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Abstract 

This paper presents an analysis of convective heat-transfer in water flowing in vertical bare tubes at 
supercritical conditions. A large dataset within conditions similar to those of SuperCritical Water-
cooled Nuclear Reactors (SCWRs) was obtained from the Institute for Physics and Power Engineering 
(IPPE, Obninsk, Russia). This dataset was compared with existing heat-transfer correlations from the 
open literature, and a new more comprehensive heat-transfer correlation for predicting Heat Transfer 
Coefficient (HTC) values is proposed. A dimensional analysis was conducted to obtain a general form 
of empirical correlation using a combination of various dimensionless terms. This empirical 
correlation was verified using the experimental dataset obtained at the Normal Heat-Transfer (NHT) 
regime using statistical analysis. The final correlation showed the best fit for the experimental dataset 
within a wide range of flow conditions. 

1. Introduction 

SuperCritical Water-cooled nuclear Reactors (SCWRs) are high-pressure (-25 MPa) and high-
temperature (outlet temperatures up to 625°C) reactors that will operate above the thermodynamic 
critical point of water (22 MPa and 374°C) (see Figure 1) [1], [2]. As part of the Generation-IV 
International Forum (GIF), SCWR concepts are currently under development worldwide. Figure 2 
outlines the difference in the operating conditions (pressures, temperatures and entropies) of current 
generation reactor systems in comparison to SCWRs. Compared to existing Pressurized Water 
Reactors (PWRs), SCWRs would involve increasing the coolant pressure from 10 — 16 MPa to about 
25 MPa, the inlet temperature to about 350°C, and the outlet temperature to about 625°C. The coolant 
would pass through the pseudocritical region before reaching the channel outlet [1]. 

1.1 SCWR Concepts 

SCWRs can be divided into two subcategories: 1) Pressure-Vessel (PV) reactors, and 2) Pressure-Tube 
(PT) reactors. Currently, both Canada and Russia are working on the development of PT-reactor 
concepts. One of the main objectives for developing and utilizing SCWRs is that SuperCritical Water 
(SCW) Nuclear Power Plants (NPPs) offer an increased thermal efficiency, approximately 45 — 50%, 
compared to that of current generation NPPs (30 — 35%). Additionally, they allow for a decrease in 
capital and operational costs. 

Generation-IV reactor concepts (see Table 1) under development at AECL [3] and RDIPE [4] have a 
main design objective of achieving major reductions in unit energy cost relative to existing PWR 
designs [5]. This approach builds on using existing SCW experience in operating fossil-fired thermal 
power plants. A major contribution to this energy cost reduction would result from boosting the outlet 
coolant temperature, thereby increasing the thermal efficiency of the NPP. 
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Figure 1 Pressure-Temperature Diagram for 
Water in Critical Region [2]. 

Figure 2 Temperature-Entropy Diagram 
Comparison of Current Generation Nuclear 

Reactors and SCWRs [1]. 

These reactors might use the direct cycle with the coolant from the reactor flowing directly to turbines. 
This feature allows for a simplified flow circuit in which steam generators, steam dryers, steam 
separators, etc. can be eliminated. A further benefit of using SCWRs is their ability to facilitate 
hydrogen co-generation, on an economical scale, through either thermochemical cycles or direct high-
temperature electrolysis. 

The current Canadian SCWR concept includes a fuel channel comprised only of a pressure tube 
insulated internally, which would enable the pressure tube to operate at temperatures close to that of the 
moderator. This fuel-channel design would be used for supercritical water heating from 350 to 625°C. 
A re-entrant fuel-channel design, allowing the pressure tube to operate at the supercritical water inlet 
temperature, might be used for a nuclear steam re-heat at subcritical pressures. The current heat-
transfer evaluation has shown that PT SCWRs are feasible. A further study on conceptual thermal-
design options for pressure-tube SCWRs can be found in [6]. 

Supercritical fluids have unique properties [7], [8]. It is well established that thermophysical properties 
of any fluid, including water, experience significant changes within critical and pseudocritical regions. 
Figure 3 illustrates these variations for water passing through the pseudocritical point at 25 MPa, the 
proposed operating pressure of SCWRs. 

The most significant changes in properties occur within ±25°C from the pseudocritical temperature 
(384.9°C at 25 MPa). The National Institute of Standards and Technology (NISI) [9] Reference Fluid 
Properties (REFPROP) software was used to calculate these thermophysical properties. Crossing from 
high-density fluid to low-density fluid does not involve a distinct phase change. Phenomena such as 
dry-out (critical heat flux) are therefore not applicable. However, at supercritical conditions, a 
Deteriorated Heat-Transfer (DHT) regime may exist [I]. 
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Figure 1  Pressure-Temperature Diagram for 
Water in Critical Region [2]. 

Figure 2  Temperature-Entropy Diagram 
Comparison of Current Generation Nuclear 

Reactors and SCWRs [1]. 

These reactors might use the direct cycle with the coolant from the reactor flowing directly to turbines.  
This feature allows for a simplified flow circuit in which steam generators, steam dryers, steam 
separators, etc. can be eliminated.  A further benefit of using SCWRs is their ability to facilitate 
hydrogen co-generation, on an economical scale, through either thermochemical cycles or direct high-
temperature electrolysis.  

The current Canadian SCWR concept includes a fuel channel comprised only of a pressure tube 
insulated internally, which would enable the pressure tube to operate at temperatures close to that of the 
moderator.  This fuel-channel design would be used for supercritical water heating from 350 to 625°C.  
A re-entrant fuel-channel design, allowing the pressure tube to operate at the supercritical water inlet 
temperature, might be used for a nuclear steam re-heat at subcritical pressures.  The current heat-
transfer evaluation has shown that PT SCWRs are feasible.  A further study on conceptual thermal-
design options for pressure-tube SCWRs can be found in [6]. 

