
23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

PhysicsShell: A Solution to Multi-Code Linking

Jakub Szymanderaa'*, Larry Blakea, Bac Gia Phanb, Ovidiu Nainee

a Nuclear Safety Solutions, Ltd. Toronto, Canada
b Ontario Power Generation, Pickering, Canada

`Bruce Power Generation, Toronto, Canada

* Corresponding author
jakub.szymandera@amec.com

Abstract

Proper safety analysis of nuclear reactors often requires the use of several computer codes to
model a specific scenario. To complicate matters, the computer codes are often required to
exchange information between each other. A controlled and generic method is required to govern
such multi-code interactions. The solution proposed is the PhysicsShell program.

1.0 Introduction

Nuclear reactors comprise of many intricate systems operating as a cohesive unit. As a result, the
continued assurance that nuclear reactors are being operated in a safe manner involves complex
analyses that may involve multiple systems. In general, the modelling of physically different
systems for safety analysis involves separate computer codes. For example, in analysis of
CANDU reactors, the heat transport system is modelled using a dedicated thermal hydraulics
codes, core neutronics are handled by physics computer codes, and detailed fuel and fuel channel
behaviour is yet still modelled with a further set of codes.

Safety analysis of design basis accidents, such as for example analysis of a loss of coolant
accident (LOCA), may involve three or more sets of disciplines. Further, the various codes will
require as input the results of one or more of the other codes. The stage at which input is required
from the other codes may necessitate a coupled execution, or a sequential execution.

It is apparent that an organized scheme is required to properly manage the execution of various
codes during safety analyses.

Code coupling is an ongoing activity and examples in the CANDU context are
SMOKIN_SHELL and rfspcb. The former linked the SMOKIN physics code with the thermal
hydraulic code TUF and the latter the RFSP and CATHENA codes.

Page 1 of 11

PhysicsShell: A Solution to Multi-Code Linking

Jakub Szymandera
a,*

, Larry Blake
a
, Bac Gia Phan

b
, Ovidiu Nainer

c

a
 Nuclear Safety Solutions, Ltd. Toronto, Canada
b
Ontario Power Generation, Pickering, Canada
c
Bruce Power Generation, Toronto, Canada

* Corresponding author
jakub.szymandera@amec.com

Abstract

Proper safety analysis of nuclear reactors often requires the use of several computer codes to

model a specific scenario. To complicate matters, the computer codes are often required to

exchange information between each other. A controlled and generic method is required to govern

such multi-code interactions. The solution proposed is the PhysicsShell program.

1.0 Introduction

Nuclear reactors comprise of many intricate systems operating as a cohesive unit. As a result, the

continued assurance that nuclear reactors are being operated in a safe manner involves complex

analyses that may involve multiple systems. In general, the modelling of physically different

systems for safety analysis involves separate computer codes. For example, in analysis of

CANDU reactors, the heat transport system is modelled using a dedicated thermal hydraulics

codes, core neutronics are handled by physics computer codes, and detailed fuel and fuel channel

behaviour is yet still modelled with a further set of codes.

Safety analysis of design basis accidents, such as for example analysis of a loss of coolant

accident (LOCA), may involve three or more sets of disciplines. Further, the various codes will

require as input the results of one or more of the other codes. The stage at which input is required

from the other codes may necessitate a coupled execution, or a sequential execution.

It is apparent that an organized scheme is required to properly manage the execution of various

codes during safety analyses.

Code coupling is an ongoing activity and examples in the CANDU context are

SMOKIN_SHELL and rfspcb. The former linked the SMOKIN physics code with the thermal

hydraulic code TUF and the latter the RFSP and CATHENA codes.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 1 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

2.0 Method of Solution

PhysicsShell is a software tool that permits a common and relatively simple interface to be
created between codes that are normally used in safety analysis. It has been developed using the
PERL programming language. PERL was originally designed for text processing, it has grown
into a sophisticated, general-purpose programming language with a rich software development
environment complete with debuggers, profilers, cross-references, compilers, interpreters,
libraries, syntax-directed editors, and all the rest of the trappings of a "real" programming
language.

In safety analyses, many of the codes use the products of one, or another, of the codes as part of
their input, a mechanism is needed to ensure that interconnections are made. As well, there may
be other constraints or activities that need to be imposed upon the process by which the analysis
is performed. For example, in some instance, not only is the result subject to an iterative
approach to solution, but some of the activities are contingent upon the previous results.

While it is possible to create dedicated computer programs or ad hoc shell scripts to perform
these tasks, a more general approach allows for consistency of application. As well, certain
features can be included within the method that can serve to simplify the process.

The approach taken by PhysicsShell is to create a small scripting language that allows for the
execution of any programs that can be executed by the user, as well as to allow for the creation
of ad hoc utilities that can share a common infrastructure. Additionally, conditional and
repetitive operations are defined. Finally, the use of variables and internal functions act to
simplify the execution of several code streams.

