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Abstract 

Monte-Carlo simulations are used to calculate the primary radical yields g(ea-q ), g(.011), the 
sum [g(ea-q ) + g(.011) + g(10], and the ratio g(11)1g(ea-q ) in the low-LET radiolysis of 
supercritical water (SCW) at 400 °C in the high-density, liquid-like region near —0.5 g/cm3. 
Using all the currently available information on the reactivities and diffusion coefficients of 
the radiation-induced species under these conditions, a good accord is found between the 
calculated and the available experimental yield values. In particular, our computed ea-q yields 
at 60 ps and 1 ns compare very well with the recently reported time-dependent yields of 
hydrated electrons in SCW at 400 °C. 

1. Introduction 

While experiments showing that water is decomposed by X rays and radium date back to the 
early 20th century, various quantitative aspects of this radiolysis are not yet fully resolved [1-
3]. This is particularly true in water-cooled nuclear reactors which use water as heat transfer 
medium, neutron moderator, and shield [4]. Current, state-of-the-art pressurized water 
reactors operate at —250-330 °C and 10 MPa pressure. They essentially provide a source of 
heat used to drive a "heat engine" (turbine) to generate electricity. Based on the second law 
of thermodynamics, an obvious way to increase the operating efficiency and profitability of 
future nuclear power plants is to heat the water of the primary circuit to even higher tem-
peratures. Fourth-generation nuclear technology (Gen IV) designs under consideration [5-10] 
would operate at —430-625 °C and 25 MPa, i.e., well beyond the thermodynamic critical point 
of water (1120: tc = 373.95 °C, Pe = 22.06 MPa or 217.7 atm, pc = 0.322 g/cm3/D20: tc = 
370.74 °C, Pc = 21.67 MPa or 213.9 atm, pc = 0.358 g/cm3) [11]. Supercritical (light/heavy) 
water (SCW)-cooled reactors would enable thermodynamic cycle efficiencies as high as 
—44% (versus —33% for existing water reactors), thus generating lower-cost electricity. 

An enhanced, reliable understanding of the effects of radiation on aqueous systems in both 
current water reactors and SCW-cooled nuclear reactors in the future is required in order to 
specify chemistry control strategies that minimize unwanted corrosion and degradation of 
components in the reactor circuits resulting from the radiolytic formation of oxidizing 
products, such as 'OH, H20 2, 0 2, and 0 2' (or 1102' depending on the pH) [8-10,12]. These 
products are highly reactive at the elevated temperatures corresponding to normal operating 
conditions. In current reactor designs, one commonly used remedial measure to chemically 
prevent the net radiolytic production of oxidizing species in the water is to add a small 
overpressure of excess 112 in the reactor coolant. It is still unclear, however, whether this 
"hydrogen water chemistry", or some variant on the same theme, would also be effective 
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370.74 ºC, Pc = 21.67 MPa or 213.9 atm, ρc = 0.358 g/cm3) [11].  Supercritical (light/heavy) 
water (SCW)-cooled reactors would enable thermodynamic cycle efficiencies as high as 
~44% (versus ~33% for existing water reactors), thus generating lower-cost electricity. 

An enhanced, reliable understanding of the effects of radiation on aqueous systems in both 
current water reactors and SCW-cooled nuclear reactors in the future is required in order to 
specify chemistry control strategies that minimize unwanted corrosion and degradation of 
components in the reactor circuits resulting from the radiolytic formation of oxidizing 
products, such as •OH, H2O2, O2, and O2

•− (or HO2
• depending on the pH) [8-10,12].  These 

products are highly reactive at the elevated temperatures corresponding to normal operating 
conditions.  In current reactor designs, one commonly used remedial measure to chemically 
prevent the net radiolytic production of oxidizing species in the water is to add a small 
overpressure of excess H2 in the reactor coolant.  It is still unclear, however, whether this 
“hydrogen water chemistry”, or some variant on the same theme, would also be effective 
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under SCW conditions [9]. Moreover, the water in reactor cores is subject not only to 
extreme conditions of high temperature and pressure, but also to an intense flux of ionizing 
radiations (fast neutrons, y-rays, recoil protons and heavy ions), which are the main source of 
the troublesome oxidizing products [9,10,13,14]; for these reasons, its radiolysis is difficult to 
determine experimentally. 