Supercritical fluids have unique properties [7], [8].  It is well established that thermophysical properties 
of any fluid, including water, experience significant changes within critical and pseudocritical regions.  
Figure 3 illustrates these variations for water passing through the pseudocritical point at 25 MPa, the 
proposed operating pressure of SCWRs.   

The most significant changes in properties occur within ±25°C from the pseudocritical temperature 
(384.9°C at 25 MPa).  The National Institute of Standards and Technology (NIST) [9] Reference Fluid 
Properties (REFPROP) software was used to calculate these thermophysical properties.  Crossing from 
high-density fluid to low-density fluid does not involve a distinct phase change.  Phenomena such as 
dry-out (critical heat flux) are therefore not applicable.  However, at supercritical conditions, a 
Deteriorated Heat-Transfer (DHT) regime may exist [1]. 
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Figure 3 Selected Properties of Supercritical Water at Pseudocritical Point [2]. 
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Table 1 lists parameters of current PT-SCWR concepts being developed by AECL (Canada) and 
RDIPE (Russia). 

Table 1 Major Parameters of SCW CANDU® and KP-SKD Nuclear-Reactor Concepts [1], [10]. 
Parameters SCW CANDU KP-SKD 

Reactor type PT PT 
Thermal power, MW 2540 1960 
Electric power, MW 1220 850 
Thermal efficiency, % 48 42 
Pressure, MPa 25 25 
Inlet temperature, °C 350 270 

Outlet temperature, °C 625 545 
Mass flow rate, kg/s 1300 922 
Number of fuel channels 300 653 
Number of fuel elements in bundle 43 18 
Length of bundle string, m 6 
Maximum cladding temperature, °C 850 700 

Comparisons of selected thermophysical properties profiles for water along the fuel-channel heated 
length for a non-uniform Axial Heat Flux Distribution (AHFD) are shown in Figures 4 and 5 [6]. 
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Figure 3  Selected Properties of Supercritical Water at Pseudocritical Point [2]. 

Table 1 lists parameters of current PT-SCWR concepts being developed by AECL (Canada) and 
RDIPE (Russia).  

Table 1  Major Parameters of SCW CANDU® and KP-SKD Nuclear-Reactor Concepts [1], [10]. 
Parameters SCW CANDU KP-SKD 

Reactor type PT PT 
Thermal power, MW 2540 1960 
Electric power, MW 1220 850 
Thermal efficiency, % 48 42 
Pressure, MPa 25 25 
Inlet temperature, C 350 270 
Outlet temperature, C 625 545 
Mass flow rate, kg/s 1300 922 
Number of fuel channels 300 653 
Number of fuel elements in bundle 43 18 
Length of bundle string, m 6 – 
Maximum cladding temperature, C 850 700 

 
Comparisons of selected thermophysical properties profiles for water along the fuel-channel heated 

length for a non-uniform Axial Heat Flux Distribution (AHFD) are shown in Figures 4 and 5 [6]. 
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Figure 4 Bulk-Fluid Temperature and Figure 5 Prandtl Number and Specific Heat 
Thermophysical Properties Profiles for Water Profiles for Water along Heated Length of SCWR 

along Heated Length of SCWR Fuel Channel [2]. Fuel Channel [2]. 

The following bulk-fluid thermophysical properties were calculated: (a) density; (b) specific heat; (c) 
thermal conductivity; (d) dynamic viscosity; and Prandtl number. In addition to the regular bulk-fluid 
properties, the cross-sectional average specific heat and the corresponding average Prandtl number, 
which are used in various supercritical heat-transfer correlations (for details, see [1]), were shown in 
Figure 5 for reference purposes. The bulk-fluid temperature was calculated based on the heat-balance 
method. 

This paper presents selected results on heat transfer to supercritical water flowing upward in a 4-m long 
vertical bare tube. Further results and analysis of this dataset can be found in [11] and [12]. The 
objective of this paper was to verify several well-known heat-transfer correlations for vertical bare 
tubes with a recent heat-transfer dataset. In addition, it was determined that an updated correlation for 
forced convective heat-transfer to supercritical water in a bare vertical tube could be developed and is 
presented in the following section. 

2. Background 

Currently, there is just one supercritical-water heat-transfer correlation for fuel bundles. This 
correlation was obtained for supercritical water flowing in a 7-element helically-finned bundle 
designed by Dyadyakin and Popov [1]. However, heat-transfer correlations for bundles are usually 
very sensitive to bundle design. Therefore, this correlation cannot be applied to other bundle 
geometries. To overcome this problem, a wide-range heat-transfer correlation based on bare-tube data 
can be developed as a conservative approach. This process is based on the fact that HTCs in bare tubes 
are generally lower than those in bundle flow geometries in which heat transfer is enhanced with 
appendages (endplates, bearing pads, spacers, buttons, etc.). 

A number of empirical generalized correlations, based on experimentally obtained datasets, have been 
proposed to calculate the HTC in forced convection for various fluids including water at supercritical 
pressures. These bare-tube-based correlations are available in various literature sources, however, 
differences in HTC values can be up to several hundred percent [1]. 
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The following bulk-fluid thermophysical properties were calculated: (a) density; (b) specific heat; (c) 
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This paper presents selected results on heat transfer to supercritical water flowing upward in a 4-m long 
vertical bare tube.  Further results and analysis of this dataset can be found in [11] and [12].  The 
objective of this paper was to verify several well-known heat-transfer correlations for vertical bare 
tubes with a recent heat-transfer dataset.  In addition, it was determined that an updated correlation for 
forced convective heat-transfer to supercritical water in a bare vertical tube could be developed and is 
presented in the following section.  

2. Background  

Currently, there is just one supercritical-water heat-transfer correlation for fuel bundles.  This 
correlation was obtained for supercritical water flowing in a 7-element helically-finned bundle 
designed by Dyadyakin and Popov [1].  However, heat-transfer correlations for bundles are usually 
very sensitive to bundle design.  Therefore, this correlation cannot be applied to other bundle 
geometries.  To overcome this problem, a wide-range heat-transfer correlation based on bare-tube data 
can be developed as a conservative approach.  This process is based on the fact that HTCs in bare tubes 
are generally lower than those in bundle flow geometries in which heat transfer is enhanced with 
appendages (endplates, bearing pads, spacers, buttons, etc.).   
 