The performance of PhysicsShell is limited by, and governed by, the routines that are specified
as input. In general the overhead attributable to the shell is minimal

3.0 PhysicsShell Overview

A run consists of parsing of the input file and command line, and then execution of a user
specified process. These user instructions, called programs, are input in either the user input file
or a file read in using the ReadPrograms routine. As this process is user driven the actual
execution will differ from run to run. Upon completion, PhysicsShell creates output and log files.

The overall process flow of the PhysicsShell script is shown in Figure 1.

Page 2 of 11

2.0 Method of Solution

PhysicsShell is a software tool that permits a common and relatively simple interface to be

created between codes that are normally used in safety analysis. It has been developed using the

PERL programming language. PERL was originally designed for text processing, it has grown

into a sophisticated, general-purpose programming language with a rich software development

environment complete with debuggers, profilers, cross-references, compilers, interpreters,

libraries, syntax-directed editors, and all the rest of the trappings of a "real" programming

language.

In safety analyses, many of the codes use the products of one, or another, of the codes as part of

their input, a mechanism is needed to ensure that interconnections are made. As well, there may

be other constraints or activities that need to be imposed upon the process by which the analysis

is performed. For example, in some instance, not only is the result subject to an iterative

approach to solution, but some of the activities are contingent upon the previous results.

While it is possible to create dedicated computer programs or ad hoc shell scripts to perform

these tasks, a more general approach allows for consistency of application. As well, certain

features can be included within the method that can serve to simplify the process.

The approach taken by PhysicsShell is to create a small scripting language that allows for the

execution of any programs that can be executed by the user, as well as to allow for the creation

of ad hoc utilities that can share a common infrastructure. Additionally, conditional and

repetitive operations are defined. Finally, the use of variables and internal functions act to

simplify the execution of several code streams.

The performance of PhysicsShell is limited by, and governed by, the routines that are specified

as input. In general the overhead attributable to the shell is minimal.

3.0 PhysicsShell Overview

A run consists of parsing of the input file and command line, and then execution of a user

specified process. These user instructions, called programs, are input in either the user input file

or a file read in using the ReadPrograms routine. As this process is user driven the actual

execution will differ from run to run. Upon completion, PhysicsShell creates output and log files.

The overall process flow of the PhysicsShell script is shown in Figure 1.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 2 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Figure 1: Overall Program Flow

Start PhysicsShell

•
Define and Initialize Internal Variables

Run "CommandLine" routine

•
Output header information to standard output

•
Parse the input file

•
Open "LOGFILE" for output

•
Output header information to "LOGFTLE" output

Is a user "program" defined?

No

Yes

Exit PhysicsShell

End PhysicsShell

Execute user "program"

The PhysicsShell script contains numerous routines available to the user. The various types of
routines are listed in Table 1.

Page 3 of 11

Figure 1: Overall Program Flow

 Start PhysicsShell

Define and Initialize Internal Variables

Run “CommandLine” routine

Output header information to standard output

Parse the input file

Open “LOGFILE” for output

Output header information to “LOGFILE” output

Is a user “program” defined? Yes

No
Execute user “program”

Exit PhysicsShell

End PhysicsShell

The PhysicsShell script contains numerous routines available to the user. The various types of

routines are listed in Table 1.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 3 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Table 1: Routine Types

Routine Type Description

Internal Used by the PhysicsShell to perform its
functions.

Syntax and template parsing Used to perform the fundamental task of the
PhysicsShell, to generate input based on a
template and current variables.

Comparison Performs some basic comparisons of variables.

Shell or system emulation Emulates some system routines and reports
status to the logfile.

External routine processing Invokes the major analysis codes (e.g. RFSP).

Link processing Routines used to simplify the link between two
codes, such as the TUF/CERBERUS interface.

Displaying information Outputs to either STDOUT or the logfile
information regarding the state of variables or
the current simulation.

Importing data Allows for the importation of programs and
routines into the PhysicsShell.

Variable manipulation Modifies or allows modification of user
variables.

List manipulation Performs some basic manipulation of lists.

Array manipulation Basic Array routines. Currently this includes
importation of an array from a text file.

Specific information processing Parses specific output files for information that
is important in the link between two codes.

Apart from the internal routines, the above routines are available to the user to be invoked in a
program statement, and their inclusion in the PhysicsShell script is to allow for a common
approach to code interface.

This functionality can be increased by the INCLUDE routine. This routine reads a PERL file and
includes it in the current environment. Thus, any routines that are defined in the included file can
now be accessed as if they were defined in the PhysicsShell script itself. This functionality
allows PhysicsShell to be extremely versatile and therefore be successfully applied to a multitude
of problems, and safety analysis code interfaces.

Page 4 of 11

Table 1: Routine Types

Routine Type Description

Internal Used by the PhysicsShell to perform its

functions.

Syntax and template parsing Used to perform the fundamental task of the

PhysicsShell, to generate input based on a

template and current variables.

Comparison Performs some basic comparisons of variables.

Shell or system emulation Emulates some system routines and reports

status to the logfile.

External routine processing Invokes the major analysis codes (e.g. RFSP).

Link processing Routines used to simplify the link between two

codes, such as the TUF/CERBERUS interface.

Displaying information Outputs to either STDOUT or the logfile

information regarding the state of variables or

the current simulation.

