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Abstract 

The experimental data on critical flow, heat transfer and critical heat flux have been obtained at 
the test loop of supercritical water in China Institute of Atomic Energy. The major characteristics 
and parametric trends of these phenomena are presented, and the experimental results are 
compared with the calculations of existing correlations and models. 

1. Introduction 

In recent years the Supercritical Water Cooled Reactor (SCWR) has been selected as a 
candidate for generation-W nuclear power system due to its high thermal efficiency and 
considerable simplification. The thermal-hydraulics is a major challenge for the R&D of the 
SCWR due to the complexities in the phenomena and lack of experimental data for 
supercritical water. In China Institute of Atomic Energy (CIAE) a supercritical water loop 
was constructed for the experiments of the critical flow, heat transfer and critical heat flux. So 
far, a large number of experimental data of critical flow and some preliminary results on the 
heat transfer and critical heat flux have been obtained. In this report the major characteristics 
of the phenomena are presented and the experimental data are compared with the existing 
physical models or correlations. 

2. Experimental facility 

Fig.1 shows the diagram of the supercritical water loop for critical flow experiment. It consists of 
a three-head piston pump, a dumping tank, a preheater, a condenser, heat exchangers and valves, 
etc.. The maximum pressure is 30 MPa and the flow rate is 2400 kg/h. The power capacity is 
75Vx15000 A DC. With this system the experiment is conducted at stable condition. With some 
minor modifications this loop is also used for experiments of heat transfer and critical heat flux. 

3. Critical flow 

Two nozzles, A and B, as shown in Fig.2, were tested. They had 1.41 mm in diameter and 4.35 
mm in length with rounded-edge of r = 1 mm and sharp-edge, respectively. More than 250 
experimental data were obtained, covering the ranges of pressures of 22.1 — 29.1 MPa and inlet 
temperatures of 38 — 474 ❑ . 

3.1 Experimental results 

The experimental results are shown in Fig. 3 by displaying GM versus DTpc (= Tpc — T0) , where 
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1—dumping tank 
2—preheater 
3—nozzle test section 
4—condenser 
5—heat exchanger 
6—flowmeter 
7—piston pump 
8—water tank 
9—valve 
10—heat exchanger 

Figure.1 Diagram of supercritical water loop for critical flow experiment 
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(b) Nozzle B 

Figure 2 Schematic of nozzle test sections 

GM is the measured mass flux, To the inlet bulk temperature, and Tpc the pseudo-critical 
temperature. The results of two nozzles are compared in Fig.4. 

As seen, the mass flux decreases as DTpc decreasing (or inlet temperature increasing). The trend 
is moderate in the regions of beyond Tpc (DTpc <0) and well below Tpc (i.e. DTpc larger than 
about 100 K), while it varies sharply in the near pseudo-critical region. 

In the region of DTpc > 0 (> 30 K in particular) the data points appear scattered from the general 
trend, characterized by a kind of instability. This behavior seems relative to the experimental 
procedure. The test started from a low temperature, and proceeded by increasing temperature run 
by run toward the pseudo-critical temperature. In this period the flow rate decreased smoothly as 
the temperature increasing. Then the test was repeated by decreasing the temperature. In this 
period the flow exhibited very slow excursion, and lower flow rates were generally attained, 
compared to those obtained in the former period for the same po and To. This behavior was more 
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Figure 2  Schematic of nozzle test sections 

 
 

GM  is  the measured mass flux, T0 the  inlet  bulk temperature, and TPC the  pseudo-critical 
temperature. The results of two nozzles are compared in Fig.4. 
 