A number of empirical generalized correlations, based on experimentally obtained datasets, have been 
proposed to calculate the HTC in forced convection for various fluids including water at supercritical 
pressures.  These bare-tube-based correlations are available in various literature sources, however, 
differences in HTC values can be up to several hundred percent [1].  
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2.1. Existing Correlations 

P21 

The most widely used heat-transfer correlation at subcritical pressures for forced convection is the 
Dittus-Boelter correlation (1930) [13]. McAdams (1942) [14] proposed to use the Dittus-Boelter 
correlation in the following form for forced-convective heat transfer in turbulent flows at subcritical 
pressures (this statement was based on the recent study by Winterton [15]): 

Nub = 0.0243 Re°,.8Prt°.4 (1) 

Later, Eq. (1) was also used at supercritical conditions. According to Schnurr et al. [16], Eq. (1) 
showed good agreement with experimental data for supercritical water flowing inside circular tubes at 
a pressure of 31 MPa and low heat fluxes. However, it was noted that Eq. (1) might produce 
unrealistic results within some flow conditions, especially near the critical and pseudocritical points, 
because it is sensitive to properties variations. In general, this classical correlation was used 
extensively as the basis for various supercritical heat-transfer correlations. Therefore, the Dittus-
Boelter correlation was used in the following form, for reference purposes: 

Nub = 0.023 Ret•8Pe.4 (2) 

Equation (2) is the most widely used interpretation of the original Dittus-Boelter correlation [18]. 

An analysis performed by Pioro and Duffey [1] showed that the Bishop et al. correlation was obtained 
within the same range of operating conditions as those for SCWRs. Bishop et al. (1964) [17] 
conducted experiments in supercritical water flowing upward inside bare tubes and annuli within the 
following range of operating parameters: pressure 22.8 — 27.6 MPa, bulk-fluid temperature 282 —
527°C, mass flux 651 — 3662 kg/m2s and heat flux 0.31 — 3.46 MW/m2. Their data for heat transfer in 
tubes were generalized using the following correlation with a fit of ±15%: 

0.43 

DNub = 0.0069 Rer prbo. 
66 pw

1 + 2.4 
X (3) 

Pb 

) 

Equation (3) uses the cross-sectional averaged Prandtl number. The last term in the correlation 
accounts for the entrance-region effect. In the present comparison, the Bishop et al. correlation was 
modified and used without the entrance-region term, because this term depends significantly on the 
particular design of the inlet of the bare test section: 

0.43 

Nub = 0.0069 Reb* Prb 
9 —0.66 (p_=

j

Pb 
(4) 

Swenson et al. (1965) [19] found that conventional correlations, which use the bulk-fluid temperature 
as a basis for calculating the majority of the thermophysical properties, did not work well. They 
suggested the following correlation in which thermophysical properties are based mainly on a wall 
temperature: 

0.231 
—0.613 p 

uN = w  0.00459 Re"23Prw
Pb

(5) 
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Equation (5) was obtained within the following range: pressure 22.8 - 41.4 MPa, bulk-fluid 
temperature 75 - 576°C, wall temperature 93 - 649°C and mass flux 542 - 2150 kg/m2s; and predicted 
their experimental data within ±15%. 

Jackson (2002) [20] modified the original correlation of Krasnoshchekov et al. (1967) [21] (for details, 
see [1]), for forced-convective heat transfer in water and carbon dioxide at supercritical pressures, to 
employ the Dittus-Boelter type form for Nu.. Finally, the following correlation was obtained: 

1" 

Nub = 0.0183 Re:•82Prb" iG'1" ) cP
Ph Cpb

Where the exponent n is defined as following: 

n= 0.4 for Tb < Tw < Tx  and for l.2Tpc < Tb <T w ; n = 0.4 + 0.2 
T 

-1 for Tb < Tpc < Tw ; and 
Tpc

n= 0.4 + 0.2[ —1 
pc [1-5 —1 1 for TP c <Tb < 1.2Tpc and Tb < T w . 

Tpc _I

2.2 Comparison of Heat-Transfer Correlations 

(6) 

Figure 6 shows two sample experimental runs at supercritical pressures and provides experimentally 
measured HTC values. Also, a comparison between experimental and calculated HTCs using the 
Dittus-Boelter, modified Bishop et al., Swenson et al. and Jackson correlations are plotted in this 
figure. 

As can be seen from Figure 6, the Dittus-Boelter correlation provides a significant overestimation of 
the HTC values within the pseudocritical region, and thus, this correlation is unusable within a wide 
range of parameters. The modified Bishop et al. and Jackson correlations also tend to deviate 
substantially from the experimental data within the pseudocritical range. The Swenson et al. 
correlation provides a better fit for the experimental date than the previous three correlations within 
some flow conditions, but does not closely follow the experimental data within others [10]. 

It should be noted that all heat-transfer correlations presented in this paper are intended only for use at 
normal and Improved Heat-Transfer (IHT) regimes. None of the presented correlations can be used for 
the HTC prediction within the DHT regime. 

For the DHT regime, an empirical correlation was proposed for the minimum heat flux at which this 
regime appears (for details, see [22]): 

Q = 7.9. 10-4 G 
P 

)1.5 

,MWIM 2. (7) 

A more thorough discussion and comparison of heat-transfer correlations can be found in [1]. 
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Equation (5) was obtained within the following range: pressure 22.8 − 41.4 MPa, bulk-fluid 
temperature 75 − 576ºC, wall temperature 93 − 649ºC and mass flux 542 − 2150 kg/m2s; and predicted 
their experimental data within ±15%. 

