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Abstract

This paper presents an extensive study of selected heat-transfer correlations applicable to supercritical
water flowing upward in vertical bare tubes. A comprehensive combined dataset was collected from
33 papers by 27 authors including more than 125 graphs within a wide range of parameters. These
ranges are: pressures 22.5 — 34.5 MPa, inlet temperatures 85 — 350°C, mass fluxes 250 — 3400 kg/m’s,
heat fluxes 75 — 5400 kW/m? and tube lengths 0.6 — 27.4 m. This combined dataset was investigated
and analyzed. Heat Transfer Coefficients (HTCs) and wall temperatures were calculated using several
selected correlations and compared to the experimental data.

Two of the most widely used correlations and a more recently developed one were chosen for this
comparison: modified Bishop et al. correlation (1964), Swenson et al. correlation (1965) and Mokry et
al. correlation (2009). The main objective of the study was to find the best correlation for supercritical
water heat transfer in bare tubes, which might also be used for preliminary calculations of fuel bundles
as a conservative approach. The examined correlations are intended for normal and improved heat-
transfer regimes.

The comparison shows that the Bishop et al. correlation deviates quite significantly from the
experimental data within some flow conditions. On the other hand, the Swenson et al. and Mokry et al.
correlations show a significantly better fit within most of the examined operating conditions.

1. Introduction

New Nuclear Power Plants (NPPs) with Generation-1V pressure-channel water-cooled reactor concepts
being developed at AECL (Canada) [1] and at IPPE (Russia) [2] have the main design objective of
achieving higher thermal efficiencies comparable with that of advanced thermal power plants [3—5].
The major contribution to this thermal-efficiency increase would come from boosting the outlet coolant
temperature and operating pressure above the critical parameters of water (374°C and 22 MPa).

SuperCritical Water-cooled nuclear Reactors (SCWRs) are intended to increase the coolant pressure
from the existing 10 — 16 MPa to about 25 MPa, the inlet temperature to about 350°C and the outlet
temperature to 625°C. The coolant would pass through its pseudocritical point before reaching the
channel outlet, and this may result in 3 regimes for forced-convective heat transfer to water: (1) Normal
Heat-Transfer (NHT) regime characterized in general with Heat Transfer Coefficient (HTC) values
similar to those of subcritical convective heat transfer far from critical or pseudocritical regions;
(2) Deteriorated Heat-Transfer (DHT) regime with lower values of the HTC and hence, higher values
of wall temperature within some part of a test section compared to those of the NHT regime; and
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(3) Improved Heat-Transfer (IHT) regime with higher values of the HTC and hence, lower values of
wall temperature within some part of a test section compared to those of the NHT regime.

It should be noted that in general, most existing heat-transfer correlations are capable of predicting
HTCs only at the NHT and IHT regimes, but fail to predict HTCs at the DHT regime. Figure 1 shows
several heat-transfer correlations for vertical bare tubes with upward flow of supercritical water at
lower values of mass flux.
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Figure 1 Temperature and HTC variations along vertical tube (4-m heated length and
10-mm ID): P;, = 24.1 MPa, G =203 kg/mzs, Gave =203 kW/mz, and ggp, = 92 KW/m? [6].

2. Existing correlations

Two of the most widely used correlations and the latest one were chosen for this comparison:
1) Bishop et al. correlation [14], 2) Swenson et al. correlation [15] and 3) Mokry et al. correlation [17].
All three of these correlations were obtained within the same range of operating conditions as those in
SCWRs.

Bishop et al. [3], [14] conducted experiments in supercritical water flowing upward inside bare tubes
and annuli within the following range of operating parameters: pressure 22.8 — 27.6 MPa, bulk-fluid
temperature 282 — 527°C, mass flux 651 — 3662 kg/m’s and heat flux 0.31 — 3.46 MW/m”. Their data
for heat transfer in tubes were generalized using the following correlation with a fit of +15%:

- 0.43 (1)
Nu, =0.0069 Re"’ Prg'“[pwj (1 +2.4 Dj
p, x
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This correlation was proposed in the early nineteen-sixties when experimental techniques were not at
the same (advanced) level as they are today. Also, thermophysical properties of water have been
updated since that time (for example, a peak in thermal conductivity in critical and pseudocritical
points within a range of pressures from 22.1 — 25 MPa was not officially recognized until the nineties

[3D.

In the present verification, the Bishop et al. correlation was modified and used without the entrance-
region term, because this term depends significantly on a particular design of the inlet of bare test
section:

0.43
Nu, =0.0069 Re’ Pry" (&j @
P

Swenson et al. [3], [15] found that conventional correlations, i.e., correlations in which the majority of
thermophysical properties are based on a bulk-fluid temperature, did not work well and they suggested
the following correlation:

Ps

Equation (3) was obtained within the following range: P = 22.8 — 41.4 MPa, G = 542 — 2150 kg/m’s,
T,, = 93 — 649°C and T, = 75 — 576°C; and predicted experimental data within +15%. Equation (3)
provided a better fit for some experimental data than Equation (2). However, both of these correlations
were obtained more than 45 years ago. Therefore, it was necessary to develop a new correlation, which
would be based on latest experimental datasets.