As seen, the mass flux decreases as DTPC decreasing (or inlet temperature increasing). The trend 
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Figure 3 Variations of measured mass flux with DTpc 
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predominant for nozzle B, especially at higher pressure. In the region of DTpc < 0 it appeared not 
obvious and the results of two nozzles were not different appreciably. This effect can be 
explained in terms of the local resistance and the onset of vaporization. In the region of DTpc < 0 
the local resistance at the inlet only takes a small fraction of the overall resistance. The onset of 
vaporization is related with the region of DTpc > 0, and it is closely related to the inlet shape, as 
will be discussed latter. 
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Figure 4 Comparison of the measured results between two nozzles 

3.2.1 Onset of vaporization 

2:40

The critical flow is dominated by the vapor content strongly, and thus is closely related with the 
onset of vaporization. It is recognized that the drastic subcooled depressurization is a non-
equilibrium process, and the vaporization would occur at a superheat, i.e., the first nucleation 
would occur at a pressure, pn, lower than the local saturation pressure, ps. The pressure 
difference, ps - pn, as called pressure undershoot [1], is increased as the depressurization rate 
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increasing (or as the temperature decreasing). For po = 25 MPa and DTpc = 60K, for instance, it 
is estimated to be around 6 MPa, corresponding to a superheat of as high as about 50 K. It 
decreases as DTpc decreasing, and is about 20 K for DTpc = 30K. 

Furthermore, the velocity and pressure in the throat are not uniform. Fig.5 illustrates the pressure 
distributions in liquid-phase flow calculated by CFD for two nozzles. As seen, for sharp-edge the 
non-uniformity of the pressure at a cross section is much severer than rounded-edge. A minimum 
pressure exists near the inlet of throat, which is determinant for the vapor generation. 
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(a) Nozzle A with rounded-edge (r = 1 mm) (b) Nozzle B with sharp-edge 

Po = 25 MPa, G = 97500 kg/m2s Po = 25 MPa, G = 164600 kg/m2s 

Figure 5 Pressure distributions in two nozzles 

In general, the onset of vaporization is related with the depressurization rate, the experimental 
procedure, and even the surface imperfection, dissolved gas or suspended particle in the liquid, 
etc.. Therefore, the superheat could be rather large for the first bubble formation. But once the 
nucleus is activated the bubble could be generated at a small superheat. Furthermore, the 
vaporization is accompanied by an increase in the local resistance, which produces a positive 
feedback effect to enhance the vaporization further and to decrease the flow rate even at a 
decreased temperature. 

3.2.2 Instability and bifurcation behavior 

As discussed above , and the superheat for the onset of vaporization is dependant on variety of 
factors, and may vary significantly for same inlet pressure and temperature, associated with great 
uncertainty in the vapor generation and flow rate. 

Fig.6 illustrates a result calculated by a modified homogeneous equilibrium model (as will be 
described latter). Firstly, the calculations are performed successively as temperature increasing 
step by step. In this period, considering the pressure undershoot the vaporization is not predicted 
to occur at the inlet of throat until the temperature closes to Tpc. Then, the calculations are 
repeated successively as temperature decreasing step by step. In the latter period the nucleus is 
assumed activated, and the superheat for vaporization is not considered (i.e. pn = ps). As seen, 
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lower results are calculated than those in the first period, and a bifurcation behavior is produced, 
characterizing a kind of instability. This calculation explains qualitatively the scattered feature in 
the region of DTpc > 0. It should be noted that in the calculations the local resistance is simply 
based on single liquid-phase flow. Actually, after the onset of vaporization the local pressure loss 
would increase, and the difference in the results between two periods could be even larger. 
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Figure 6 Illustration for the instability of mass flux due to uncertainty 
in the onset of vaporization (po = 25 MPa) 

The onset of vaporization would take place at DTpc larger than a certain value and the inlet 
pressure at throat below subcritical pressure. For the nozzle with sharp-edge the significant 
pressure non-uniformity would associate with greater uncertainty in the onset of vaporization and 
thus severer instability, compared to rounded-edge. While in the region of near or beyond 
pseudo-critical temperature this effect is less important and the instability for both nozzles is not 
obvious. 

\3.3Prediction of mass flux 

3.3.1 Critical flow 

In the previous experiments it was concluded that under subcritical pressure condition the 
thermal non-equilibrium tended to decrease as pressure increasing, and thermal equilibrium was 
dominant at supercritical pressure [2, 3]. Same finding was achieved in the similar experiments 
of supercritical water [4] and CO2 [5]. 

