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ABSTRACT 

Atucha-2 is a 745 MWe (gross) nuclear station, pressure vessel type designed by Siemens 
(Germany), moderated and cooled with heavy water, located 120 km NW from Buenos Aires. 
This work presents the results of a revision of the fuel management strategy. For some of these 
studies, REC_AUT, a Fortran 90 program, was implemented to perform detailed refuelling 
simulations with automatic selection of the channels to be refuelled. This program showed very 
good agreement with detailed simulations done with manual channel selection and permitted to 
reduce significantly the time required for this type of studies. This new tool was successfully 
used in the redesign of the fuel management strategy because of a reduction of the thermo-
hydraulics channel power limits. 

I. INTRODUCTION 

Atucha-2 is a nuclear station, pressure vessel type designed by Siemens (Germany), 
moderated and cooled with heavy water, located 120 km NW from Buenos Aires. The plant 
thermal power is 2160 MW, and the gross electrical power is 745 MWe. 

The Atucha-2 reactor is fuelled on power and has a radial shuffling scheme. 
Some studies required by the neutronic design for the simulation of transient or 

postulated accidental conditions, require instantaneous burnup and power distributions, 
representative of the equilibrium burnup core. The traditional way to obtain these distributions 
for the Atucha reactors is by performing a detailed core simulation of the operation of the plant 
which represents explicitly the burnup changes in the core associated with each of the fuelling 
operations. 

Usually, the selection of channels to be refuelled (two in each fuelling operation) is done 
manually and is time consuming because it involves the action of an expert to evaluate different 
alternatives of fuelling operations trying to maximize fuel exit burnup and ensure compliance 
with channel and linear power limits and other requirements related to symmetry of the core 
power distribution in each step in the calculation. 

This work presents the main results of a revision of the fuelling strategy and the fuel 
management studies performed for the Atucha-2 reactor. 

It also presents REC_AUT, a new Fortran 90 (F90) program developed during the course 
of this revision and oriented to perform detailed refuelling simulations with an automatic 
selection of the channels to be refuelled. The experience with the use of this program was good 
and allowed to reduce significantly the time needed to perform detailed refuelling simulations for 
Atucha-2 and in particular may be useful to evaluate some practical criteria for channel selection 
for the fuelling engineers. 

In summary, this paper presents: 
a) A brief description of the Atucha-2 reactor. 
b) A description of the fuel management strategy 
c) A description of the methodology used for fuel management studies 
d) A description of REC_AUT and the selection criteria implemented 
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e) Main results 
f) Conclusions 
The results include: 
a) A summary of the main results of the detailed simulation, including margins to the channel 
power limits of each hydraulic zone. 
b) A comparison of time averages of channel powers from the detailed simulation with the 
corresponding values from the "time average" case. 
c) A comparison of results obtained with detailed simulations with manual and automatic 
selection of channels to be fuelled. 

II. BRIEF DESCRIPTION OF THE ATUCHA-2 REACTOR 

The Atucha-2 reactor core has 451 vertical coolant channels, which contain the fuel 
assemblies (FA) and separate the coolant from the moderator. The average coolant temperature is 
296.3°C and the average moderator temperature is 177.3 °C. A section of the core can be seen in 
Figure 1. FA are natural UO2 37 active rod vertical clusters, 5.3 meters long. Fuelling is on power. 
Expected average FA discharge burnup is 2.-: 7800 MWd/tU, which is equivalent to 1.46 FA/fpd. 
Power regulation is made through twelve absorber rods, three made of hafnium, usually called 
black, and nine made of steel, called gray. In normal operation the insertion corresponds to an 
excess reactivity of about 7 mk. Power measurements for the regulation are obtained with four out 
of core compensated ion-chambers. 

