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ABSTRACT 

To investigate the integrated effect of multiple phenomena on CATHENA MOD-3.5d code 
uncertainty, for the early blowdown phase of large loss of coolant accident (LOCA), one 
RD-14M test series (B0405-B0413) is used to perform a system-level validation. The peak 
sheath temperature in the Fuel-Element-Simulator (FES) is selected as the key output parameter 
used to quantify the code bias and uncertainty in the validation. In the nine tests, the test 
conditions (break size, pump and power trip time, fluid sub-cooling and pressurizer isolation) are 
systematically varied and simulated, so that their effects on the magnitude and timing of the peak 
FES-sheath temperatures are demonstrated. 

The base test, B0405 is selected to perform sensitivity and uncertainty analyses. The 
sensitivity analyses show that the choice of film-boiling heat-transfer correlation has a significant 
effect on the prediction of the FES-sheath temperatures during the FES quenching period. 
Uncertainty analysis demonstrates a mean bias of about +20°C, with a range of about ±30°C to 
the upper and lower bounds. These results compare very well with the estimated code accuracy 
based on all nine tests of B0405-B0413. 

INTRODUCTION 

To support the use of CATHENA MOD-3.5d for safety and licensing analyses of ACR1, 
previous validations of the CATHENA code are being confirmed for each phenomenon expected 
to occur during postulated accidents in ACR. The validation activities reported in this paper 
extend the phenomena-based validation approach to examine the integrated effect of multiple 
phenomena at a system level. 

AECL studies on large LOCA have shown that, for a break at a reactor inlet header (RIH), 
near-stagnation flow conditions may occur in the channels downstream of the broken header for 
a brief period early in the depressurization. The break size that results in the longest period of 
reduced flow (and so the highest fuel sheath temperatures) is referred to as the critical break. 
The critical RIH LOCA accident scenario is divided into three phases, based on the dominant 
phenomena during each phase2. The present, system-level, validation activities focus on the 
early blowdown phase (0 to 30 s), before the emergency coolant injection (ECI) acts. 

Under the conditions of rapid depressurization and reduced flow, the fuel channels in the 
core pass downstream of the break void rapidly. This in turn causes a reduction in fuel-to-
coolant heat transfer and rapid heat-up of the fuel element sheaths. However, the fuel 

1 
2 

ACRTM (Advanced CANDU ReactorTM) is a trademark of Atomic Energy of Canada Limited (AECL). 

The three phases include early blowdown cooling (0 to 30 s), late blowdown cooling/ECl/refill (30 to 200 s) 
and long term cooling (>200 s) 
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1  ACR™ (Advanced CANDU Reactor™) is a trademark of Atomic Energy of Canada Limited (AECL). 
2  The three phases include early blowdown cooling (0 to 30 s), late blowdown cooling/ECI/refill (30 to 200 s) 

and long term cooling (>200 s) 

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 1 of 13



23rd CNS Nuclear Simulation Symposium 2008 November 2-4 
Ottawa Marriott, Ottawa, Ontario 

temperature rise is limited by the reduction in heat generation after reactor trip. As the rate of 
void generation decreases (along with continued reduction in the inlet-header pressure due to the 
break and decreasing pump head), reversed flows are established in the broken pass. The fuel is 
cooled initially by steam, then as liquid drains down into the fuel channels from the end fittings 
and outlet feeders, quenching occurs. All these features in the early blowdown phase are 
reflected in the variations of FES-sheath temperature with time. 

CATHENA 

The acronym CATHENA stands for Canadian Algorithm for THEnnalhydraulic Network 
Analysis that was developed by AECL. CATHENA uses a transient, one-dimensional two-fluid 
representation of two-phase flow in piping networks. The code uses a staggered-mesh, one-step, 
semi-implicit, finite-difference solution method, that is not transit time limited. The extensive 
wall heat transfer package includes radial and circumferential conduction, solid-solid contact, 
thermal radiation, pressure tube deformation and the zirconium-steam reaction. The code also 
includes component models required to complete loop simulations, such as pumps, valves, tanks, 
break-discharge, separators and an extensive control system modelling capability. A more 
complete description of the CATHENA code is provided in [1]. 