As experiments at very high temperatures and pressures, and especially beyond the critical point 
of water, are difficult to perform, theoretical models and computer simulations of the radiation 
chemistry of the cooling water are an important route of investigation [9,10,14,15]. However, a 
large amount of input information on the reaction rate constants (k) of radiation-induced species, 
reaction mechanisms, diffusion coefficients (D), and radiolytic yields (or g-values) in subcritical 
water and in the SCW regime is needed in order to create such models. This information is 
important since preliminary studies suggest, in many cases, a markedly different behavior of the 
effects of radiation at SCW conditions compared to what one would predict from simplistic 
extrapolations of experimental data originally measured at lower temperatures. Key examples 
here include the rate constants of a growing number of chemical reactions that are found to 
exhibit, at elevated temperatures, negative Arrhenius activation energies (i.e., the temperature 
dependence of k actually decreases gradually with temperature above a certain temperature), so 
that earlier attempts to extrapolate existing experimental data on reactivities from their measured 
ranges (mostly less than 250-310 °C [15-18]) to the temperatures of interest, assuming simple 
Arrhenius behavior, should be viewed with caution [9,19-24]. Since about 2000, there has been 
a revival in the study of the high-temperature radiolysis of water due, in large part, to the need 
for information on SCW. Generally, these studies have been able to extend the measurements of 
both reaction rates and g-values to higher temperatures than the original investigations, thereby 
reducing or, in some cases, eliminating the need to extrapolate the data (for a recent compilation 
and critical review of radiolysis data up to 350 °C, see [24]). More recently, the need to model 
chemistry in a SCW-cooled reactor has initiated concerted national and international 
experimental programs that are now underway in several laboratories to generate the necessary 
radiation chemistry data. Currently, however, only limited experimental data are available on the 
radiation chemistry and reaction kinetics of transients in SCW [8,9,13,19,20,25-34]. 

The present work is a first attempt to extend our previous Monte-Carlo track structure 
simulations in liquid water at high temperatures [35] to the study of the low linear energy 
transfer (LET) radiolysis of SCW (H20) at 400 °C. It represents an initial effort to obtain data to 
help elucidate mechanisms by which radiation interacts with water in its supercritical regime. 
The calculations reported herein incorporate all the currently available information on the 
temperature-dependent reactivities and diffusion coefficients of the radiolytically-produced free 
radicals and molecular products [ ea-q , H+, OH-, W, H2, .0H, H202, 02.- (or HO2'), etc.] [1,36-38] 
and on the physicochemical properties of water at this temperature. To our knowledge, no 
theoretical modeling of the radiolysis of water at such elevated temperatures has been reported so 
far. Even if uncertainties abound throughout, we have used parameters which appear reasonable 
to us. Rather than waiting until better data become available, our first objective here is to push 
the calculation all the way to the point that we can compare calculated g-values for radiolysis 
yields with existing experimental observations. Of course, the final objective is a track model 
which agrees with experimental chemical data. 
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2. Monte-Carlo simulations 

The radiolysis of SCW has been modeled using an extended version of our Monte-Carlo track 
structure simulation code called IONLYS-IRT, which simulates irradiations (by high-energy 
protons or heavier ions) of pure liquid water or (dilute) aqueous solutions at ambient [39-41] and 
elevated [35] temperatures. A detailed description of our simulation methodology and reaction 
scheme can be found in the references cited. 

In brief, the IONLYS program models, on an event by event basis, all the events of the early 
physical (<10-15 s) and physicochemical (-10-15-10-12 s) stages [42] in the track development. 
The complex spatial distribution of reactants present at the end of the physicochemical stage, 
which is provided as an output of the IONLYS program, is then used directly as the starting point 
for the subsequent nonhomogeneous chemical stage [42]. This third and final stage (-10-12-10-6
s at room temperature), during which the various radiolytic species diffuse randomly and react 
with one another (or with available solutes) until all spur/track processes are complete, is 
covered by our IRT program. This program employs the "independent reaction times" (IRT) 
method [43,44], a computer efficient stochastic simulation technique that is used to simulate 
reaction times without having to follow the trajectories of the diffusing species. The IRT method 
relies on the approximation that the reaction time for each pair of reactants is independent of the 
presence of other reactants in the system. Such an approximation has been found to be accurate 
in solvents of high dielectric constant, where the Coulomb forces between the ions are weak (as 
is the case with ordinary water), but the method has also been used in intermediate and low-
permittivity solvents (such as water at elevated temperatures, alcohols, and hydrocarbons) 
[35,45-47]. Within the framework of this approach, the competition between the reactions is 
simply described via a sorting out of the stochastically sampled reaction times for each of the 
potentially reactive pairs of reactants. The implementation of this program has been described 
previously [40,41] and its ability to give accurate time-dependent chemical yields has been well 
validated by comparison with full random flight Monte-Carlo simulations that do follow the 
reactant trajectories in detail [44,48,49]. 