The coolant flow in the fuel channels is reduced from the center to the periphery of the core 
according to the channel powers, in such a way as to have approximately constant outlet channel 
temperatures. The temperature increase in the channels at full power is about 35 °C. No coolant 
boiling is allowed at the channel outlets. To obtain that, there are 5 "hydraulic regions" with 
different nozzles, numbered 1 to 5, from the periphery to the center. The power distribution in 
equilibrium burnup conditions is quite flattened and for that reason zone 5 (without flow 
restrictions) is relatively large and contains 253 channels. Channel power limits are defined for each 
hydraulic region as can be seen in Table 1. The reactor has 90 in-core vanadium flux detectors that 
give indications of local flux to the operators. 

Table 1: Original channel power limits assumed in each hydraulic zone 

Hyd. 
Zone 

C.P Limit (kW) 

1 3640 
2 3815 
3 4860 
4 5800 
5 6920 

III. ATUCHA-2 FUEL MANAGEMENT STRATEGY 

For fuel management, a radial shuffling scheme is used. A given fuelling strategy is 
defined as a set of burnup zones (approximately circular o annular) and fuelling paths. A 
burnup zone is a set of fuel channels where the fuel enters with an approximately given entry 
average burnup for the zone and leaves the zone when it reaches the exit burnup of that zone. In 
some cases it is taken out of the reactor and in others it is transferred to another zone. A fuelling 
path is a set of two burnup zones, the first one with higher average burnup and the second with 
lower average burnup. Typically, the FA with highest average burnup of the first burnup zone of 
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a given fuelling path is taken out of the reactor. The highest burnup FA of the second burnup 
zone of the same path is moved to the empty channel, and a fresh FA is inserted in the empty 
channel of that zone. Sometimes, not the highest burnup channels, but one of the highest is 
selected to avoid overpowers or power tilts. 

The refuelling strategy scheme proposed for Atucha-2 considers 6 burnup zones, as can 
be seen in Figure 1, and three paths. In path 1 the fresh fuel assembly enters the reactor in zone 
6, stays in that position until it reaches the transfer burnup and then is transferred to zone 5, 
where it stays until it reaches the average exit burnup and then is extracted. Path 2 is similar with 
fuel entry in zone 2 and exit from zone 4, and in path 3 the FA enters zone 3, stays for some 
time, then is transferred to zone 1, where it remains until it reaches the exit burnup. 
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Figure 1: Radial shuffling fuelling scheme of the Atucha-2 reactor 
Note: Paths are described in section III. 

IV. OVERVIEW OF THE CALCULATION METHODS 

The study was performed with the PUMA code. PUMA is a three dimensional (x-y-z and 
multigroup, diffusion core program developed in CNEA [1], with capabilities for fuel 
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Figure 1: Radial shuffling fuelling scheme of the Atucha-2 reactor 

                         Note: Paths are described in section III. 

IV. OVERVIEW OF THE CALCULATION METHODS  

The study was performed with the PUMA code. PUMA is a three dimensional (x-y-z and 
R-Θ-Z), multigroup, diffusion core program developed in CNEA [1], with capabilities for fuel 
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management, space dependent xenon, thermo-hydraulic feedback and space dependent kinetics 
(using the improved quasistatic method). It can also perform "time avenge" fuel management 
calculations. 

The model used in this study for Atucha-2, uses x-y-z geometry, has 53 planes in x 
direction, 61 in y direction and 31 in z direction. The fuel cell was represented in the x-y plane 
by 4 mesh volumes (2x2). The fuel was divided in 20 intervals in z-direction. 

The two group condensed and homogenized cross sections of the fuel cell were calculated 
with WIMS D5 [2]. The control rods and the lances with the in core detectors are represented in 
PUMA as incremental cross sections. These incremental cross sections were calculated with the 
DRAGON [3, 4] code using 2D supercell models similar to the one showed in Figure 2. 
Although the FA are located in the reactor in a triangular lattice, the supercell model considers a 
square grid of the same cell area, because the results in the reactor calculations demonstrated not 
to be sensitive to this change, and the model is much simpler. The black region in Figure 2 
highlights the homogenization area for incremental cross sections calculations. Comparisons of 
DRAGON supercell results with MCNP [5, 6] calculations showed that the detail in the x-y grid 
is important in order to obtain accurate results [7] for control rod reactivity and channel power 
distributions. 