Importing data Allows for the importation of programs and

routines into the PhysicsShell.

Variable manipulation Modifies or allows modification of user

variables.

List manipulation Performs some basic manipulation of lists.

Array manipulation Basic Array routines. Currently this includes

importation of an array from a text file.

Specific information processing Parses specific output files for information that

is important in the link between two codes.

Apart from the internal routines, the above routines are available to the user to be invoked in a

program statement, and their inclusion in the PhysicsShell script is to allow for a common

approach to code interface.

This functionality can be increased by the INCLUDE routine. This routine reads a PERL file and

includes it in the current environment. Thus, any routines that are defined in the included file can

now be accessed as if they were defined in the PhysicsShell script itself. This functionality

allows PhysicsShell to be extremely versatile and therefore be successfully applied to a multitude

of problems, and safety analysis code interfaces.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 4 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

3.1 Inputs

The main input file provides the primary user interface to the program. It allows the user to:

• specify initial values of variables and lists,

• specify certain variables as being updateable based on simple rules, and

• specify the code to execute for the given run.

The code that is to be executed is found in 'programs'. These are the active components of the
input stream. The programs specify what the user intends to do with the data provided as input.

The program may perform one of the following tasks:

• create a program branch,

• call a routine,

• call a UNIX system call, and

• call an executable file in the users PATH.

In addition, the program statements may be combined with 'while' and 'if' loops. This
functionality affords the user great flexibility in the control of the overall process.

PhysicsShell contains some general purpose routines for reading text files. Custom made
routines to address specific input requirements may be created in the PERL language and made
accessible to PhysicsShell through the use of the INCLUDE statement. In this manner, the
treatment of input files is fully configurable by the user.

Another important input to PhysicsShell is the template file. Templates are files that have a
special syntax that allows them to be altered by PhysicsShell. The altered file can then be used as
an input to another routine or code. Through careful construction, one template can serve as a
basis for many different input files for a given code. This is achieved by including 'if' statements
in the template. For example, the control of RFSP [1] execution during a coupled RFSP/TUF [2]
LOCA simulation requires the RFSP input file to include the call to the RFSP *TRIP_TIME
module if a specific condition is reached. Instead of having two templates, one with and one
without the *TRIP_TIME module, a single template can be used and the *TRIP_TIME module
encompassed by a conditional 'if' statement. Templates are parsed, read and modified, by an
internal routine.

Page 5 of 11

3.1 Inputs

The main input file provides the primary user interface to the program. It allows the user to:

• specify initial values of variables and lists,

• specify certain variables as being updateable based on simple rules, and

• specify the code to execute for the given run.

The code that is to be executed is found in ‘programs’. These are the active components of the

input stream. The programs specify what the user intends to do with the data provided as input.

The program may perform one of the following tasks:

• create a program branch,

• call a routine,

• call a UNIX system call, and

• call an executable file in the users PATH.

In addition, the program statements may be combined with ‘while’ and ‘if’ loops. This

functionality affords the user great flexibility in the control of the overall process.

PhysicsShell contains some general purpose routines for reading text files. Custom made

routines to address specific input requirements may be created in the PERL language and made

accessible to PhysicsShell through the use of the INCLUDE statement. In this manner, the

treatment of input files is fully configurable by the user.

Another important input to PhysicsShell is the template file. Templates are files that have a

special syntax that allows them to be altered by PhysicsShell. The altered file can then be used as

an input to another routine or code. Through careful construction, one template can serve as a

basis for many different input files for a given code. This is achieved by including ‘if’ statements

in the template. For example, the control of RFSP [1] execution during a coupled RFSP/TUF [2]

LOCA simulation requires the RFSP input file to include the call to the RFSP *TRIP_TIME

module if a specific condition is reached. Instead of having two templates, one with and one

without the *TRIP_TIME module, a single template can be used and the *TRIP_TIME module

encompassed by a conditional ‘if’ statement. Templates are parsed, read and modified, by an

internal routine.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 5 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

3.2 Output

The output of PhysicsShell is normally to standard output; except as specified by an internal
routine. This is not to be confused with the output generated by the various codes (e.g. RFSP,
TUF) that are called by PhysicsShell. The output of these codes will be located in directories as
defined by the user in the PhysicsShell input file.

During the course of an analysis, it is often required to manipulate the output generated by the
codes. In PhysicsShell, this is achieved by calling specific sub-routines that are designed for the
purpose of manipulating data and are internal to PhysicsShell or have been developed by the
user. Two of the internal PhysicsShell sub-routines are the `GrabPhysicsData' and the
`DrawGraph' sub-routines. An example below includes lines of code necessary to make use of
these sub-routines when the RFSP code has been executed. Comments are provided within the
bolded {}.