In the present version of IONLYS-IRT, the rate constants of the dominant chemical and 
acid/base equilibrium reactions involved in the radiolysis of SCW at 400 °C in the liquid-like 
region studied have usually been obtained by extrapolating the experimental data recently 
compiled by Elliot and Bartels [24] from their measured ranges (mostly 20-350 °C). In some 
cases, the kinetic data of Ghandi and Percival [20] inferred from muon spin spectroscopy 
measurements in subcritical water and SCW (up to 450 °C) have also been used. The 
corresponding k values employed in our simulations are listed in Table 1. 

Note the particular case of the self-reaction of ea-q (reaction R10) whose temperature 
dependence is still a subject of questioning [23,24] that requires some clarification. Its rate 
constant has been chosen here by following the extrapolation procedure previously proposed by 
Elliot [16], and employed in [35], which consists to assume that this reaction is diffusion-
controlled above 150 °C. The validity of this assumption is confirmed by the good agreement of 
the calculated and experimental g( ea-q ) values up to 350 °C (data not shown). In contrast, if the 
abrupt decrease in this rate constant observed in alkaline solution above 150 °C is included in our 
simulations, a sharp downward discontinuity in g(112) is predicted [35,51,52], which is not 
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observed experimentally [24]. This abrupt drop needs to be confirmed in near-neutral solution, 
as it may be a function of the pH of the solution [16-18]. 

Table 1 Main spur/track reactions and values at 400 °C for the corresponding rate constants (k) used 
in our simulations. 

Symbol Reaction k (1010 M1 s-1) 

R1 

R2 
R3 
R4 
R5 
R6 

.011 + e;:i -> OH-

.011 + 1-1. -> H2O 

.011 + .011 -> 11202 

.011 + 1-102. -> 02 + H2O 

.011 + 112 -> 11. + H2O 
ea-q + II+ -> 1-1.

45 a

4.4 b
0.85 a
3 a 

0.06 a
300' 

R7 ea-q + H. -> H2 ± OH- 79 a 

R8 1-1. + OH- -> e;:i + H2O 2.2 a
R9 II+ + OH- -> H2O 200 a
R10 ea-ci + ea-ci -> 112 + 2 OH- 21 d

R11 1-1. + 1-1. -> H2 15 e
R12 1--1. + 0 2 -> 1-102. 6.7 a
R13 1-1. + 1-102. -> 2 .01-1 34 a
R14 W + 11202 -> *OH + H2O 0.23 a
R15 ea-ci + H202 -> *OH + OH- 46 a

R16 .011 + 1120 2 -> 1102. + H2O 0.06 a
R17 ea-ci + 02 -> 02.- 25 af

a Extrapolated from [24]. 
b From Fig. 2 of [20]. See also [24]. 
C See also [50]. 
d Extrapolated from Fig. 3 of [16], assuming reaction R10 is diffusion controlled and using the 
experimental data up to 150 °C. See also [35]. 
e Extrapolated from Fig. 7 of [16], assuming reaction R11 is diffusion controlled. See also [24]. 
f See also [27]. 

For the other reactions, whose rate constants have been measured only up to 200 or 250 °C 
(many of these data have been collected and summarized in [15-18,24] for both H2O and D20), 
the available data for k have been extrapolated above their experimentally studied temperature 
range as described previously [35]. Due to the lack of experimental data, we have simply chosen 
to neglect any dependence of the reaction rate constants on water density on the 400 °C isotherm; 
this approximation should not be too severe, if one considers the limited range of densities 
investigated here. 