Jackson (2002) [20] modified the original correlation of Krasnoshchekov et al. (1967) [21] (for details, 
see [1]), for forced-convective heat transfer in water and carbon dioxide at supercritical pressures, to 
employ the Dittus-Boelter type form for oNu .  Finally, the following correlation was obtained: 
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Where the exponent n is defined as following: 
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2.2 Comparison of Heat-Transfer Correlations  

Figure 6 shows two sample experimental runs at supercritical pressures and provides experimentally 
measured HTC values.  Also, a comparison between experimental and calculated HTCs using the 
Dittus-Boelter, modified Bishop et al., Swenson et al. and Jackson correlations are plotted in this 
figure.   
 
As can be seen from Figure 6, the Dittus-Boelter correlation provides a significant overestimation of 
the HTC values within the pseudocritical region, and thus, this correlation is unusable within a wide 
range of parameters.  The modified Bishop et al. and Jackson correlations also tend to deviate 
substantially from the experimental data within the pseudocritical range.  The Swenson et al. 
correlation provides a better fit for the experimental date than the previous three correlations within 
some flow conditions, but does not closely follow the experimental data within others [10]. 

It should be noted that all heat-transfer correlations presented in this paper are intended only for use at 
normal and Improved Heat-Transfer (IHT) regimes.  None of the presented correlations can be used for 
the HTC prediction within the DHT regime.   

For the DHT regime, an empirical correlation was proposed for the minimum heat flux at which this 
regime appears (for details, see [22]): 
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A more thorough discussion and comparison of heat-transfer correlations can be found in [1]. 
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Figure 6 Temperature and HTC (Experimental and Calculated Values) Profiles along Heated Length 

of Bare Vertical Tube: (a) G = 1500 kg/m2s and q = 884 kW/m2; (b) G = 500 kg/m2s 
and q = 335 kW/m2 [10]. 

The majority of the reviewed empirical correlations were proposed in the 1960s and 1970s, when 
experimental techniques were not at the same level (i.e., advanced level) as they are today. Also, 
thermophysical properties of water have since been updated (for example, a peak in thermal 
conductivity in critical and pseudocritical points, within a range of pressures from 22.1 to 25 MPa, was 
not officially recognized until the nineties [1]). 

Thus, this further emphasizes the necessity of developing a new or an updated correlation based on a 
new set of heat-transfer data and the latest thermophysical properties of water [9] within the SCWRs 
operating range. 

3. Experimental Data 

The experimental data used in the current paper [23] were obtained at the State Scientific Center of 
Russian Federation — Institute for Physics and Power Engineering Supercritical-Test Facility (Obninsk, 
Russia). This set of data was obtained within operating conditions close to those of SCWRs including 
a hydraulic-equivalent diameter. 

3.1 Test Facility 

The Supercritical-Pressure Test Facility SKD-1[23] was intended for SCW heat-transfer testing in bare 
tubes and other flow geometries within a wide range of parameters (pressures up to 28 MPa and power 
up to 0.6 MW). The experimental setup was made from stainless steel. 

3.2 Test Matrix and Test Section Details 

The data for this study was obtained within the following conditions: Vertical stainless steel 
(12Cr1 8Nil OTi) smooth tube: D = 10 mm, 8W = 2 mm, and Lh = 4 m; tube internal-surface roughness 
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(a) (b) 
Figure 6  Temperature and HTC (Experimental and Calculated Values) Profiles along Heated Length 

of Bare Vertical Tube: (a) G = 1500 kg/m2s and q = 884 kW/m2; (b) G = 500 kg/m2s                
and q = 335 kW/m2 [10]. 

 
The majority of the reviewed empirical correlations were proposed in the 1960s and 1970s, when 
experimental techniques were not at the same level (i.e., advanced level) as they are today.  Also, 
thermophysical properties of water have since been updated (for example, a peak in thermal 
conductivity in critical and pseudocritical points, within a range of pressures from 22.1 to 25 MPa, was 
not officially recognized until the nineties [1]). 

Thus, this further emphasizes the necessity of developing a new or an updated correlation based on a 
new set of heat-transfer data and the latest thermophysical properties of water [9] within the SCWRs 
operating range. 

3. Experimental Data 

The experimental data used in the current paper [23] were obtained at the State Scientific Center of 
Russian Federation – Institute for Physics and Power Engineering Supercritical-Test Facility (Obninsk, 
Russia).  This set of data was obtained within operating conditions close to those of SCWRs including 
a hydraulic-equivalent diameter. 

3.1  Test Facility   

The Supercritical-Pressure Test Facility SKD-1[23] was intended for SCW heat-transfer testing in bare 
tubes and other flow geometries within a wide range of parameters (pressures up to 28 MPa and power 
up to 0.6 MW).  The experimental setup was made from stainless steel. 

3.2  Test Matrix and Test Section Details 

The data for this study was obtained within the following conditions: Vertical stainless steel 
(12Cr18Ni10Ti) smooth tube: D = 10 mm, δw = 2 mm, and Lh = 4 m; tube internal-surface roughness 
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Ra = 0.63 — 0.8 gm; and upward flow. Table 2 lists test-matrix parameters and Table 3, their 
uncertainties. 

Table 2 Test Matrix. 

P21 

P Tits Tout T, q G 

MPa °C °C °C kW/m2 kg/m2s 

24 320-350 380-406 <700 70-1250 200, 500; 1000; 1500 

Table 3 Uncertainties of Primary Parameters. 
Parameter Maximum Uncertainty 

Test-section power ±1.0% 
Inlet pressure ±0.25% 

Wall temperature ±3.0% 

Mass-flow rate ±1.5% 

Heat loss <3.0% 

3.3 Data Analysis 

The dataset includes 89 experimental runs with 81 data points per run. In total, over 7,200 points were 
collected. Abnormalities, such as defective thermocouple readings were removed from the dataset (for 
details, see Figure 7). The objective of this study was to develop an updated heat-transfer correlation 
for the normal heat-transfer regime. Therefore, data points within the DHT region were also removed 
from the dataset (for details, see Figure 8). This region is subject to future investigations. Also, the 
very first and last points of most datasets were removed. Temperatures at these outlying points were 
likely affected with the test-section clamps, which were at a lower/higher temperature than the heated 
part of tube. Overall, approximately 91% of the experimental data were used to develop the 
correlation. 