_PROG_NAME = > RFSP {Execute RFSP.}

{Obtain the data to be graphed}
{Call the `GrabPhysicsData' sub-routine. This reads through an rfsp_output file and grabs
information from a CERBERUS run. It assumes one run per file. Information is stored in
PhysicsShell lists_cerberus_time and _physics_*, where "1" stands for 'amp', 'rho', 'beta',
`lstar', and `prompt'.}

_PROG_NAME => GrabPhysicsData
{Draw a graph of the _physics_amp list as a function of _cerberus_time list in a file called
amplitude-1.eps }

_PROG_NAM E => DrawGraph _cerberus_time _physics_amp amplitude-1.eps
{ Draw a graph of the _physics_rho list as a function of _cerberus_time list in a file called
amplitude-1.eps }

_PROG_NAME => DrawGraph _cerberus_time _physics_rho reactivity-1.eps

This concept may be applied to any data that has been previously stored in a list.

A LOGF1LE is created for each run of PhysicsShell. This file is found in the directory from
which PhysicsShell was executed and has the default name PhysicsShell.log.

The contents of this file includes:

• The input file and command line options.
• The actual routines executed during the current run.
• The results of many internal programs are echoed to the LOGF1LE.
• The final completion status.

Some error messaging is enabled and available in PhysicsShell where the error message will
follow the program statement.

Page 6 of 11

3.2 Output

The output of PhysicsShell is normally to standard output; except as specified by an internal

routine. This is not to be confused with the output generated by the various codes (e.g. RFSP,

TUF) that are called by PhysicsShell. The output of these codes will be located in directories as

defined by the user in the PhysicsShell input file.

During the course of an analysis, it is often required to manipulate the output generated by the

codes. In PhysicsShell, this is achieved by calling specific sub-routines that are designed for the

purpose of manipulating data and are internal to PhysicsShell or have been developed by the

user. Two of the internal PhysicsShell sub-routines are the ‘GrabPhysicsData’ and the

‘DrawGraph’ sub-routines. An example below includes lines of code necessary to make use of

these sub-routines when the RFSP code has been executed. Comments are provided within the

bolded {}.

_PROG_NAME => RFSP {Execute RFSP.}

{Obtain the data to be graphed}

{Call the ‘GrabPhysicsData’ sub-routine. This reads through an rfsp_output file and grabs

information from a CERBERUS run. It assumes one run per file. Information is stored in

PhysicsShell lists_cerberus_time and _physics_*, where ‘*’ stands for ‘amp’, ‘rho’, ‘beta’,

‘lstar’, and ‘prompt’.}

_PROG_NAME => GrabPhysicsData

{Draw a graph of the _physics_amp list as a function of _cerberus_time list in a file called

amplitude-1.eps }

_PROG_NAME => DrawGraph _cerberus_time _physics_amp amplitude-1.eps

{ Draw a graph of the _physics_rho list as a function of _cerberus_time list in a file called

amplitude-1.eps }

_PROG_NAME => DrawGraph _cerberus_time _physics_rho reactivity-1.eps

This concept may be applied to any data that has been previously stored in a list.

A LOGFILE is created for each run of PhysicsShell. This file is found in the directory from

which PhysicsShell was executed and has the default name PhysicsShell.log.

The contents of this file includes:

• The input file and command line options.

• The actual routines executed during the current run.

• The results of many internal programs are echoed to the LOGFILE.

• The final completion status.

Some error messaging is enabled and available in PhysicsShell where the error message will

follow the program statement.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 6 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

4.0 Application of PhysicsShell

The two sub-sections to follow document specific types of applications in which PhysicsShell
performs the central role of managing a multi-code environment.

4.1 Best Estimate Analysis with Uncertainty (BEAU)

The proper execution of BEAU for large break LOCA requires on the order of several hundred
large break loss of coolant accident (LBLOCA) simulations. Each LBLOCA is simulated using
coupled physics and thermal hydraulic codes. Examples of computer codes used in this
application are the physics RFSP and thermal hydraulic TUF codes. The PhysicsShell tool has
been successfully employed in the automation of this complex process.

In BEAU, simulations of LBLOCA are performed for a case matrix, which defines values of
specific physics and thermal hydraulic input parameters. In this application, PhysicsShell is used
to populate the RFSP and TUF input files with the correct parameters and control the RFSP/TUF
linking. The various parameters and values are incorporated using the INCLUDE function in
both the input file or the template, where appropriate. Therefore, from a practical point of view, a
case name variable may be defined and PhysicsShell will include the appropriate parameters in
the input and templates based on the current value of the case name variable.

The RFSP/TUF link, in essence, is the manipulation and transfer of RFSP generated regional
powers to TUF and TUF generated fuel temperature, coolant density, and coolant temperature
information to RFSP. A LBLOCA transient is simulated in a step-by-step fashion. The total
simulation time is divided into small segments with both RFSP and TUF executed at each step.
PhysicsShell is used to control such functions as ensuring proper convergence between RFSP
and TUF has been attained at each step of the simulation, determining whether the reactor has
tripped based on a parsing of RFSP output, and insertion of shut-off rods at the correct instance.

In addition, PhysicsShell is used to manage the execution of the fuel and fuel channel codes
FACTAR-SS [3] and FACTAR [4]. The former code establishes the steady state conditions of
the fuel and the later is used for transient analysis. Through the inclusion of PERL subroutines,
PhysicsShell performs the necessary data manipulation, creation of specific input files, and
execution of the two fuel and fuel channel codes.