The diffusion coefficients used for the main reactive species are listed in Table 2. The values of 
the viscosity (r) - 58.6 FAPa.$), static dielectric constant (60 - 9.6), and molar concentration 
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For the other reactions, whose rate constants have been measured only up to 200 or 250 °C 
(many of these data have been collected and summarized in [15-18,24] for both H2O and D2O), 
the available data for k have been extrapolated above their experimentally studied temperature 
range as described previously [35].  Due to the lack of experimental data, we have simply chosen 
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investigated here. 
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(-27.8 M) of SCW at 400 °C and —0.5 g/cm3 have been taken from the NIST Chemistry 
WebBook [11], whereas the ionic product of water (Kw) has been obtained from Bandura and 
Lvov [56]. Finally, 

Table 2 Values at 400 °C for the diffusion coefficients (D) of reactive species in SCW in the high-
density region around —0.5 g/cm3. 

Species D (10-9 1112 S-1) 

H2 a 146 
H202 a 70 
IT a 213 
*OH a 67 
e a-  q 420 b

H30 + 56' 
OH- 58
H2O a 70 

a The diffusion coefficients of 112, 1120 2, 11*, and 'OH, explicitly determined at 25 °C but 
essentially unknown at 400 °C, are assumed to scale according to the self-diffusion of water [16-
18,23,35,51]. The values of D at 25 °C for the various reactants are taken from [16,35] 
DH20(25 °C) = 2.299 x le m2 s-1 [53]. The self-diffusion coefficient of compressed SCW at 
400 °C and —0.5 g/cm3 is taken to be 70 x 10-9 m2 s-1 from the measurements of Lamb et al. [54]. 
b Extrapolated from the data of Schmidt et al. [55] up to 90 °C and the estimate of Marin et al. 
[23] at 300 °C (-240 x le m2 s-1). 

Obtained by extrapolation of the experimental data reported by Elliot and Bartels (Fig. 4-27 of 
[24]) over the 0-350 °C temperature range. 

from a microscopic viewpoint, we have ignored here the heterogeneous structural characteristics 
of SCW originating from the existence of density fluctuations (or water "clustering") that are 
associated with the high compressibility of water in the vicinity of te [57-61]. In our simulations, 
we assume that the overall instantaneous picture of SCW can simply be viewed as a continuum 
medium with mean density equal to the density of bulk water. This approximation is thought to 
be reasonable at the liquid-like SCW densities considered in this study [58,60] and it seems to be 
justified by the agreement we have obtained between model and experiment (see below). 

To reproduce the effects of 60Co y-rays or fast electrons, we use short (-100-Rm) segments of 
—300-MeV proton tracks, over which the LET is essentially constant and equal to —0.3 keV/[tm 
in normal liquid water at 25 °C. Such an analysis thus gives "track segment" yields [62] as a 
function of time from picoseconds to microseconds. The number of proton histories (-150) is 
chosen so as to ensure only small statistical fluctuations when calculating average yields, while 
keeping acceptable computer time limits. 
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             H2
 a     146 

      H2O2
 a    70 

    H• a     213 
     •OH a     67 
         420 b 
    H3O+     56 c 
    OH−     58 c 

         H2O a    70 ________________________________________________________________________ 
a The diffusion coefficients of H2, H2O2, H•, and •OH, explicitly determined at 25 °C but 
essentially unknown at 400 °C, are assumed to scale according to the self-diffusion of water [16-
18,23,35,51].  The values of D at 25 °C for the various reactants are taken from [16,35].  
DH2O(25 °C) = 2.299 × 10-9 m2 s-1 [53].  The self-diffusion coefficient of compressed SCW at 
400 °C and ~0.5 g/cm3 is taken to be 70 × 10-9 m2 s-1 from the measurements of Lamb et al. [54]. 
b Extrapolated from the data of Schmidt et al. [55] up to 90 °C and the estimate of Marin et al. 
[23] at 300 °C (~240 × 10-9 m2 s-1). 
c Obtained by extrapolation of the experimental data reported by Elliot and Bartels (Fig. 4-27 of 
[24]) over the 0-350 °C temperature range. 

from a microscopic viewpoint, we have ignored here the heterogeneous structural characteristics 
of SCW originating from the existence of density fluctuations (or water “clustering”) that are 
associated with the high compressibility of water in the vicinity of tc [57-61].  In our simulations, 
we assume that the overall instantaneous picture of SCW can simply be viewed as a continuum 
medium with mean density equal to the density of bulk water.  This approximation is thought to 
be reasonable at the liquid-like SCW densities considered in this study [58,60] and it seems to be 
justified by the agreement we have obtained between model and experiment (see below). 