4. Results 

4.1 Developing the Correlation 

It is well established that the general form of a correlation is as follows: 

y= 
C0

 x t1Ci t2C2 ...t C,, 
(8) 

where Co is the constant, t represents the various parameters that affect heat transfer and Cn represents 
the exponents. 

In order to obtain a general empirical form of an equation governing HTCs, a dimensional analysis was 
conducted. It is well known that HTC is not an independent variable, and that HTC values are affected 
by fluid velocity, inside diameter and thermophysical properties. A review of trends in correlating 
heat-transfer data at supercritical pressures determined that there are nine parameters affecting heat 
transfer [1]. Table 4 lists these parameters, identified as essential for the analysis of heat-transfer 
processes, for forced convection, at supercritical conditions. Each of the identified parameters was 
broken down into the four primary dimensions of mass (M), length (L), time (T), and temperature (K). 
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Ra = 0.63 – 0.8 μm; and upward flow.  Table 2 lists test-matrix parameters and Table 3, their 
uncertainties. 
  

Table 2  Test Matrix. 
P Tin Tout Tw q G 

MPa ºC C C kW/m2 kg/m2s 

24 320–350 380–406 <700 70–1250 200, 500; 1000; 1500 

 
 

Table 3  Uncertainties of Primary Parameters. 
Parameter Maximum Uncertainty 

Test-section power ±1.0% 

Inlet pressure ±0.25% 

Wall temperature ±3.0% 

Mass-flow rate ±1.5% 

Heat loss ≤3.0% 

 

3.3  Data Analysis  

The dataset includes 89 experimental runs with 81 data points per run.  In total, over 7,200 points were 
collected.  Abnormalities, such as defective thermocouple readings were removed from the dataset (for 
details, see Figure 7).  The objective of this study was to develop an updated heat-transfer correlation 
for the normal heat-transfer regime.  Therefore, data points within the DHT region were also removed 
from the dataset (for details, see Figure 8).  This region is subject to future investigations.  Also, the 
very first and last points of most datasets were removed.  Temperatures at these outlying points were 
likely affected with the test-section clamps, which were at a lower/higher temperature than the heated 
part of tube.  Overall, approximately 91% of the experimental data were used to develop the 
correlation. 

4. Results  

4.1 Developing the Correlation 

It is well established that the general form of a correlation is as follows: 
 

nC
n

CC
o tttCy ...21

21
 (8) 

where Co is the constant, t represents the various parameters that affect heat transfer and Cn represents 
the exponents.   

In order to obtain a general empirical form of an equation governing HTCs, a dimensional analysis was 
conducted.  It is well known that HTC is not an independent variable, and that HTC values are affected 
by fluid velocity, inside diameter and thermophysical properties.   A review of trends in correlating 
heat-transfer data at supercritical pressures determined that there are nine parameters affecting heat 
transfer [1].  Table 4 lists these parameters, identified as essential for the analysis of heat-transfer 
processes, for forced convection, at supercritical conditions.  Each of the identified parameters was 
broken down into the four primary dimensions of mass (M), length (L), time (T), and temperature (K).  
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Figure 8 Sample Dataset with normal, DHT and 
IHT Regimes. 

Table 4 Description of Various Heat-Transfer Parameters [10]. 

Variable Description SI units Dimensions 
HTC Heat Transfer coefficient W/(m2K) MT- 3K- 1 

D Diameter of the tube Ill L 

Pw Density of water at the wall kg/m3 ML-3
Pb Density of bulk fluid kg/m3 ML-3

Pw Dynamic viscosity of water at the wall Pa• s muir i 

Pb Dynamic viscosity of bulk fluid Pa. s ML-1T-1 

kw Thermal conductivity of water at the wall W/(m•K) MLT-3K-1
kb Thermal conductivity of bulk-fluid W/(m•K) MLT-3K-1
cP Specific heat J/(kg•K) L2T-2K-1
V Characteristic velocity m/s LT-1

The Buckingham H-Theorem [24], using dimensionless pi-terms, was chosen for this analysis. This 
theorem is based on dimensional homogeneity, in which dimensionless pi-terms can be formed from 
the correlation variables. Thus, the following expression was produced for HTCs as a function of the 
identified heat-transfer parameters: 

HTC= f (1_-) Pw, Pb Pw, Pb kw, kb cP, TO

The resulting relationship based on this analysis is as follows: 

111= f (112, 113, 114, 115, H6) , 

(9) 

(10) 
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Figure 7  Sample Dataset with Outliers. Figure 8  Sample Dataset with normal, DHT and 
IHT Regimes. 

  
 

Table 4  Description of Various Heat-Transfer Parameters [10]. 

Variable Description SI units Dimensions 
HTC Heat Transfer coefficient W/(m2K) MT-3K-1 

D Diameter of the tube m L 
ρw Density of water at the wall kg/m3 ML-3 

ρb Density of bulk fluid kg/m3 ML-3 
µw Dynamic viscosity of water at the wall Pa·s ML-1T-1 
µb Dynamic viscosity of bulk fluid Pa·s ML-1T-1 
kw Thermal conductivity of water at the wall W/(m·K) MLT-3K-1 

kb Thermal conductivity of bulk-fluid W/(m·K) MLT-3K-1 
cp Specific heat J/(kg·K) L2T-2K-1 
V Characteristic velocity m/s LT-1 

 
The Buckingham П-Theorem [24], using dimensionless pi-terms, was chosen for this analysis.  This 
theorem is based on dimensional homogeneity, in which dimensionless pi-terms can be formed from 
the correlation variables.  Thus, the following expression was produced for HTCs as a function of the 
identified heat-transfer parameters:  
 

HTC = f (D , ρw , ρb , µw , µb , kw , kb , cp , V)   (9) 
 