Fuel Assembly 

Region to calculate 
incremental cross 
sections Control rod 

Figure 2: Typical DRAGON supercell model for incremental cross sections calculations 

As can be seen in Figure 2 the model represents the mechanisms as tubes parallel to the 
fuel channels. As the control rods are introduced slightly obliquely in the core and are 
represented in the model as vertical, the incremental cross sections calculated in this way are 
divided by the cosine of the angle of the rod axis with the vertical in order to consider the extra 
length of the rod in the supercell. 

V. TIME AVERAGE METHODOLOGY IMPLEMENTED FOR ATUCHA-2 

To analyze and improve the fuelling strategy in a reactor with on power fuelling, methods 
that evaluate "time-avenge" (TAV) conditions are useful because they provide a simple first 
step to get a first approximation to an adequate fuelling strategy. 

The "time avenge" methodology used for CANDU reactors with an axial fuelling scheme 
(see for example [8]) was adapted to Atucha-2 and its radial fuelling scheme. 

Then, for each axial section of each fuel, cell cross-sections averaged between the entry and 
the exit burnup are used. The entry and exit burnups are obtained using an iterative procedure of 
flux/power calculations, entry and exit burnup adjustment, flux power calculations, entry and 
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exit burnup adjustment, until convergence is obtained in the flux calculation and in the exit and 
transfer burnup distributions. Usually, convergence is obtained in about 30-40 external iterations. 
With the computers (Pentium 4 Dual Core 3 GHz) used for the first part of the study and with the 
more detailed core models of Atucha-2 of 16 mesh volumes per channel, this took about 0.5 hour 
of processing time. 

This methodology permits to obtain: 

a) Average exit burnup, or the burnup corresponding to a k-effective of 1.0 or the k-effective 
assumed for the critical condition (assuming biases for the calculation methods). 

b) Average burnup values to transfer fuel from one burnup zone to another. 
c) Time-averaged channel and axial sector powers. 

This methodology cannot provide the power variations of a fuel assembly during its 
residence in a given position. Usually, when a given FA enters a burnup zone with 
approximately the entry burnup, it produces an increase of channel power. Afterwards, when the 
burnup of the FA increases, the power is gradually reduced until the FA is taken out or 
transferred to other zone (see Figure 1). These variations should be obtained through detailed 
refuelling simulations. 

As mentioned in the previous section the fuelling strategy is defined as follows: 

The channels in the core are divided in non overlapping sets called paths Ci (i = 1,nc), (nc 
number of paths in the reactor) and the set of channels in each path is further subdivided in zones 
zy (j= 1,nz(t)), (nz(i) is the number of zones of path Ci ). 

The fuelling strategy consists of selecting a given path Ci for the refuelling operation, 
(frequently the path that corresponds to the channel with the highest relative burnup with respect 
to the exit burnup of the zone). Then for the first zone Zi1 of that path (with the highest average 
burnup) the highest burnup FA is taken out. Then the FA with the highest average burnup of the 
following zone Z2 is transferred to the empty channel of zone 1, and continuing in that way until 
a fresh FA is inserted in the last channel. In Atucha-2 each fuel assembly occupies normally two 
positions in the core (nz(0= 2). 

If we start from a given axial power distribution P(ic, ia) for each channel ic, and axial 
sector ia, we can make the following assumptions. 

The increase in average burnup of a FA during the stay in a given channel ic in Zy is 

= s,ic— Boc = *tic Mu ic

where Bs,k is the average exit burnup of the fuel in channel ic, Be,k is the average entry burnup 

of the fuel in channel, tic is the residence time in the channel and Muic is the uranium mass in the 
channel ic. 