DESCRIPTION OF THE EXPERIMENT 

RD-14M Facility And Instrumentation 

The RD-14M facility, shown schematically in Figure 1, was designed as a near full-elevation 
scaled representation of the CANDU 6 reactor. It can operate at CANDU 6 primary system 
pressures (10 MPa) and temperatures (up to 310 °C) to produce similar fluid mass flux, transit 
time, pressure, and enthalpy distributions in the Heat Transfer System (HTS) as those in a 
CANDU reactor. 

The RD-14M facility possesses most of the key components of the CANDU HTS. The 
reactor core is simulated by ten, 6 m-long horizontal channels (five channels per pass). Each test 
section has simulated end-fittings and seven electrical heaters (Figure 2), or FES that have many 
of the characteristics of the central 7 elements of a 37-element CANDU fuel bundle. An inlet 
header break orifice (at header HD8) was used in conjunction with the normal 152-mm break 
valve, MV8 (tests were performed with break orifice sizes of 28, 30 and 32-mm diameter). 

The RD-14M loop is extensively instrumented. Over 550 measuring points are scanned and 
recorded using a dedicated data acquisition system. For the headers, the pressure and fluid 
temperature in the headers are measured. For each test section inlet and outlet fluid 
temperatures, pressures, volume flow rates, void fractions (gamma densitometers), and power are 
measured. Sheath temperatures are measured at several locations along the length of selected 
FES. FES temperatures are measured at up to 18 locations in each heated section. 
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Figure 1  RD-14M Loop Schematic 
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Test Procedure And Behaviour 

The facility was operated for at least 300 s at nominal full-power setting before starting a 
test, to ensure steady initial conditions. Sixty seconds of steady-state data were recorded prior to 
the opening of the break valve MV8. Power supplied to the heated sections was then decreased 
(to represent trip to decay power) and pump rundown was initiated. The timings of the power 
decrease or pump trip was one of the test parameters studied. The tests were terminated when 
the FES sheath temperatures in the broken-pass channels all dropped to the saturation 
temperature. 

For B0405-B0413 tests the focus is on the first 40-50 s of the transient. No emergency 
coolant injection (ECI) was used in these tests. 
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IDEALIZATION OF THE RD-14M BLOWDOWN FACILITY 

The CATHENA idealization used to simulate tests B0405-B0413 is based on the reference 
idealization (Figure 3) used for all other CATHENA RD-14M validation exercises. Small 
changes are made to the reference model to represent the specific initial and boundary conditions 
for these tests. The Henry-Fauske discharge model is applied to the break at inlet header HD8. 
The default discharge coefficients are used. Wall heat transfer models are included in the 
idealization to account for heat transfer between the pipe walls, or the FES, and the fluid during 
the simulation. No attempts were made to change code inputs to minimize any bias in the key 
output parameter (Tmax). 

Measured surge tank and boiler pressures, heated section powers, boiler feedwater flows and 
temperatures, and primary pump speeds were used to establish the initial steady state. With the 
exception of surge tank pressure, these measured values were also used as time-varying 
boundary conditions during the transient simulations. 

RESULTS 

Trends of Peak FES Sheath Temperatures in Tests B0405-B0413 

The peak FES-sheath temperature in each heated section during the transient (T.) is 
selected as the key output parameter, since it can reflect the combined effect from different 
thermal-hydraulic processes. The T. values during the early blowdown phase of the transient 
occur in channels HS10 to HS14, which are connected downstream of the broken header HD8. 
The effect on the timing and magnitude of T. is examined by systematically perturbing the 
conditions of the 9 tests (B0405-B0413), i.e. break size, pump and power trip time, fluid sub-
cooling and pressurizer isolation (Table 1). 