The resulting relationship based on this analysis is as follows: 
 

Π1 = f (Π2, Π3, Π4, Π5, Π6) ,   (10) 
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Through consideration of the primary dimensions, six unique dimensionless 17--terms were determined 
These terms are listed in Table 5, and the resulting relationship is given below: 

n3 n4 n5 

Nub = C • Ren r ^' b 
f e w k 

b T n2
Pb Pb kb 

Table 5 17--Terms of the Empirical Correlation [10]. 
H-Terms Dimensionless Group 

Hi 
HTC • D 

Nusselt number kb

112 
P •V • D 

Reynolds number 
Pb 

H 3
• 

CPk 

Pb 
Prandtl number 

b

114 
Pw Density ratio 
Pb 

175 w Viscosity ratio 
Pb 

116 
kw Thermal conductivity ratio 
k b

Equation (11) provided a starting point for the development of a correlation, where HTC can be 
calculated from the following equation: 

HTC = 
Nu • kb 

D hY 

where D hy and kb

(12) 

denote the hydraulic-equivalent diameter and thermal conductivity of water, 

respectively. The various coefficients for the resulting relationship need to be determined for the final 
correlation. 

As a result of the experimental data analysis described, the following preliminary correlation for heat 
transfer to supercritical water was obtained. 

0.518 

Nub = 0.0053 Re:914K•
b0.654 p w

Pb (13) 
To finalize this correlation, the complete set of primary data and Eq. (13) were fed into the SigmaPlot 
Dynamic-Fit Wizard to perform final adjustments. The final correlation is as follows: 

1.564 

Nub = 0.0061Rer" P 
rb0.684 p w

Pb (14) 
The test matrix shown in Table 6 provides the range of applicability for the developed correlation. 
This matrix is the result of comparison with Kirillov et al. [23] experimental data in addition to a 
comparison with other datasets for supercritical water. 
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Through consideration of the primary dimensions, six unique dimensionless П-terms were determined.  
These terms are listed in Table 5, and the resulting relationship is given below: 
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Table 5  Π-Terms of the Empirical Correlation [10]. 

Π-Terms Dimensionless Group 
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Equation (11) provided a starting point for the development of a correlation, where HTC can be 
calculated from the following equation:  
 

hy

b

D

k


Nu
HTC

, (12) 
 

where hyD  and bk  denote the hydraulic-equivalent diameter and thermal conductivity of water, 

respectively.  The various coefficients for the resulting relationship need to be determined for the final 
correlation. 
 
As a result of the experimental data analysis described, the following preliminary correlation for heat 
transfer to supercritical water was obtained. 
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To finalize this correlation, the complete set of primary data and Eq. (13) were fed into the SigmaPlot 
Dynamic-Fit Wizard  to perform final adjustments.  The final correlation is as follows: 
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The test matrix shown in Table 6 provides the range of applicability for the developed correlation.  
This matrix is the result of comparison with Kirillov et al. [23] experimental data in addition to a 
comparison with other datasets for supercritical water. 
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Table 6 Test Matrix for Developed Correlation (Eq. (14)). 
Pressure, MPa Heat Flux, kW/m2 Mass Flux, kg/m2s Diameter, mm 

22.8 — 29.4 70 —1250 200 —1500 3 — 38 

Even though the final coefficients slightly deviate from the preliminary correlation, both correlations fit 
the data in nearly the same manner. Figure 9 provides scatter plots of the experimentally obtained 
HTC values versus the calculated HTC values for each of the above mentioned correlations. The final 
correlation (Eq. (14), Mokry et al. correlation) has an uncertainty of about ±25% for HTC values and 
about ±15% for calculated wall temperature. 
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Figure 9 Comparison of Data Fit (Eqs. (13) and (14)) with Experimental Data: (a) for Heat Transfer 
Coefficient and (b) for wall temperature [10]. 

In order to evaluate the accuracy of the derived correlation, a comparison of the experimental data with 
the calculated HTC profiles, using the modified Bishop et al., Dittus-Boelter and the derived 
correlations was conducted and is shown in Figures 10 and 11. As can be seen from these graphs, 
neither the modified Bishop et al. nor the Dittus-Boelter correlations provide a good fit for the 
experimental data, whereas the final Mokry et al. correlation (Eq. (14)) fits the data well and follows 
trends closely. 

Another comparison between the Mokry et al. correlation (Eq. (14)) and calculations using the CFD 
Code FLUENT-6.0 is shown in Figure 12. 

An analysis of the plots in Figures 10 — 12 (for more details, see [10]) showed that in general, the final 
correlation (Eq. (14)) appeared to best fit the general data trends. Deviations in the calculated HTC 
values from the experimentally determined values were found, for the most part, at the test section 
inlet. Within this area, however, the flow was likely subject to an entrance effect. There were also 
slight deviations within the pseudocritical range, however, the most pronounced difference occurred 
only at the lower mass flux. 
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Figure 12 Temperature and Heat Transfer Coefficient Comparisons Between Final Correlation 
(Eq. (14)) and CFD Code Calculations along 4-m Circular Tube (ID = 10 mm): 

Operating Conditions - Pin = 24.0 MPa and G = 1000 kg/m2s [10], [25]. 

The HTC and wall temperature values (Figure 12) calculated with the FLUENT CFD code may deviate 
significantly from the experimental data (for example, the k-e model (wall function)). However, the k-e 
model (low Reynolds numbers) shows a better fit within some flow conditions [10]. 

Nevertheless, the derived correlation (Eq. (14)) showed the best fit for the experimental data within a 
wide range of flow conditions. This correlation has an uncertainty of about ±25% for HTC values and 
about ±15% for calculated wall temperature. Therefore, the derived correlation can be used for 
preliminary HTC calculations in SCWR fuel bundles as a conservative approach, for SCW heat 
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The HTC and wall temperature values (Figure 12) calculated with the FLUENT CFD code may deviate 
significantly from the experimental data (for example, the k-ε model (wall function)).  However, the k-ε 
model (low Reynolds numbers) shows a better fit within some flow conditions [10]. 
 