On the other side, each day refuelling operations are made, to compensate the burnup 
increase due to power generation. Let's assume that the average increase in burnup of all the 
channels in the burnup zones of path CZ in a time At is : 

AB (path = Ci )  =  P (path = Ci ) 

At Mu(path = Ci ) 

This is valid for each of the burnup zones of path CZ

AB (path = , zone = Zy ) P (path = Ci, zone = Zy ) 

At Mu(path = Ci, zone = Zy ) 

The increase in burnup in a given At in all the regions of a path is compensated by 

Page 5 of 12 

 

exit burnup adjustment, until convergence is obtained in the flux calculation and in the exit and 
transfer burnup distributions. Usually, convergence is obtained in about 30-40 external iterations. 
With the computers (Pentium 4 Dual Core 3 GHz) used for the first part of the study and with the 
more detailed core models of Atucha-2 of 16 mesh volumes per channel, this took about 0.5 hour 
of processing time. 
 This methodology permits to obtain: 
a) Average exit burnup, or the burnup corresponding to a k-effective of 1.0 or the k-effective 

assumed for the critical condition (assuming biases for the calculation methods). 
b) Average burnup values to transfer fuel from one burnup zone to another. 
c) Time-averaged channel and axial sector powers. 

This methodology cannot provide the power variations of a fuel assembly during its 
residence in a given position. Usually, when a given FA enters a burnup zone with 
approximately the entry burnup, it produces an increase of channel power. Afterwards, when the 
burnup of the FA increases, the power is gradually reduced until the FA is taken out or 
transferred to other zone (see Figure 1). These variations should be obtained through detailed 
refuelling simulations.  

As mentioned in the previous section the fuelling strategy is defined as follows: 
The channels in the core are divided in non overlapping sets called paths Ci (i = 1,nc), (nc 
number of paths in the reactor) and the set of channels in each path is further subdivided in zones 
Zij (j=1,nz(i)), (nz(i) is the number of zones of path Ci ). 

The fuelling strategy consists of selecting a given path Ci for the refuelling operation, 
(frequently the path that corresponds to the channel with the highest relative burnup with respect 
to the exit burnup of the zone). Then for the first zone Zi1 of that path (with the highest average 
burnup) the highest burnup FA is taken out. Then the FA with the highest average burnup of the 
following zone Zi2 is transferred to the empty channel of zone 1, and continuing in that way until 
a fresh FA is inserted in the last channel. In Atucha–2 each fuel assembly occupies normally two 
positions in the core (nz(i)=2). 

If we start from a given axial power distribution P(ic,ia) for each channel ic, and axial 
sector ia, we can make the following assumptions. 
The increase in average burnup of a FA during the stay in a given channel ic in Zij is 

iciciciceicsics MutPBBB /*,,, =−=Δ  

where icsB , is the average exit burnup of the fuel in channel ic, iceB ,  is the average entry burnup 
of the fuel in channel, tic is the residence time in the channel and Muic is the uranium mass in the 
channel ic. 

On the other side, each day refuelling operations are made, to compensate the burnup 
increase due to power generation. Let’s assume that the average increase in burnup of all the 
channels in the burnup zones of path Ci in a time Δt is : 

)(
)()(

i

ii

CpathMu
CpathP

t
CpathB

=
=

=
Δ

=Δ
 

This is valid for each of the burnup zones of path Ci 

),(
),(),(

iji

ijiiji

ZzoneCpathMu
ZzoneCpathP

t
ZzoneCpathB

==

==
=

Δ

==Δ
 

The increase in burnup in a given Δt in all the regions of a path is compensated by 

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 5 of 12



23rd CNS Nuclear Simulation Symposium 2008 November 2-4 
Ottawa Marriott, Ottawa, Ontario 

refuelling with a refuelling rate R.R. (ref/d), which depends only on the path and is the same for 
all the zones of a given path 

B —B P tic Mu BS  la ejc = ic ic  ac' 

where B s j cj a is the exit burnup of the fuel in channel ic, axial sector ia, where B ej cj a is the entry 
burnup of the fuel in channel ic, axial sector ia, tic is the residence time in the channel and Muicja
is the uranium mass in the channel ic, axial sector ia. 

The "time average" procedure provides a quick first approach to test a fuel management 
strategy. Different burnup zones distributions can be evaluated rapidly and in this way it is 
possible to test them in order to obtain a reduction in the maximum channel power maintaining 
the exit burnup. 