The base case B0405 is first examined. In all the five channels downstream of header HD8 
(only the highest-power channels HS12 and HS13 are shown in Figure 4 and Figure 5), both the 
measured and predicted FES sheath temperatures rapidly increase immediately after the break 
occurs at HD8. The FES sheath temperatures reach a maximum value between 450°C and 
520°C, between 5 and 8 s after the break occurs. The timing of the temperature increase and 
peak value are well captured by CATHENA. Note that in Figure 4 and 5, the three lines shown 
represent the measured temperature (with error bars) at the location of measured Tmax, the 
predicted temperature at the location of measured Tmax and the predicted temperature at the 
location of predicted Tmax. This is also applied to the plots in other figures. 
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Table 1: RD-14M Early Blowdown Experimental Matrix 

Test 
Number 

Break 
Size* 
(mm) 

Start of 
Pump 

Transient+

Initial 
Secondary- 

Side 
Pressure 

Start of 
Channel 
Power 
Decayt

Pressurizer 
Status 

Comment 

B0405 2 sec. Base test 

B0406 30.0 0 sec. 
Effect of primary-

B0407 4 sec. 
4.5 MPa(g) 

2 sec. pump ramp

B0413 32.0 
Online Effect break 

B0412 28.0 
of size 

B0411 
2 

4 sec. 
Effect of channel 
power 

B0408 
sec. 

4.9 MPa(g) Effect of initial 
inlet

B0409 
30.0 

4.1 MPa(g) 2 sec. 
-header 

subcooling 

B0410 4.5 MPa(g) Offline 
Effect of 
pressurizer status 

Diameter of inlet header break. 
Programmed exponential pump ramp simulating loss of class IV power. Start of pump transient is relative to 
the opening of the break valve (MV8). 

t Programmed decrease in channel powers to decay level. Start of power decrease is relative to the opening of 
the break valve (MV8). 
Online refers to the pressurizer connected through the entire test duration. Offline refers to the pressurizer 
isolated from the system —10 seconds prior to opening the break valve. 
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The changes to test conditions for tests B0406 to B0413 are all relative to the base test 
B0405. The effects of test conditions on the magnitude and timing of T. are summarized in 
Table 2 and may be stated as the follows: 

• In eight of the nine tests the T. values predicted by CATHENA are higher than those 
measured. The exception is one heated section in B0411 (with the power trip delayed 2 s). 
The difference between predicted and measured T. ranges between +50°C to -5°C, as 
summarized in Table 3. 

• Comparing tests B0405, B0406 and B0407, Tmax, and the time at which it occurs varies with 
the time of the start of the pump rundown. Initiating the pump ramp earlier or later (-2 or 
+2 s) resulted in earlier and lower Tmax, or later and higher Tmax, in both experiment and 
CATHENA prediction. When the pump begins to run down earlier, flow reversal in the 
downstream channels is allowed to occur earlier, resulting in earlier quench of the FES. The 
earlier quench also corresponds to a lower peak FES temperature. Such trends are caught 
correctly by CATHENA. 

• Comparing tests B0405, B0408 and B0409, Tmax tends to vary with the boiler pressure. 
Increasing or decreasing the boiler pressure (+0.4 MPa or —0.4 MPa) increases or decreases 
the heated section inlet temperature. This resulted in higher or lower predicted Tmax whereas 
measured Tmax is higher in both B0408 and B0409, but little change in timing (<0.2 s) of Tmax
in both experiment and CATHENA prediction. 

• Comparing tests B0405 and B0410, isolating the surge tank resulted in higher and later T. 
in the experiment. Isolating the surge tank allows the outlet header pressure to decrease more 
quickly, delaying the flow reversal in heated sections HS10 to HS14. This trend is captured 
by CATHENA. 

• Comparing tests B0405 and B0411, delaying the power trip (2 s) increased the energy 
deposited in the heated sections, and resulted in much higher and later Tmax in both the 
experiment and CATHENA prediction. 