PhysicsShell plays a central role in managing information flow and performing necessary actions
for the successful coupling of RFSP, TUF, FACTAR-SS, and FACTAR in BEAU.

Figure 2 illustrates a portion of the syntax of the PhysicsShell program that facilitates the TUF
and RFSP iterations.

Page 7 of 11

4.0 Application of PhysicsShell

The two sub-sections to follow document specific types of applications in which PhysicsShell

performs the central role of managing a multi-code environment.

4.1 Best Estimate Analysis with Uncertainty (BEAU)

The proper execution of BEAU for large break LOCA requires on the order of several hundred

large break loss of coolant accident (LBLOCA) simulations. Each LBLOCA is simulated using

coupled physics and thermal hydraulic codes. Examples of computer codes used in this

application are the physics RFSP and thermal hydraulic TUF codes. The PhysicsShell tool has

been successfully employed in the automation of this complex process.

In BEAU, simulations of LBLOCA are performed for a case matrix, which defines values of

specific physics and thermal hydraulic input parameters. In this application, PhysicsShell is used

to populate the RFSP and TUF input files with the correct parameters and control the RFSP/TUF

linking. The various parameters and values are incorporated using the INCLUDE function in

both the input file or the template, where appropriate. Therefore, from a practical point of view, a

case name variable may be defined and PhysicsShell will include the appropriate parameters in

the input and templates based on the current value of the case name variable.

The RFSP/TUF link, in essence, is the manipulation and transfer of RFSP generated regional

powers to TUF and TUF generated fuel temperature, coolant density, and coolant temperature

information to RFSP. A LBLOCA transient is simulated in a step-by-step fashion. The total

simulation time is divided into small segments with both RFSP and TUF executed at each step.

PhysicsShell is used to control such functions as ensuring proper convergence between RFSP

and TUF has been attained at each step of the simulation, determining whether the reactor has

tripped based on a parsing of RFSP output, and insertion of shut-off rods at the correct instance.

In addition, PhysicsShell is used to manage the execution of the fuel and fuel channel codes

FACTAR-SS [3] and FACTAR [4]. The former code establishes the steady state conditions of

the fuel and the later is used for transient analysis. Through the inclusion of PERL subroutines,

PhysicsShell performs the necessary data manipulation, creation of specific input files, and

execution of the two fuel and fuel channel codes.

PhysicsShell plays a central role in managing information flow and performing necessary actions

for the successful coupling of RFSP, TUF, FACTAR-SS, and FACTAR in BEAU.

Figure 2 illustrates a portion of the syntax of the PhysicsShell program that facilitates the TUF

and RFSP iterations.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 7 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Figure 2: Portion of PhysicsShell Program for TUF and RFSP Link

i i i i i i i r l I I _ I r" I I I 1-"i i i i I I I 4t
in in

11111111 x 1 1

J

1; 5111 51111 111
IPCJ

J
P PCJ PCJ PCJ P PCJ PCJ PCJ PCJ

I
PCJ

I
PCJ

I
PCJ

1 1 1 1 1 1 1 1 1 1 1 1 1 1 i ' e-•-•,
21 I I 21 I I I

nnnnnnngn n i-d ,„ '-d n n n 6666 000 00000001 0 0 m is.DA p,000 AD
0 0 0 0 0 0 0 0

0 bc/ Fr bd `a)AD
'' bd bd bd bd °CI °CI °CI

1 1 1 1 1 1 1

C

•cl I ll ll ll ll cp

2ah
IV +

ti 1—` ti I nd ,-8 . ccv ed c4 q i-ci F2, II II II II II II ii ii Pci Pci 3 ti 0 c4 0 1 7<°. CA 0. ..e4

V V V V V V V 'C' V
I I cp ocl cp AD -' 5 aL -3 5 e

. CA CD 0 CI)

I -, p cp ea I. E n 't 't ed
M

u, n '---- 1 p u, °V- • <- g
CD 1--L 0 0 0 II II r 0 L: 1 , cp • „, 0 r•-• 4, cp i_g 77' cp V V cl z i-c: 1 " el — , CD 0 ,__, 0

4
F

--.L ,_,..., I" . ,
cp
AD

r
§

AD
'11 CA

0 f),-,
V. 5:

CD
I-)
Cr
0

.0 1-bl -h ,L-ii T,E 4 Pci rz 6 8 AD 0 1-,• .
Es' — 4 Eh 1 t 1,, r" n (:)- c. b

CD
•-.-. 0 §. § C/1 ' 1,-0 n ,-0

E
b

y
cD gy 10. "8 r_. 7..,.•,_,- 0 e-•-•, l i

I g c?0 ,, CD r4
AD CD §. c9P

n 0 CD cp
CD 1--, 1-0 = •-.-. cp

e-•-•, go

O CD 14 LA
CD l'i cp I I 1 .• 1-4 cr a a g CD c)al. cr o

C/1 I-) i-ci 4 cp
CI) AD • cA

1-3 ,-, 0 0
M

. CD
CD •-.-.