VI. GENERAL REFUELLING CRITERIA 

The main refueling criteria assumed for Atucha-2 are as follows: 
a) Give priority to FA with highest average burnup to be extracted or transferred 
b) Channel powers limits should be respected, and small additional margins are included. 
c) Linear power limit should be respected, and small additional margins are included. 
d) Compliance with power ramp (pellet cladding interaction) failure prevention criteria 
e) The core is assumed divided in 6, approximately equal, azimuthal regions. Maximum 
asymmetry factors between opposite zones are established. 
f) Minimum transfer or exit burnups are specified in order to avoid introducing too fresh 
fuel in the corresponding burnup zones. 

VII. SIMULATION WITH MANUAL SELECTION OF CHANNELS TO BE 
REFUELLED 

A simulation was done for a period of 400 full power days (FPD) starting with a random 
age burnup distribution with manual selection of the channels to refuel based on compliance of 
the criteria mentioned in section VI. The refueling scheme was taken from [9] but an updated 
nominal position of the control rods was used. During the simulation, the maximum channel 
power (MCP) accepted was 6.8 MW, below the margin of 6.92 MW. The outer rods linear power 
was always below the limit of 522 W/cm, and the maximum value was 471 W/cm. 

After a core calculation of the power and burnup distributions, the fuel channels in the core 
are sorted by average fuel burnup. The highest average burnup bpi, would correspond to channel 
nei, in burnup zone Zil , in fuelling path CZ, the second highest would be bp2, and would 
correspond to channel nc2 in zone Zji and path q, and so on. The first choice is to select the FA 
in channel ncj to be extracted, and the channel with the highest burnup of the entry burnup zone 
(Z2) of the same path (CI), with burnup bt1 (Z2 CI), to be transferred. A calculation of PUMA is 
performed, and the results are evaluated to see if they comply with the acceptance criteria. If it 
does, the simulation is continued for another At, and if it doesn't, a new pair of channels to refuel 
is selected. After that a new core case is run. The main selection criteria are to maximize the exit 
burnup, to keep the channel and local power below the limits and to prevent azimuthal power 
tilts. A period of 400 full power days (596 reactor cases) was initially simulated. 

Table 2 shows a comparison between the exit burnup predicted by the "time average" 
calculations for the six zones with the average values obtained in the manual simulation. It 
shows that the average values obtained for the exit burnup in the six zones have differences with 
the TAV predictions below 2 %. 
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Table 2: Comparison between TAV and average values of exit and transfer burnups in all 
refuelling operations in the manual simulation of 400 FPD 

Path Zone Exit burnup (MWd/tU) Diff (%) 

TAV avg. min max avg/TAV-1 
1 6 2872 2914 2339 3830 1.45% 

5 7800 7674 7548 7857 -1.62% 

2 2 3623 3564 3133 4233 -1.63% 
4 7800 7682 7498 7867 -1.51% 

3 3 5359 5275 4837 5954 -1.56% 
1 7800 7660 7486 7861 -1.79% 

A comparison of the maximum channel powers in the 5 hydraulic zones between the time 
average values and the average values of the detailed simulation cases can be seen in Table 3. As 
can be seen, the maximum channel powers reached during the simulation in the five zones are 
about 8 to 10 % above the time average values (fuelling ripple). Besides, the margins to the 
maximum channel power limits are relatively large in the peripheral zones but relatively small in 
the central zones 

Table 3: Maximum channel power per hydraulic zone. Comparisons between TAV and manual 
simulation cases 

Hydraulic 
Zone 1 2 3 4 5 

Chann. MCP chann. MCP Chann. MCP chann. MCP chann. MCP 
(kW) (kW) (kW) (kW) (kW) 