• Comparing tests B0405, B0412 and B0413, decreasing the break diameter (-2 mm) had no 
significant effect on either the value or timing of T. in the experiment; however, 
CATHENA predicted higher Tmax, occurring later. Increasing the break diameter (+2 mm) 
resulted in lower and earlier T. in both experiment and CATHENA prediction. These 
variations in Tmax with break size are expected, as the 30-mm break is the critical inlet header 
break for RD-14M. 
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Table 2: Maximum Pin-Sheath Temperatures, Test B0405-B0413 

Tmax (°C) Location* Time (s) 

Test Condition 
Experi- 
met 

CATHENA 
Experiment CATHENA 

Experi-
ment 

CATHENA Axial 
Segment 

Axial 
Segment 

B0405 Base case 502.3 519.4 12 12 5.8 5.9 

B0406 
Pump ramp 
2 s earlier 

501.1 513.1 7 12* 5.2 5.8 

B0407 
Pump ramp 

2 s later 
524.8 537.7 12 12 6.9 6.8 

B0408 
Boiler 

pressure 
+0.4 MPa 

509.8 527.8 12 12 6.0 5.9 

B0409 
Boiler 

pressure 
-0.4 MPa 

507.3 512.3 12 10 5.9 6.1 

B0410 
TK1 Pressure 

Offline 
522.9 545.8 12 12 7.6 9.6 

B0411 
Power decay 

2 s later 
563.5 558.9 12  12 6.8 8.6 

B0412 
Break size 

-2 mm 
501.1 536.2 12 12 5.6 6.6 

B0413 
Break size 

+2 mm 
479.8 504.3 8 12* 4.5 5.2 

* Measured T,  occcurs in HS13 in all tests. Predicted T,  occurs in HS13 in tests B0405, B0407, B0408, B0409, B0410 and 
B0411, and in HS12 in tests B0406 and B0413 

Table 3: Bias3 Summary for Maximum Pin-Sheath Temperature in HS10 to HS14, for 
Tests B0405 to B0413 

Bias (°C) HS10 HS11 HS12 HS13 HS14 
B0405 16.6 30.6 26.6 17.1 43.4 
B0406 15.5 27.5 15.2 10.7 37.6 
B0407 17.0 19.2 25.4 12.9 34.1 
B0408 17.8 31.5 33.4 18.0 44.0 
B0409 15.1 23.0 14.4 5.0 38.9 
B0410 25.3 50.5 28.0 22.9 45.1 
B0411 4.5 12.2 4.4 -4.6 26.0 
B0412 34.7 40.3 35.3 35.1 49.9 
B0413 22.0 40.4 31.4 23.5 46.1 

3 The bias is defined as the predicted minus measured peak sheath temperature in each heated section. 
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Effect of Film Boiling Heat Transfer Correlation 

To test the effect of the choice of film boiling heat transfer correlation on the prediction for 
peak pin-sheath temperatures, the optional Bromley correlation was selected instead of the 
default (Leung lookup table). Figures 6 and 7 show the resulting predicted FES sheath 
temperatures in HS12 and HS13, respectively. Compared with the results obtained using the 
default film boiling correlation (Figures 4 to 5), the following observations are made: 

1. the timing of the predicted peak FES sheath temperature is about the same; 
2. the value of Tmax is reduced by about 25°C; 
3. after the peak, the FES sheath temperatures decrease more quickly than the measured 

temperatures; using the default film boiling correlation results in temperatures decreasing 
slower than the measured values. 

As shown above, the predictions of pin-sheath temperatures are very sensitive to the selection 
of film boiling heat transfer correlation after the FES temperature peak, when the FES surfaces 
are rewetting. For the RD-14M 7-element bundle under the conditions of test B0405, the 
Bromley correlation appears to significantly over-estimate the heat transfer during this 
quenching process, while the default Leung lookup table appears to under-estimate the heat 
transfer during quenching. 