To reproduce the effects of 60Co γ-rays or fast electrons, we use short (~100-µm) segments of 
~300-MeV proton tracks, over which the LET is essentially constant and equal to ~0.3 keV/µm 
in normal liquid water at 25 °C.  Such an analysis thus gives “track segment” yields [62] as a 
function of time from picoseconds to microseconds.  The number of proton histories (~150) is 
chosen so as to ensure only small statistical fluctuations when calculating average yields, while 
keeping acceptable computer time limits. 
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3. Results and discussion 

Table 3 compares our calculated values of g(ea-q ), g('01-1), the sum [g(ea-q ) + g(*01-1) + g(14')], 
and the ratio g(1-1)1g(ea-cd with available experimental data [30,32-34] for the low-LET 
radiolysis of pure, deaerated SCW at 400 °C and -0.5 g/cm3. As we can see, a good overall 
agreement is obtained between experiment and theory. 

Table 3 Comparison of available experimental data (in molecule/100 eV) ofg(e;q ), g('01-1), 
[g(e;zi ) + g(*01-1) + g(14')], and g(1-1)1g(e;4 ) in the low-LET radiolysis of SCW at 400 °C and in 

the liquid-like region around -0.5 g/cm3 with the results of our Monte-Carlo simulations .a

Yield Experiment This work" 

g( e aq) 
3.48 ± 0.2 a at 0.570 g/cm3 and -60 ps [34] 
2.46 ± 0.2 a at 0.570 g/cm3 and -1 ns [34] 

2.29 at 0.523 g/cm3 [30] 
2.36 at 0.502 g/cm3 [30] 
2.45 d at 0.475 g/cm3 [30] 

g( c q ) + A*011) + On 
9.45 at 0.523 g/cm3 [30] 
9.35 at 0.502 g/cm3 [30] 
9.55 at 0.475 g/cm3 [30] 
9.38 at 0.523 g/cm3 [33] 

10.08 at 0.475 g/cm3 [33] 

3.15 at 60 ps 
2.55 at 1 ns 

2.26 

9.07 

5.41 e at 0.523 g/cm3 [32] 4.91 
5.63 e at 0.475 g/cm3 [32] 

0.996f at 0.523 g/cm3 0.84 
1.11f at 0.475 g/cm3

a Most data reported here are derived from scavenged yields of species measured in steady-state 
experiments and supposed ideally to be close to the "escape" yields from the spur [24,37,62]. 
Unless otherwise indicated, our calculated yields are all obtained assuming a scavenging time of 
-10 ns [13]. 
b All yield values are computed for a SCW density of 0.5 g/cm3

. 

a Direct observation using picosecond pulse radiolysis experiments in supercritical D20. 
d Janik et al. [13] also reported the ea-q escape yields in SCW at 380 and 400 °C as a function of 
density using N20 as a specific scavenger for ea-q (rather than the tert-BuOH/methyl viologen 
scavenging system used in the experiments of Lin et al. [30]). At their highest densities studied 
(-0.42-0.55 g/cm3), their ea-q yields are comparable with those measured by Lin et al. [30]. 
a Average over several determinations. 
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                     3.48 ± 0.2 c at 0.570 g/cm3 and ~60 ps [34] 3.15 at 60 ps 
                     2.46 ± 0.2 c at 0.570 g/cm3 and ~1 ns [34] 2.55 at 1 ns  
                 2.29 at 0.523 g/cm3 [30] 
                 2.36 at 0.502 g/cm3 [30]       2.26 