U.)
0 '-"P"

I-)
1 ,C)

n.,7' oci 4 M
,--u, •=:-.. 1CD •-.-. N

4 0
I-,-,

I-) it
CD
AD 1

41-4

CD

I7ci

0

CD
CD

CD
cr

'11:j

CD

CCD

•

CD

4t

The text prior to the `=>' symbol is the loop identifier, and the text after the `=>' symbol is the
instruction to be executed at this step. Below is a more detailed explanation of the
JNNER_CONV' loop with comments contained within the bolded {}.

INNER CONV => RFSP {1st step in INNER_CONV, call to execute the RFSP code}

_INNER CONV => ProcessT15 {_cerbcase} {_modelname} rfsp_output {2nd step in
INNER_CONV, a call to the `ProcessT15' sub-routine that interprets a select portion of the RFSP
output}

INNER CONV => _IN NER_PREPAREFOR RFSP IF CornpGreater 015_error_maxl
{_convaccuracy} {3rd step in INNER_CONV, a conditional 'if' statement that starts the
_INNER_PREPAREFOR_RFSP loop if an error is greater than the convergence criteria stored in
the `_convaccuracy' variable}

Page 8 of 11

Figure 2: Portion of PhysicsShell Program for TUF and RFSP Link
#

#
 _

IN
N

E
R

_
L

O
O

P
 p

erfo
rm

s th
e b

asic R
F

S
P

-T
U

F
 iteratio

n
s u

n
til th

e m
ax

im
u
m

 tim
e is

reach
ed

#

 _
IN

N
E

R
_

L
O

O
P

 =
>

 S
etV

al _
cu

rp
ass {

_
cerb

case}

_
IN

N
E

R
_

L
O

O
P

 =
>

 U
p

d
ateA

llV
ariab

les

_
IN

N
E

R
_

L
O

O
P

 =
>

 P
arseT

em
p
late

 _
IN

N
E

R
_

L
O

O
P

 =
>

 S
etV

al _
t1

5
_
erro

r_
m

ax
 1

0
0
.0

_
IN

N
E

R
_

L
O

O
P

 =
>

 /b
in

/rm
 -f {

_
u

n
it1

1
}
-o

ld

_
IN

N
E

R
_

L
O

O
P

 =
>

 cp
 {

_
u
n

it1
1

}
 {

_
u

n
it1

1
}
-o

ld
 IF

 C
o
m

p
G

reater {
_
cerb

case}
 2

_
IN

N
E

R
_

L
O

O
P

 =
>

 _
IN

N
E

R
_

C
O

N
V

 W
H

IL
E

 C
o
m

p
G

reater {
_
t1

5
_
erro

r_
m

ax
}

{
_

co
n

v
accu

racy
}

 _
IN

N
E

R
_

C
O

N
V

 =
>

 R
F

S
P

_
IN

N
E

R
_

C
O

N
V

 =
>

 P
ro

cessT
1

5
 {

_
cerb

case}
 {

_
m

o
d
eln

am
e}

 rfsp
_
o
u
tp

u
t

_
IN

N
E

R
_

C
O

N
V

 =
>

 _
IN

N
E

R
_

P
R

E
P

A
R

E
F

O
R

_
R

F
S

P
 IF

 C
o
m

p
G

reater {
_
t1

5
_
erro

r_
m

ax
}

{
_

co
n

v
accu

racy
}

 _
IN

N
E

R
_

P
R

E
P

A
R

E
F

O
R

_
R

F
S

P
 =

>
 /b

in
/rm

 -f {
_
u
n
it1

1
}
 rfsp

_
o
u
tp

u
t S

T
O

R
E

{
_

sto
re}

{
_

cerb
case+

1
}

_
IN

N
E

R
_

P
R

E
P

A
R

E
F

O
R

_
R

F
S

P
 =

>
 cp

 {
_
u
n
it1

1
}
-o

ld
 {

_
u
n
it1

1
}

 _
IN

N
E

R
_

C
O

N
V

 =
>

 _
IN

N
E

R
_

C
O

N
V

_
T

U
F

 IF
 C

o
m

p
G

reater {
_
cerb

case}
 3

 _
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 P
rin

tL
in

e \tR
ep

eatin
g
 T

U
F

 fo
r case {

_
cerb

case}
 M

ax
 erro

r

{
_

t1
5

_
erro

r_
m

ax
;-6

.2
f}

%

_
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 cd
 {

_
lin

k
d
ir}

_
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 G
en

P
o

w
T

ran
s {

_
iterd

ir}
/p

o
w

tran
s-{

_
p
p
id

}
 S

T
E

P

_
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 assem
b
le_

file _
lin

k
tu

f tu
f_

in
p
u
t tu

f

_
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 P
arseT

em
p

late tu
f_

in
p
u
t tu

f.in
p
u
t

_
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 /b
in

/rm
 -f {

_
tu

fck
p
}
1

_
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 T
U

F
 tu

f.in
p

u
t tu

f.o
u
tp

u
t tu

f.lo
g

_
IN

N
E

R
_

C
O

N
V

_
T

U
F

 =
>

 T
U

F
_

C
O

N
V

The text prior to the ‘=>’ symbol is the loop identifier, and the text after the ‘=>’ symbol is the

instruction to be executed at this step. Below is a more detailed explanation of the

‘_INNER_CONV’ loop with comments contained within the bolded {}.

