT in degrees K is taken 
to be equal to the ratio Pc/P. To reduce the bias caused by duplicates in the data sets of 
Herkenrath (1967) and Kirillov et al. (2005) from different sources, a weighting factor of 0.6, 
estimated from an initial screening of duplicates, was introduced in the average and RMS error, 
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where i denotes dataset number excluding the Herkenrath (1967) and Kirillov et al. (2005) data 
sets, which were denoted by m and n respectively. In the SCHT regions, the correlations by 
Kuang et al. (2008) and Gospodinov et al. (2008) showed the best agreement with the compiled 
data (the latter showed a slightly better agreement with the data). Table 2 presents the overall 
weighted average and RMS error for the expanded UO database. Tables 3 to 5 show the 
percentages of data predicted within certain error band by the leading correlations for the near-
critical or pseudo-critical, the gas-like, and the liquid-like region. Figures 3 to 5 show the 
average and RMS error for Reb, Pravg,b, and P/Pc, for the three supercritical regions for the 
combined UO, SJTU, and U of S database. 

4. Derivation of the trans-critical look-up table 

The derivation of a look-up table requires first the construction of a skeleton table to provide the 
initial estimate of the heat transfer coefficient (HTC) values at discrete values of the independent 
flow parameters, including pressure (P), mass flux (G), coolant enthalpy (Hb) and heat flux or 
wall temperature. The skeleton table values are used for evaluating the slopes of HTC vs. P, G 
and Hb. The skeleton table also provides the default heat transfer values based on predictions 
from leading heat transfer correlations at conditions for which no experimental data are 
available. 

The skeleton table is not expected to be smooth and will likely display an irregular variation (i.e., 
devoid of physical basis) with the three table parameters (pressure, mass flux and coolant 
enthalpy). These fluctuations are attributed to data scatter, systematic differences between 
different data sets, and possible effects of secondary parameters such as heated length, surface 
conditions and flow instability. Sharp variations in heat transfer coefficient will also likely be 
observed at boundaries between regions where experimental data are available and regions 
where correlations or other approaches need to be employed and at the lower pressure limit 
where a transition to subcritical prediction methods for film boiling, CHF or single phase heat 
transfer takes place. Note that predictions at conditions at which no data are currently available 
are expected to be complex and require an understanding of the physics and thermodynamics of 
SCHT, including near-wall phenomena. This also requires a close examination of the trends of 
the data vs. P, G and enthalpy at conditions closest to those of the missing data. 

To minimize unrealistic sudden transitions (i.e., transitions which are not based on experimental 
trends), the smoothing procedure developed by Huang and Cheng (1994) will be applied. The 
smoothing procedure will not be applied at conditions near the pseudo-critical temperature where 
rapid changes in HTC are expected to be present. 

An assessment of the prediction accuracy of the look-up table will be performed by comparing 
the predicted and experimental HTC and providing detailed overall error statistics, and error 
statistics for various sub-regions. The prediction accuracy of the new trans-critical look-up table 
will also be compared to the prediction accuracy of leading SC or single-phase prediction 
methods. 
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The distribution of the prediction error with respect to the primary table parameters will also be 
examined to identify any systematic trends; if systematic trends are identified, the look-up table 
will be corrected to remove such biases. 

5. Summary and concluding remarks 

In addition to compiling supercritical and near-critical heat transfer data for water, many papers 
containing supercritical and near-critical heat transfer data for CO2 and R-134a have been 
identified; they will be used as a secondary source of data for conditions for which water data are 
unavailable or unreliable. 
In the subcooled liquid region, the correlation of Gnielinski (1976) had the best agreement with 
the compiled data, while the Gospodinov et al. (2008) had the best agreement with data for the 
superheated steam region. 

In the supercritical region, the correlation of Gospodinov et al. (2008) showed the best 
agreement with the data for all three sub-regions. 

The LUT versions will be based on directly measured or calculated parameters, i.e., HTC = f( P, 
G, Hb, q and D) and HTC = f(P, G, Hb, Tw and D). In view of the rather large number of table 
entries when using 5 independent LUT parameters, modified versions of the LUT using fewer 
parameters may be derived subsequently, including versions using only dimensionless 
parameters. 

The ideal LUT will have (i) good prediction accuracy, (ii) few independent parameters, (iii) the 
least number of LUT entries, and (iv) smooth convergence with existing single phase and film 
boiling prediction methods. 