                 2.45 d at 0.475 g/cm3 [30] 
g( ) + g(•OH) + g(H•) 
                 9.45 at 0.523 g/cm3 [30]   
                 9.35 at 0.502 g/cm3 [30]   9.07 
                 9.55 at 0.475 g/cm3 [30]   
                  9.38 at 0.523 g/cm3 [33] 
               10.08 at 0.475 g/cm3 [33] 
g(•OH) 
                  5.41 e at 0.523 g/cm3 [32]   4.91 
         5.63 e at 0.475 g/cm3 [32] 
g(H•)/g( ) 
         0.996 f at 0.523 g/cm3   0.84 
         1.11 f at 0.475 g/cm3 ________________________________________________________________________ 

a Most data reported here are derived from scavenged yields of species measured in steady-state 
experiments and supposed ideally to be close to the “escape” yields from the spur [24,37,62]. 
Unless otherwise indicated, our calculated yields are all obtained assuming a scavenging time of 
~10 ns [13]. 
b All yield values are computed for a SCW density of 0.5 g/cm3. 
c Direct observation using picosecond pulse radiolysis experiments in supercritical D2O. 
d Janik et al. [13] also reported the  escape yields in SCW at 380 and 400 °C as a function of 
density using N2O as a specific scavenger for  (rather than the tert-BuOH/methyl viologen 
scavenging system used in the experiments of Lin et al. [30]). At their highest densities studied 
(~0.42-0.55 g/cm3), their  yields are comparable with those measured by Lin et al. [30]. 
e Average over several determinations. 

The 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010) 
Toronto, Ontario, Canada, April 25-28, 2010 Page 6 of 12



The 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010) 
Toronto, Ontario, Canada, April 25-28, 2010 Page 7 of 12 

f Obtained from the product yield measurements without considering the scavenging time for the 
two species (M. Lin, personal communication, 2008). Similar values of this ratio have also been 
reported at 380 °C in the density regime studied here by Janik et al. [13] (see also [27]). 

Let us note briefly here the three following points. First, there is currently only very limited 
information on the yields of water radiolysis products under supercritical conditions. In fact, 
published data mainly concern g-values for e a-  q [9,13,25-27,30,31,34], IT atom [9,13,27], 112
[9,13], and 'OH [32] production in low-LET radiolysis up to 400 °C. Most of these studies 
employ steady-state radiolysis experiments with various specific scavengers, assuming that they 
(and the products formed) are thermally stable in SCW. However, because of the lack of precise 
determination of the rate constants for the reactions between radicals and scavengers, the 
scavenging time (i.e., reciprocal of the "scavenging power", defined as the product of k and the 
scavenger concentration) corresponding to the g-values reported at high temperature is not well 
known and may differ depending on the considered experimental conditions. In the calculations 
reported in Table 3, we have assumed that the scavenging time in those yield experiments is —10 
ns [13]. Second, as shown in Table 3, there is a good agreement between our computed ea-q
yields at 60 ps and 1 ns and the corresponding g-values measured in SCW (D20) by Muroya et 
al. [34] using picosecond pulse radiolysis experiments. In this context, it is remarkable to note 
that these direct time-dependent ea-q yield measurements [34] compare very well with Lin et 
al.'s previous studies [30,31] that used scavenging methods. Finally, our third point concerns the 
importance of the charge-recombination reaction R6 (see Table 1) in irradiated SCW at 400 °C. 
In fact, the rate constant for this reaction is known only up to 350 °C [24,50]. However, in light 
of the recent measurements of Muroya et al. [34], which appear to indicate that reaction R6 at 
400 °C is even faster than that at 350 °C, we have determined the sensitivity of our simulated 
radiolytic yields on variations in the value of the rate constant for this reaction. As expected 
[13,34], reaction R6 has a major impact on the calculated yields of g( ea-q ) and g(11'). For 
example, at 400 °C and 0.5 g/cm3, the ratio g(11')/g( ea-q ) at 10 ns varies from 0.74 to 1.26 
molecule/100 eV when the rate constant is varied from 2.5 to 5 x 1012 M1 s-1. By contrast, 
g('0H) and g(H2) are found to be rather insensitive to this parameter. 

4. Conclusion 

In this work, we have presented, in the light of the available experimental data, the results of 
our calculated yields of the free radical products ea-q , 'OH radical, and IT atom, in irradiated 
SCW at 400 °C and liquid-like densities around —0.5 g/cm3. The good overall accord between 
experiment and theory shows that Monte-Carlo simulations offer a most promising avenue at 
present to further develop our understanding of temperature/pressure (density) effects in the 
radiolysis of SCW under various thermodynamic conditions. Currently, work is in progress at 
our laboratory to calculate the g-values in SCW at 400 °C in the low-density, gas-like region 
near —0.15 g/cm3. 
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