Nevertheless, the derived correlation (Eq. (14)) showed the best fit for the experimental data within a 
wide range of flow conditions.  This correlation has an uncertainty of about ±25% for HTC values and 
about ±15% for calculated wall temperature.  Therefore, the derived correlation can be used for 
preliminary HTC calculations in SCWR fuel bundles as a conservative approach, for SCW heat 
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exchangers, for future comparison with other datasets, for verification of computer codes and scaling 
parameters between SCW and modelling fluids. 

For the final verification of the correlation, a comparison with other datasets was completed (Figures 
13 - 15). From the presented figures, it can be seen that the updated correlation (Eq. (14)) closely 
represents the experimental data and follows trends closely, even within the pseudocritical range. 
Table 7 lists the test matrices for these datasets against which the Mokry et al. correlation was 
compared. 

Table 7 Other Datasets and Corresponding Test Matrices. 
Reference P, MPa q, MW Im2 G, kg/m2s Flow geometry 

Alferov et al., 1976 [29] 26.5 0.48 447 
Tube (D=20 mm, L/D=185), ascending

flow, pw=447 kg/m • s 
Petukhov and Polyakov, 
1988 [30] 

29.4 0.50 675 Tube (D=3mm) 

Bishop et al., 1964 22.8 - 27.6 0.31 - 3.46 651 - 3662 Tube (D=5 mm,) upward flow 
Shitsman 1963 [31] 22.6-24.5 0.28-1.1 300-1500 SS tube (D=8 mm, L=1.5 m) 

Vikhrev et al. 1967 [32] 24.5; 26.5 0.23-1.25 485-1900 
SS tube (D=7.85; 20.4 mm, L=1.515;

6 m) 

Ornatsky et al. 1970 [26] 
22.6; 25.5; 

29.4 
0.28-1.2 450-3000 

Five SS parallel tubes (D=3 mm, L=0.75 
m), upward stable and pulsating flows 

Pis'mennyy et al. 2005 
[33] 

23.5 Up to 0.515 250; 500 Vertical SS tubes (D=6.28 mm, Lh=600;
360 mm; D=9.50 mm, Lh=600; 400 mm) 

Polyakov 1975 [34] 29.4 0.50 675 Tube (D=8 mm) 

Lee and Haller 1974 [35] 24.1 0.25-1.57 542-2441 
SS tubes (D=38.1; 37.7 mm, L=4.57 m),

tube with ribs 
Shiralkar and Griffith 
(1969 and 1968) [36] 

22.8 0.32 461 Tube (D=10 mm) 

Shitsman 1968 [37] 10-35 0.27-0.7 400 
Vertical and horizontal SS tubes 

(D/L=3/0.7; 8/0.8; 8/3.2; 16/1.6 mm/m), 
upward, downward and horizontal flows 

Yamagata et al. 1972 
[27] 

22.6-29.4 0.12-0.93 310-1830 
Vertical and horizontal SS tubes 

(DIL=7 .511.5; 10/2 mm/m), upward, 
downward and horizontal flows 

Yoshida and Mori 2000 
[28] 

24.5 0.23-0.33 376, 1180 Tube (D=10 and 16 mm) 

5. Conclusions 

Supercritical-water heat-transfer data for a vertical bare circular tube were obtained within the 
proposed SCWR operating conditions: pressure of -24 MPa, mass fluxes from 200 to 1500 kg/m2s, 
heat fluxes up to 1250 kW/m2 and inlet temperatures from 320 to 350°C. Supercritical heat transfer 
was investigated for several combinations of wall and bulk-fluid temperatures, i.e., internal wall 
temperatures and bulk-fluid temperatures below, at, or above the pseudocritical temperature. 

The obtained correlation for forced convective heat transfer to supercritical water in a bare vertical tube 
showed a good fit (±25% for heat transfer coefficient) for the analyzed dataset. In addition, the 
calculated wall temperatures resulted in a more accurate fit for the analyzed dataset (±15%). 
Therefore, the derived correlation can be used for preliminary HTC calculations in SCWR fuel bundles 
as a conservative approach, for SCW heat exchangers, for future comparison with other datasets, for 
verification of computer codes and scaling parameters between SCW and modelling fluids. 
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exchangers, for future comparison with other datasets, for verification of computer codes and scaling 
parameters between SCW and modelling fluids. 
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represents the experimental data and follows trends closely, even within the pseudocritical range.   
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compared. 
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flow, ρw=447 kg/m2·s 

Petukhov and Polyakov, 
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Shitsman 1963 [31] 22.6–24.5 0.28–1.1 300–1500 SS tube (D=8 mm, L=1.5 m) 

Vikhrev et al. 1967 [32] 24.5; 26.5 0.23–1.25 485–1900 SS tube (D=7.85; 20.4 mm, L=1.515; 
6 m) 

Ornatsky et al. 1970 [26] 22.6; 25.5; 
29.4 0.28–1.2 450–3000 Five SS parallel tubes (D=3 mm, L=0.75 

m), upward stable and pulsating flows 
Pis’mennyy et al. 2005 
[33] 23.5 Up to 0.515 250; 500 Vertical SS tubes (D=6.28 mm, Lh=600; 

360 mm; D=9.50 mm, Lh=600; 400 mm)
Polyakov 1975 [34] 29.4 0.50 675 Tube (D=8 mm) 

Lee and Haller 1974 [35] 24.1 0.25–1.57 542–2441 SS tubes (D=38.1; 37.7 mm, L=4.57 m), 
tube with ribs 

Shiralkar and Griffith 
(1969 and 1968)  [36] 22.8 0.32 461 Tube (D=10 mm) 