600 

550 

F 500 

§ 450 

E

fd 350 

T, 300 

250 

200 

B0405, HS12 Segment 6, middle (Tmax) —e—
CATHENA MOD-3.5d, HS12 Segment 6, middle

CATHENA MOD-3.5d, HS12 Segment 6, top (Tmax) 

t
I 

i

I  I 

-10 -5 

Figure 6 

0 5 10 15 20 25 30 35 40 45 50 

Time (s) 

FES-Sheath Tempera-tures in 
HS12, Test B0405, using 
Bromley's Film Boiling (PDO) 
Heat Transfer Correlation 

Figure 7 

600 

550 

500 

§ 450 
Zo 

E 400

t, 350 

ao, 300 
LL

250 

200 

B0405, HS13 Segment 12, middle (Tmax) 
CATHENA MOD-3.5d, HS13 Segment 12, middle

CATHENA MOD-3.5d, HS13 Segment 6, top (Tmax)

-F,

T 

-10 -5 0 5 10 15 20 25 30 35 40 45 50 

Time (s) 

FES-Sheath Temperatures in 
HS13, Test B0405, using 
Bromley's Film Boiling (PDO) 
Heat Transfer Correlation 

Uncertainty Analysis 

An integrated uncertainty analysis was performed to estimate the overall uncertainty in the 
predicted peak FES-sheath temperature, following the method of order statistics originally used 
at Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS) method [2]. Applying Wilks' 
formula, a minimum sample size of 93 is required to obtain the 95%/95% tolerance limits. Each 
of the 93 samples is a code simulation in which the identified code inputs are randomly and 
simultaneously perturbed within a subjective probability distribution function for their 
uncertainty. Test B0405 is used for all these uncertainty analyses. Table 4 lists the perturbed 
code inputs. 
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Uncertainty Analysis 
 An integrated uncertainty analysis was performed to estimate the overall uncertainty in the 
predicted peak FES-sheath temperature, following the method of order statistics originally used 
at Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS) method [2].  Applying Wilks’ 
formula, a minimum sample size of 93 is required to obtain the 95%/95% tolerance limits.  Each 
of the 93 samples is a code simulation in which the identified code inputs are randomly and 
simultaneously perturbed within a subjective probability distribution function for their 
uncertainty.  Test B0405 is used for all these uncertainty analyses.  Table 4 lists the perturbed 
code inputs. 
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Table 4: Code Inputs Perturbed in Uncertainty Analysis 

Code Inputs or 
Outputs 

Description and Symbol 
Distribution and Standard 

Deviation or Range 

Key Output Parameter 
[8] 

FES Sheath Temperature, T Unknown, a = 3 °C 

Code Inputs for 
CATHENA Boundary 
& Initial Conditions 

[8] 

Feedwater Temperature Normal, a = 2 °C 

Feedwater Flow Normal, a = 1.25% 

Secondary Pressure Normal, a = 0.025 MPa 

Heated Section Power Normal, a = 1.0% 

Main Pump Speed Normal, a = 1.0% 

Initial Pressure (in Surge Tank) Normal, a = 0.05 MPa 

Code Inputs for 
CATHENA 
Correlations 

Break Discharge Correlation Uniform, Range = +15% to —16.8% 

Two-Phase Friction Multiplier, Normal, a = 23% 

Colebrook-White Friction Factor Normal, a = 15% 

Interphase Area (bubbly) Normal, a = 40% 

Interphase Area (droplet) Normal, a = 10% 

Interphase Area (slug) Normal, a = 20% 

Interphase HTC! (bubbly) Normal, a = 20% 

Interphase HTC (slug/churn) Normal, a = 20% 

Interphase HTC (droplet) Normal, a = 20% 

Interphase HTC (vapour) Normal, a = 20% 

Interphase HTC (subcooled steam) Normal, a = 20% 

Interphase HTC (superheated liquid) Normal, a = 20% 

Interphase HTC (stratified) Normal, a = 20% 

Interphase HTC (annular) Normal, a = 20% 

Interphase HTC (piston) Normal, a = 20% 

ONB Uniform, Range = 0 to 2 °C 

CHF (Groeneveld-Leung table) Normal, a = 7.82% 

Convection + Nucleate Boiling HT 
(modified CHEN) 