Nomenclature 

D tube inside diameter (m) 

G mass flux (kg m -2 s -1)

H enthalpy (kJ kg-1) 

P pressure (kPa) 

q heat flux (kW m-2) 

T temperature (°C) 

h heat transfer coefficient (kw. m-2 K -1)

Subscripts 

b bulk 

c critical 

pc pseudo-critical 
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Table 1 Overall average and RMS error in the subcritical region 

Correlation 
Subcritical liquid Superheated steam 

Av.er, % rms, % Av.er, % rms, % 
Sieder and Tate (1936) 27.6 37.4 83.8 137.8 
Gnielinski (1976) -4.3 18.3 80.3 130.2 
Hadaller and Banerjee (1969) 27.3 35.9 19.1 34.4 
Dittus-Boelter (1930) 10.4 22.5 75.3 127.3 
Gospodinov et al. (2008) -1.06 19.21 -4.78 19.57 

Table 2 Overall weighted average and RMS error in the three supercritical sub-regions 

Correlation 

Liquid-like 
region 

Gas
region 

Av.er, 
% 

-like 

rms, 
% 

Close to 
PC point 

Av.er, 
% 

CP or 

rms, 
% 

Av.er, 
% 

rms, 
% 

Bishop et al. (1965) 6.3 24.2 5.2 18.4 20.9 28.9 
Swenson et al. (1965) 1.5 25.2 -15.9 20.4 5.1 23.0 
Krasnochekov et al. (1967) 15.2 33.7 -33.6 35.8 25.2 61.6 
Watts and Chou (1982), Normal 4.0 25.0 -9.7 20.8 5.5 24.0 
Watts and Chou (1982), Deter. 5.5 23.1 5.7 22.2 16.5 28.4 
Griem (1996) 1.7 23.2 4.1 22.8 2.7 31.1 
Jackson (2002) 13.5 30.1 11.5 28.7 22.0 40.6 
Gospodinov et al. (2008) -3.9 21.3 -8.5 16.5 -2.3 17.0 
Kuang et al. (2008) -6.6 23.7 2.9 19.2 -9.0 24.1 
Cheng et al. (2009) 1.3 25.6 2.9 28.8 14.9 90.6 
Hadaller and Banerjee (1969) 7.6 30.5 10.7 20.5 - -
Sieder and Tate (1936) 20.8 37.3 93.2 133.6 - - 
Dittus-Boelter (1930) 32.5 46.7 87.7 131.0 - -
Gnielinski (1976) 42.5 57.6 106.3 153.3 - - 
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Table 3 Error bands for the region near the critical or pseudo-critical point 

(Crw> (Tpc AT), and (Tpc+ AT) >Tb)) 

Error band, 
15718 data 

point (2008) 

Percentage of data predicted by a correlation, % 

inov et et al. 
(2008) 

et al. Swenson 
(1965) 

Watts and 
Chou 

(2000) 
normal HT 

. 
Dittus and 

Boelter 
(1930) 

+10% 46.7 30.5 44.4 42.6 17.6 
+20% 80.6 57.9 71.9 70.0 32.1 
+30% 94.0 81.0 85.8 87.3 41.9 
+50% 99.3 98.0 95.6 96.9 52.6 

Table 4 Error band for the gas-like region (Tw, Tb > Tpc+ AT) 

Error band, 
5273 data 

points 

Percentage of data predicted by a correlation, % 

inov et  et al. 
(2008) 

et 
al. (2008) 

Swenson 
(1965) 

Bishop 
(1965) 

Dittus 
and 

Boelter 
(1930) 

Hadaller 
and 

Banerjee 
(1969) 

+10% 48.8 45.6 30.4 43.6 9.3 36.2 
+20% 81.4 76.6 65.4 74.0 16.0 68.3 
+30% 94.2 91.1 88.5 90.9 23.3 88.2 
+50% 99.5 98.8 99.2 98.8 37.6 99.0 

Table 5 Error band the liquid-like region (T, Tb< Tpc- AT) 

Error band, 
4483 data point 

Percentage of data predicted by a correlation, % 

Gospod- 
inov et al. 

(2008) 

Kuang et 
al. (2008) 

Griem 
(1996) 

Watts and 
Chou 

(2000) 
Deter. HT 

Dittus 
and 

Boelter 
(1930) 

Hadaller 
and 

Banerjee 
(1969) 

+10% 48.3 37.7 47.0 29.3 22.9 14.4 
+20% 72.7 64.6 73.0 59.3 45.8 27.2 
+30% 85.9 84.5 86.6 82.5 69.5 45.8 
+50% 97.0 96.9 95.8 96.9 88.7 80.0 
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eliminating outliers 
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Figure 4 Average and RMS error for P ravg in the near-critical and liquid/gas-like regions 
after eliminating outliers 
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Figure 4 Average and RMS error for Pravg in the near-critical and liquid/gas-like regions 
after eliminating outliers 
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