Shitsman 1968 [37] 10–35 0.27–0.7 400 
Vertical and horizontal SS tubes 

(D/L=3/0.7; 8/0.8; 8/3.2; 16/1.6 mm/m), 
upward, downward and horizontal flows 

Yamagata et al. 1972 
[27] 22.6–29.4 0.12–0.93 310–1830 

Vertical and horizontal SS tubes 
(D/L=7.5/1.5; 10/2 mm/m), upward, 

downward and horizontal flows 
Yoshida and Mori 2000 
[28] 24.5 0.23-0.33 376, 1180 Tube (D=10 and 16 mm) 
 

5. Conclusions 

Supercritical-water heat-transfer data for a vertical bare circular tube were obtained within the 
proposed SCWR operating conditions: pressure of ~24 MPa, mass fluxes from 200 to 1500 kg/m2s, 
heat fluxes up to 1250 kW/m2 and inlet temperatures from 320 to 350ºC.  Supercritical heat transfer 
was investigated for several combinations of wall and bulk-fluid temperatures, i.e., internal wall 
temperatures and bulk-fluid temperatures below, at, or above the pseudocritical temperature. 
 
The obtained correlation for forced convective heat transfer to supercritical water in a bare vertical tube 
showed a good fit (±25% for heat transfer coefficient) for the analyzed dataset.  In addition, the 
calculated wall temperatures resulted in a more accurate fit for the analyzed dataset (±15%).  
Therefore, the derived correlation can be used for preliminary HTC calculations in SCWR fuel bundles 
as a conservative approach, for SCW heat exchangers, for future comparison with other datasets, for 
verification of computer codes and scaling parameters between SCW and modelling fluids. 
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NOMENCLATURE 

C P specific heat at constant pressure ( J/kg•K) 

C p 

(H, 
average specific heat, J/kg•K, 

T w - 
-Hb 

) 
Tb 

D inner diameter, m 
G mass flux, kg/m2s 
h heat transfer coefficient, W/m2K 
k thermal conductivity, W/m•K 
L heated length, m 
P pressure, MPa 
Q heat transfer rate, W 

q heat flux, W/m2
R Roughness, gm 
T temperature, °C 

Greek letters 
6 thickness, mm 

/-1 dynamic viscosity, Pas 

P density, kg/m3

Dimensionless numbers 

h. D)Nu Nusselt number H k

'

1 
Pr Prandtl number H' 

Pr averaged Prandtl number Ep Pb
(kb) 

• D 
Re Reynolds number 

Subscripts 

ave average 
b bulk 
cal calculated 
cr critical 
dht deteriorated heat transfer 
exp experimental 

ext 
by 
in 
out 
pc 
w 
x 

external 
hydraulic 
inlet conditions 
outlet conditions 
pseudocritical 
wall 
axial location, m 

Abbreviations 
AECL Atomic Energy of Canada Limited 
AHFD Axial Heat Flux Distribution 
BWR Boiling Water Reactor 
CANDU CANada Deuterium Uranium 

(reactor) 
DAS Data Acquisition System 
DHT Deteriorated Heat-Transfer (regime) 
GIF Generation IV International Forum 
HTC Heat Transfer Coefficient 
ID Internal Diameter 
IHT Improved Heat-Transfer (regime) 
IPPE Institute for Physics and Power 

Engineering (Obninsk, Russia) 
KP-SKD Pressure-tube nuclear reactor at 

supercritical pressure (in Russian 
abbreviations) 

NHT Normal Heat-Transfer (regime) 

NIST National Institute of Standards and 
Technology (USA) 

NPP Nuclear Power Plant 
PT Pressure Tube 
PV Pressure Vessel 
PWR Pressurized Water Reactor 
RDIPE Research and Development Institute 

of Power Engineering (Moscow) 
(NIKIET in Russian abbreviations) 

REFPROP REFerence PROPerties 
SCW SuperCritical Water 
SCWR SuperCritical Water-cooled Reactor 
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NOMENCLATURE 

cp  specific heat at constant pressure ( J/kg·K) 

pc  average specific heat, J/kg·K, 










bw

b

TT

HH w  

D inner diameter, m 
G mass flux, kg/m2s 
h heat transfer coefficient, W/m2K 
k thermal conductivity, W/m·K 
L heated length, m 
P pressure, MPa 
Q  heat transfer rate, W 
q heat flux, W/m2 
R Roughness, μm 
T temperature, oC 
 

Greek letters 
δ thickness, mm 
  dynamic viscosity, Pa·s 

  density, kg/m3 

 
Dimensionless numbers 

Nu Nusselt number 





 

k

Dh
 

Pr Prandtl number 






 

k

c p
 

Pr  averaged Prandtl number 








b

b
p k

c


  

Re Reynolds number 






 


DG
 

 
Subscripts 
 

ave average 
b bulk 
cal calculated 
cr critical 
dht deteriorated heat transfer 
exp experimental 

ext external 
hy hydraulic 
in inlet conditions 
out outlet conditions 
pc pseudocritical 
w wall 
x axial location, m 
 

Abbreviations 
AECL Atomic Energy of Canada Limited 
AHFD Axial Heat Flux Distribution 
BWR Boiling Water Reactor 
CANDU CANada Deuterium Uranium 
 (reactor) 
DAS Data Acquisition System 
DHT Deteriorated Heat-Transfer (regime) 
GIF Generation IV International Forum 
HTC Heat Transfer Coefficient 
ID Internal Diameter 
IHT Improved Heat-Transfer (regime) 
IPPE Institute for Physics and Power 
 Engineering (Obninsk, Russia) 
KP-SKD Pressure-tube nuclear reactor at 
 supercritical  pressure (in Russian 
 abbreviations) 
NHT Normal Heat-Transfer (regime) 
 
NIST National Institute of Standards and 
 Technology (USA) 
NPP Nuclear Power Plant 
PT Pressure Tube 
PV Pressure Vessel 
PWR Pressurized Water Reactor 
RDIPE Research and Development Institute 
 of Power  Engineering (Moscow) 
 (NIKIET in Russian abbreviations) 
REFPROP REFerence PROPerties 
SCW SuperCritical Water 
SCWR SuperCritical Water-cooled Reactor 
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