Normal, a = 13% 

Transition Boiling (Bjornard-Griffith) Normal, a = 8% 

Film Boiling (PDO table Tsup) Normal, a = 10.63% 

OSV (Saha-Zuber) Normal, a = 10% 

! Heat Transfer Coefficient (HTC) 

Figure 8 shows the best-estimate simulation, and the 95%/95% upper and lower bounds of 
Tmax from the 93 simulations in which the inputs listed in Table 4 were perturbed. Figure 9 
shows the uncertainty in code bias, including the uncertainty in the measured FES temperature. 
Note that at the time Tmax occurs (5.9 s), Figure 9 shows that the code bias is 17°C, and the 
maximum and minimum bounds are 49°C and -22°C respectively. Later in the experiment 
(between 10 s and 30 s), during the quench/rewet phase, the bias is much larger. 
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The influence of code inputs on the key output can be demonstrated from the correlation 
coefficients between code inputs and maximum pin-sheath temperature at different times. 
Uncertainty in the break discharge correlation, and in the power supplied to HS12 and HS13 are 
the code inputs that have the most significant effect on the predicted Tmax. 

Estimate of Code Accuracy Based on All Nine Tests 

In the nine tests (B0405-B0413), the code bias defined by the difference between maximum 
predicted and measured FES temperature is summarized in Table 3. The mean of the 45 bias 
values given in Table 3 is 26°C, and the values range between —5°C and +50°C. These results 
compare very well with the GRS-method uncertainty analysis results presented above, which 
indicates a mean bias in Tmax of about 20°C, with a range about ±30°C to the 95%/95% upper 
and lower bounds. 

CONCLUSIONS 

Nine RD-14M experiments, B0405 to B0413, were simulated using CATHENA MOD-3.5d 
to validate the code for system-level or integrated effect of phenomena occurring during the early 
blowdown phase of large LOCA scenarios. 

In test B0405 (used as base test), for the five heated sections (HS10 to HS14) directly 
connected to the broken inlet header, the timing when FES sheath temperature rapidly increased 
is predicted to occur right after the break at the inlet header HD8. The predicted peak FES 
temperature occurs at 5.9 s after the start of the transient. The predicted timing of the peak FES 
sheath temperatures (Tmax) is in agreement with the experiment (within 0.1 s). The value 
predicted for T max is higher than the measured value by 17°C. 

The other 8 tests provide one-parameter-at-a-time variation comparisons with B0405. 
Starting the pump rundown earlier or later (-2 or +2 s) resulted in earlier and lower, or later and 
higher Tmax in both the experiments and CATHENA predictions. Increasing or decreasing the 
boiler secondary-side pressure (+0.4 or -0.4 MPa) led to higher or lower T.„ but little change in 
timing of T max in both the experiments and CATHENA simulations. Isolating the surge tank (or 
pressurizer) prior to the break opening resulted in higher and later T max in both the experiment, 
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and the CATHENA prediction. Delaying the power trip (2 s) led to higher and later T. in both 
the experiment and CATHENA simulation. Decreasing the break diameter by 2 mm resulted in 
no significant change to the value and timing of T. in the experiment, however CATHENA 
predicted a higher and later T.. Increasing the break diameter by 2 mm resulted in a lower, 
earlier T. in both the experiment, and CATHENA prediction. 

The sensitivity of Tmax to the PDO heat transfer correlations, Leung lookup table 
(CATHENA default) or Bromley, was explored. The choice of PDO correlation had no 
significant effect on T. but had a significant effect on the predicted sheath temperatures during 
quenching and rewet. During quenching process the film heat transfer is under predicted by the 
default correlation, and over-predicted by the Bromley correlation. 

The uncertainty analyses using the GRS method demonstrate a mean bias of about +20°C, 
with a range of about ±30°C to the 95%/95% upper and lower bounds. These results compare 
very well with the estimated code accuracy based on all nine tests of B0405-B0413. 
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