_INNER_CONV => RFSP {1
st
 step in INNER_CONV, call to execute the RFSP code}

_INNER_CONV => ProcessT15 {_cerbcase} {_modelname} rfsp_output {2
nd

 step in

INNER_CONV, a call to the ‘ProcessT15’ sub-routine that interprets a select portion of the RFSP

output}

_INNER_CONV => _INNER_PREPAREFOR_RFSP IF CompGreater {_t15_error_max}

{_convaccuracy} {3
rd

 step in INNER_CONV, a conditional ‘if’ statement that starts the

_INNER_PREPAREFOR_RFSP loop if an error is greater than the convergence criteria stored in

the ‘_convaccuracy’ variable}

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 8 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

4.2 Reactor Regulating System Emulator (RRS Emulator)

The purpose of the Reactor Regulating System (RRS) in the CANDU reactor is to monitor and
regulate the reactor power distribution by either increasing or decreasing the reactivity within the
core. In addition, RRS performs reactor power measurements and calibrations; calculates power
demand for controlling the reactor power; performs both bulk (global) and spatial power control
and also controls the zone controller system response and regulates other reactivity devices.

An emulator of RRS has been developed for the RFSP code using PhysicsShell as the interface
governing the interactions between the RRS Emulator and RFSP. . The fundamental logic of this
RRS Emulator is based on that used in the SMOKIN [5] code.

The use of PhysicsShell enables a coupling of a thermal hydraulics code. Thus, transient
simulations incorporating RRS feedback may be performed.

The RRS emulator has been developed in PERL using PhysicsShell conventions of programs and
routines in mind. As a result, the user interface of the RRS emulator is identical to that used in
any other PhysicsShell application. This includes functions such as setting up appropriate
directory structures, defining and altering variables, and manipulating input and output files as
necessary.

The proper coupling of the RRS emulator, physics code, and thermal hydraulic code is achieved
by assembling a master program that governs the overall sequence of events for all three codes.

A typical PhysicsShell program flow is shown in Figure 3.

Page 9 of 11

4.2 Reactor Regulating System Emulator (RRS Emulator)

The purpose of the Reactor Regulating System (RRS) in the CANDU reactor is to monitor and

regulate the reactor power distribution by either increasing or decreasing the reactivity within the

core. In addition, RRS performs reactor power measurements and calibrations; calculates power

demand for controlling the reactor power; performs both bulk (global) and spatial power control

and also controls the zone controller system response and regulates other reactivity devices.

An emulator of RRS has been developed for the RFSP code using PhysicsShell as the interface

governing the interactions between the RRS Emulator and RFSP. . The fundamental logic of this

RRS Emulator is based on that used in the SMOKIN [5] code.

The use of PhysicsShell enables a coupling of a thermal hydraulics code. Thus, transient

simulations incorporating RRS feedback may be performed.

The RRS emulator has been developed in PERL using PhysicsShell conventions of programs and

routines in mind. As a result, the user interface of the RRS emulator is identical to that used in

any other PhysicsShell application. This includes functions such as setting up appropriate

directory structures, defining and altering variables, and manipulating input and output files as

necessary.

The proper coupling of the RRS emulator, physics code, and thermal hydraulic code is achieved

by assembling a master program that governs the overall sequence of events for all three codes.

A typical PhysicsShell program flow is shown in Figure 3.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 9 of 11

2a•d CNS Nuelorr Simulation Symposiun 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Figure 3: Typical PhysicsShell Program >♦low with RRS
Emulator

(START

4,
PhysicShell reads in and stores input values into assigned _$CurVal hash structure

RRSvar => a module which reads in additional information (variables) from the
input file for the RRS emulator (SMOKIN INPUT DECK

+
setup directory structure to organize runs and move

required files into the expected structure

4,
Perform Initial Transient TUF run

Create RFSP input

4,
Run RFSP (initial flux calculations and

adjoint calculations)
4,

Extract channel powers (Call RRSpowerread) and detector
flux values (Call RRSfluxread) from RFSP-IST output

4,
Initialization of the RRS Emulator

(Call RRSinitcal)

4,
KLOOP WHILE simulation time < Final time)

4,
step time, update variables and case #

_cerbcase = _cerbcase + I

Parse TUF Template

4,
Run TUF

4,
Convert TUF plot file (temperatures, etc.)

into a format readable by RFSP

Parse RFSP Template

Run RFSP with updated CERBERUS case 3 information
(store information for next cycle of calculations)

RCS (CALL RRSrcntrl) => time cycle
calculations etc. (fast, slow, calibration)

RRS movement of zone controllers,
adjusters and control absorbers

(CALL RRSpos)

Capture relevant information for output
(Call RRSCapt)

END WHILE LOOP simulation < Final time)

Generate necessary output (RRS)
(if required)

(END)

The sub-routines in Figure 3 that begin with 'RRS', for example RRSinitcal, and RRSrcntrl, are
external to PhysicsShell and have been developed specifically for the RRS Emulator application.