In the present study, to account for the effect of inlet resistance the Homogeneous Equilibrium 
Model (HEM) [3] is modified as 
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where h is the enthalpy, P the density, x the equilibrium quality at the critical plane, and the 
subscripts g and 1 refer to vapor and liquid, respectively, 0 refers to the stagnation condition, and 
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tic average density at tic inlet of throat. The mess flux is predicted by Eq. (1) as tic 
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tic critical mess flux. 
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the average density at the inlet of throat. The mass flux is predicted by Eq. (1) as the 
downstream pressure decreased successively, until a maximum value is attained and it is taken as 
the critical mass flux.  

 
3.3.2 Non-critical flow 
 
At certain subcooling the liquid is not vaporized before leaving the throat, and the flow is not 
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                                 (2) 
where p0 is the inlet pressure; pb, the back pressure,  the water density and CD is the discharge 
coefficient. 
 
3.3.3 Estimation of the mass flux 
 
Fig.7 exemplifies the experimental results by G ～ DTPC, and the calculations by the M-HEM 
(i.e. Eq.(1)) and the Bernoulli equation are superimposed. For the near and beyond pseudo-
critical region the instability is not obvious due to less uncertainty in the vaporization, and the 
M-HEM gives better prediction of the critical flow rate. For DTPC larger than a certain value the 
instability behavior can not be calculated by the model due to great uncertainty in the onset of 
vaporization. At assumption of no vaporization at the inlet of throat (i.e,   =   ) the model 
gives basically the upper envelop of the scattered data. For the nozzle with rounded-edge, at 
lower pressure the instability is not appreciable over the whole range of temperature, as seen in 
Fig.7(b), the results are reasonably represented by. 
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Figure 7  Comparison of the experimental results with calculations for wider range of DTPC 
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O Flow rate decreases as the inlet temperature increasing, and it varies sharply when the 
temperature decreases below pseudo-critical point. 

O In the region of near or beyond pseudo-critical point the thermal equilibrium is dominant, 
and the critical flow rate can be estimated reasonably by the modified Homogeneous 
Equilibrium Model. 

O In the region of DTp larger than a certain value, the critical flow is characterized by some 
instability, and the inlet shape of nozzle has a substantial effect. 

O At the inlet temperature well below the pseudo-critical temperature the choking condition 
does not take place. 

4. Heat transfer 

The test section is a stainless-steel tube of 6.07 mm in diameter and 1.3 m in heating length with 
water flowing upward inside, as shown in Fig.8. The wall temperatures are measured by 
thermocouples at three locations. The heat loss of the test section is prevented by installing three 
AC heaters surrounded the tube. The test section is heated by a DC supply. 

r   Di-6.07mm, 
0o=8.0® 

m Glass-fiber 

• IT 

C3 

DC 

.1! 

Figure 8 Schematic of heat transfer test section 

The experimental parameters cover the ranges of pressure of 10 — 23 MPa, mass flux of 288 —
1298 kg/m2s, local water temperature of 78 — 270 °C, heat flux of 0.23 — 1.18 MW/m2 and 
Reynolds number of 5.5x103 — 3.9x104. 
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The experimental parameters cover the ranges of pressure of 10 – 23 MPa, mass flux of 288 – 
1298 kg/m2s, local water temperature of 78 – 270 ℃, heat flux of  0.23 – 1.18 MW/m2 and 
Reynolds number of 5.5×103 – 3.9×104. 
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4.1 Experimental Results 

Fig.9 shows the comparison of experimental results with Dittus-Boelter correlation. For 
subcritical pressure, at higher Reynolds number the data are predicted by the correlation 
reasonably. When the Reynolds number decreases to a certain value (i.e., Reb < 12000) the data 
depart from the correlation sharply. For supercritical pressure, the agreements are mostly within 
20%, and distinctly deteriorated heat transfer is observed at two points with wall temperatures 
above the pseudo-critical temperature. 
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In Fig.10 the experimental results are compared with four supercritical heat transfer correlations, 
including (a) Bishop correlation [7], (b) Jackson correlation [8], (c) Swenson correlation [9] and 
(d) Yamagata correlation [10]. As seen, except for the two points with Tw > Tpc, the agreements 
for the Bishop correlation, Swenson correlation and Jackson correlation are mostly within 10%, 
while the deviations are slightly increased for Yamagata correlation. The occurrence of 
deteriorated heat transfer is not predicted by Jackson correlation and Yamagata correlation, but is 
predicted by the Bishop correlation and Swenson correlation, though the values of Nusselt 
number are not predicted properly. 
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Figure 10 Predictions of experimental data by supercritical heat transfer correlations 