0.231
Nu, = 0.00459 Re‘jv-9231>_r3f”(&] )

Recently, the modified Bishop et al. correlation was modified by Mokry et al. using an experimental
dataset obtained in Russia by Kirillov with co-workers [6].

0.564

00s 0% O,

IVllb = 0.0061Reg9°" Prb (7} (4)
b

It should be noted again that these three correlations are used for predicting HTCs only at the NHT and
IHT regimes and don’t work at the DHT regime. For the DHT regime, an empirical correlation was
proposed for heat-flux calculations at which the DHT regime appears (for details, see [7]):

g =—58.97+0.745-G  xW/m* (5)

3. Correlations comparison

For comparison of these correlations, experimental datasets were retrieved from graphs published in
the open literature. The following figures show selected datasets and curves calculated with these three
correlations. The graphs were put in ascending order with pressure first, and then mass and heat fluxes,
respectively. The range of pressures used in this comparison was 24.1 — 26.5 MPa, mass fluxes 376 —
1260 kg/m’s and heat fluxes 233 — 698 kW/m”. Tube heated lengths and internal diameters varied
widely also. A heat-flux value at which the DHT regime starts is shown in each graph for reference
purposes.
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Figure 2 Temperature and HTC variations along vertical tube (19-m heated length and
38-mm ID): P;,=24.1 MPa, G = 543 kg/m’s, and ¢a,. = 252 kW/m” [8].
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Figure 3 Temperature and HTC variations along vertical tube (16-m heated length and

38-mm ID): P;,=24.1 MPa, G = 543 kg/m’s, gave = 316 kW/m” [8].
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Figure 4 Temperature and HTC variations along vertical tube (14-m heated length and

38-mm ID): P;, = 24.1 MPa, G = 543 kg/m’s, and ga. = 379 kW/m? [8].
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Figure 5 Temperature and HTC variations along vertical tube (9-m heated length and
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Figure 6 Temperature and HTC variations along vertical tube (9-m heated length and
16-mm ID): P;, = 24.5 MPa, G = 376 kg/m’s, and ¢a. = 329 kW/m? [9].
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Figure 7 Temperature and HTC variations along vertical tube (5-m heated length and

10-mm ID): P;, = 24.5 MPa, G = 410 kg/m’s, and ¢a. = 350 kW/m? [9].
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Figure 12 Temperature and HTC variations along vertical tube (10-m heated length and
20-mm ID): P, = 26.5 MPa, G = 493 kg/m’s, and ga,. = 362 kW/m* [12].

The comparison shows that all three correlations predict the experimental data within a reasonable
uncertainty at the NHT regime and at lower heat and mass fluxes. However, within the pseudocritical
region the modified Bishop et al. correlation deviates significantly from the experimental data. On the
other hand, the Swenson et al. and Mokry et al. correlations show a significantly better fit within most
operating conditions. In the most studied cases, the Mokry et al. correlation showed a more
conservative approach than the Swenson et al. correlation, by predicting lower HTCs and thus
corresponding higher temperature values.

4. Conclusions

In this paper, a comprehensive study of selected heat-transfer correlations applicable to supercritical
water flowing upward in vertical bare tubes has been conducted. A large combined dataset was
collected from 33 papers by 27 authors including more than 125 graphs within a wide-range of
conditions. This dataset was investigated and analyzed. Heat transfer coefficients and wall
temperatures were calculated using these correlations and compared to the experimental data.

Three correlations were used in the comparison: 1) modified Bishop et al. correlation (1964),
2) Swenson et al. correlation (1965) and 3) Mokry et al. correlation (2009). The main objective of the
study was to find the best correlation for supercritical-water heat transfer in bare tubes, which might
also be used for preliminary calculations of fuel bundles, as a conservative approach.

The comparison shows that all three correlations predict the experimental data within a reasonable
uncertainty at the normal heat-transfer regime and at lower heat and mass fluxes. However, within the
pseudocritical region the modified Bishop et al. correlation deviates significantly from the experimental
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data. On the other hand, the Swenson et al. and Mokry et al. correlations show a significantly better fit
within most operating conditions. In the most studied cases, the Mokry et al. correlation showed a
more conservative approach than the Swenson et al. correlation by predicting lower heat transfer
coefficients and thus corresponding higher temperature values.
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6. Nomenclature
c average specific heat, Vkg'K, (HW -H bJ Dimensionless numbers
T,-T, h-D
. Nu  Nusselt number (—J
D diameter, m k
G mass flux, kg/m’s U-c
h heat transfer coefficient, W/m’K Pr  Prandtl number ( : u j
H enthalpy, J/kg
k thermal conductivity, W/m-K Pr i s
I length, m r  Average Prandtl number ¢, X,
P pressure, Pa G.D
0 heat transfer rate, W Re  Reynolds number ( ' J
q heat flux, W/m’ Subscri #
R, surface roughness, um ﬁ%ra .
T temperature, °C &
3 b bulk
4 volume, m calc calculated
X axial location, m o
cr critical

dht  deteriorated heat-transfer

Greek letters .

- exp experimental
. ) h heated

7 dyna.mlc VlSC(;Slty, Pa-s hy hydraulic

P density, kg/m in inlet

0 thickness, mm out outlet

pc pseudocritical
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