Page 10 or 11

Figure 3: Typical PhysicsShell Program Flow with RRS

Emulator

The sub-routines in Figure 3 that begin with ‘RRS’, for example RRSinitcal, and RRSrcntrl, are

external to PhysicsShell and have been developed specifically for the RRS Emulator application.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 10 of 11

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

5.0 CONCLUSIONS

Safety analysis of nuclear reactors often requires the application of several computer codes to
model a specific scenario. To complicate matters, the computer codes are often required to
exchange information between each other. A controlled and generic method is required to govern
such multi-code interactions. The solution proposed is the PhysicsShell program.

The PhysicsShell program has been successfully used to manage multi-code analyses such as
Loss of Coolant Accidents, Best Estimate Analysis with Uncertainty, and modelling of the
Reactor Regulating System. In addition, PhysicsShell is generally used to provide coupling in
analyses where there is a need to perform repeated code executions and has been used to
overcome an RFSP code limitation imposed by the fixed number of CERBERUS cases.

Overall, PhysicsShell offers a flexible platform for controlling a multi-code environment.

6.0 REFERENCES

1. B. Rouben, "RFSP-IST, The Industry Standard Tool Computer Program for CANDU
Reactor Core Design and Analysis", Proceedings of the 13th Pacific Basin Nuclear
Conference, Shenzhen, China, 2002 October 21-25.

2. Cheng, D., "TUF User's Manual — Generic Input, Code Version 1.0.3.5.1," Report No.
N-REP-06631.02-10009 R03, September 2001.

3. Sills, H.E., and Liu, Y., "FACTAR_SS Initial Fuel Conditions for Fuel Channel
Transient Simulations," Paper presented at Fifth International Conference on Simulation
Methods in Nuclear Engineering, Montreal, Canada, September 1996.

4. Westbye, C.J., Brito, A.C., Mackinnon, J.C., Sills, H.E., and Langman, V.J.,
"Development, Verification and Validation of the Fuel Channel Behaviour Computer
Code FACTAR," Presented at the 35th Annual CNA/CNS Conference, Saskatoon,
Saskatchewan, Canada, June, 1995.

5. M. Gold, J.C. Luxat, "SMOKIN — A Code for Time-Dependent Three-Dimensional
Neutronics Calculations in CANDU-PHW Reactors Based on Nodal Kinetics Theory —
Application to Analysis of Loss of Coolant Accidents," Presented at the International
Conference on the Physics of Reactors: Operation, Design and Computation, April 23-27,
1990 Marseille, France.

Page 11 of 11

5.0 CONCLUSIONS

Safety analysis of nuclear reactors often requires the application of several computer codes to

model a specific scenario. To complicate matters, the computer codes are often required to

exchange information between each other. A controlled and generic method is required to govern

such multi-code interactions. The solution proposed is the PhysicsShell program.

The PhysicsShell program has been successfully used to manage multi-code analyses such as

Loss of Coolant Accidents, Best Estimate Analysis with Uncertainty, and modelling of the

Reactor Regulating System. In addition, PhysicsShell is generally used to provide coupling in

analyses where there is a need to perform repeated code executions and has been used to

overcome an RFSP code limitation imposed by the fixed number of CERBERUS cases.

Overall, PhysicsShell offers a flexible platform for controlling a multi-code environment.

6.0 REFERENCES

1. B. Rouben, “RFSP-IST, The Industry Standard Tool Computer Program for CANDU

Reactor Core Design and Analysis”, Proceedings of the 13th Pacific Basin Nuclear

Conference, Shenzhen, China, 2002 October 21-25.

2. Cheng, D., “TUF User’s Manual – Generic Input, Code Version 1.0.3.5.1,” Report No.

N-REP-06631.02-10009 R03, September 2001.

3. Sills, H.E., and Liu, Y., “FACTAR_SS Initial Fuel Conditions for Fuel Channel

Transient Simulations,” Paper presented at Fifth International Conference on Simulation

Methods in Nuclear Engineering, Montreal, Canada, September 1996.

4. Westbye, C.J., Brito, A.C., Mackinnon, J.C., Sills, H.E., and Langman, V.J.,

“Development, Verification and Validation of the Fuel Channel Behaviour Computer

Code FACTAR,” Presented at the 35
th

 Annual CNA/CNS Conference, Saskatoon,

Saskatchewan, Canada, June, 1995.

5. M. Gold, J.C. Luxat, “SMOKIN – A Code for Time-Dependent Three-Dimensional

Neutronics Calculations in CANDU-PHW Reactors Based on Nodal Kinetics Theory –

Application to Analysis of Loss of Coolant Accidents,” Presented at the International

Conference on the Physics of Reactors: Operation, Design and Computation, April 23-27,

1990 Marseille, France.

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 11 of 11

	Abstract
	1.0 Introduction
	2.0 Method of Solution
	3.0 PhysicsShell Overview
	4.0 Application of PhysicsShell
	5.0 CONCLUSIONS
	6.0 REFERENCES