4.2. Occurrence of deteriorated heat transfer 
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Two types of deteriorated heat transfer are reported to exist at supercritical pressure. The first 
one occurs when the wall temperature exceeds the pseudo-critical temperature and thus the wall 
is covered by vapor. The second one occurs due to the change in flow structure. 

From various experiments the occurrence of deteriorated heat transfer was formulated by a 
relation, qIG = C, with the value of C ranging from 0.4 - 1.05 kJ/kg [11], and by cie = 0.2G1'2
[10]. This kind of relation is dimensional and does not include some important parameters, e.g. 
the local fluid temperature and geometry, and it appears not applicable for the present 
experiment. 

To consider the effect of buoyancy force on the flow structure, the following parameter was 
introduced by Grabezhnnaya and Kirillov [12] 

With 

k = (1- Pw)(Gr I R4, ) 
Pb 
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For k > 0.01 the effect of buoyancy is assumed appreciable. While for k < 0.01 it is assumed 
negligible and the heat transfer is estimated with a normal turbulent convection correlation. As 
seen in Fig.11, for p = 23 MPa the two points with deteriorated heat transfer lay above the line, k 
= 0.01, while for p = 10 MPa the deteriorated heat transfer, which is attained at Reb < 12000, is 
represented by a lower limit of k. 
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Figure 11 Parameter k for the data points of p = 23 and 10 MPa 

In a heated upward flow the buoyancy force could make a reduction of the shear-stress in the 
near-wall region, associated with the laminarization and delay in the transition of flow regime 
from mixed convection to turbulent convection. For the transition between these two regimes, a 
criterion of critical Reynolds number, Ref „ was derived by Tanaka et al. [13], as follows, 

Ref c = 50Gr 7 21 , with Gr g I3(T f  —Tb)D3 (6) 
f  

o f
2 

in which the subscript f denotes the properties evaluated at film temperature, Tf = (T + Tb ) / 2 . 

As observed in Fig.9, all the data with deteriorated heat transfer are predicted to be in mixed 
convection regime for both subcritical and supercritical pressure. This result suggests that a 
significant delay in the transition of flow regimes due to buoyancy force could be the cause of 
the substantial deterioration in heat transfer. Apparently, the Dittus-Boelter type correlations 
with modification for the effect of properties near the wall can not adequatly represent the 
mechanism of the transition of flow regime and the heat transfer characteristic for this regime. 

4.3 Summary 

o At both subcritical and supercritical pressures, the deterioration in heat transfer could occur at 
rather high Reynolds number as a result of the change in flow structure. 

o For supercritical pressure the existing Dittus-Boelter type correlations with modification for 
the variations in properties near the wall give better predictions of the heat transfer for the 
normal turbulent convection, but they can not predict the deteriorated heat transfer 
satisfactorily. 
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5. Critical heat flux 

Recently, a preliminary experiment of critical heat flux was conducted in a tube of inner 
diameter of 8 mm and heating length of 0.8 m with water flowing upward. The parameters 
covered the ranges of pressure of 8.3 — 16.4 MI3a. , mass flux of 783 — 1034 kg/m2s and local 
subcooling of 16.5 —116 °C . 

Under the present low flow condition the critical heat flux, qM, ranged from 2.3 to 3.3 MW/m2, 
and exhibited a weak effect of the subcooling on CHF. The 95-CHF Look-up table gives general 
overpredictions of the experimental results, as shown in Fig.12. 
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Figure 12 Comparison of CHF experimental data with 95-Look-Up Table 
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