LIMIT 3640 3815 4860 5800 6920 
TAV LB17 2525 AB43 3138 BE26 4065 LE16 5240 LG24 6315 

Det. Simul. 
Max BF29 2746 AB43 3391 BE26 4458 LF33 5728 LG24 6804 
Min LB17 2325 AB43 2922 LC20 3839 LF33 5150 BL17 6314 

avg 2523 3119 4106 5369 6552 
Max/TAV-1 8.75% 8.06% 9.67% 9.31% 7.74% 
Max/LIMIT-1 -24.56% -11.11% -8.27% -1.24% -1.68% 

VIII. DETAILED REFUELLING SIMULATION WITH AUTOMATIC SELECTION 

Recent thermohydraulic studies proposed a reduction in the channel power limits in the 
outer hydraulic zones. Initial CP limits were based on DNB (departure from nucleate boiling) 
prevention but recently it was considered convenient to set a limit on outlet coolant quality in 
3%. The new proposed limits are shown in Table 4. 

Table 4: Original channel power limits and new proposal 

TH 
Zone 

CP Limit 

(kW)

New 
proposed 

CP Limit (kW) 

Change 

(%) 
1 3640 2535 -30.36 
2 3815 3190 -16.34 
3 4860 4120 -15.23 
4 5800 5800 0 
5 6920 6920 0 

In order to comply with these new limits some adjustments in the fuel management 
strategy were found necessary. 
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To reduce the time required to perform detailed refueling simulations, which up to that 
moment were normally done selecting manually the channels to refuel, the program 
"REC AUT" (recambio automatic° in Spanish or automatic refueling) was implemented in 
Fortran 90. A set of acceptance criteria are defined which include (see Section VI): 

a) Margins to the channel and local power limits 
b) Margins in azimuthal power tilts (the fraction of power generated per sixth radial sector 

was allowed to be within 6% of its "time average value") 
c) Minimum values for exit and transfer burnups (10% and 5% below the "time average" 

values respectively) 
The program reads two input files. The first one includes the reactor data as power limits 

for each hydraulic zone and the distribution of the channels in hydraulics and burnup zones. The 
second file specifies the refuelling criteria, including the number of cases desired, the k effective 
at which refuelling operations are made, maximum linear power, extra margins considered to the 
thermal hydraulics power limits, range of acceptance for the power generated in each sixth radial 
sector to prevent azimuthal power tilts, entry and exit fuel burnup per burnup zone and burnup 
range for extract or move fuel assemblies. In the automatic simulation the criteria are applied 
strictly without the flexibility of the human decisions, so the criteria were in order to obtain a 
closer emulation to the manual channel selection. 

The program operates as follows: after a core calculation of the power and burnup 
distributions, the fuel channels are sorted by average fuel burnup. The highest average burnup 
bpi, would correspond to channel nci, which corresponds to a given fuelling path CZ. The first 
trial is to select the FA in channel with the highest burnup bpi CI) to be extracted and the 
channel with the highest burnup of the entry burnup (Z2) zone of the same path (CI) with burnup 
bt1(Z2, CI) to be transferred. A calculation of PUMA is performed. If the acceptance criteria are 
satisfied the simulation is continued. If they are not, the program first tries to maintain the 
channel of the exit zone with highest burnup and tries the channels in the entry zone with the 
second highest burnup (bt2(Zi2, Cd), third highest burnup (bt3(Zi2, Cd) until the power distribution 
is satisfactory or until the fuel burnup is below the accepted transfer burnup range. In the first 
case it continues the simulation and in the second it tries to select the second highest burnup 
channel in the core and repeats the process. 

IX. COMPARISONS BETWEEN MANUAL SELECTION AND AUTOMATIC 
SELECTION 

To test the results of this automatic method a comparison with the manual simulation, 
described in the previous section, was done. A simulation over 400 full power days was run 
starting with exactly the same burnup distribution. 

Table 5: Comparison of simulation results with manual and automatic selection 
Manual Automatic Diff (%) 

Maximum 
Linear 
power 

(W/cm) FPD (W/cm) FPD 
Maximum 471.4 BA16-4 183.1 471.2 BA20-5 51.8 -0.04% 
Minimum 422.4 AD33-4 286.8 422.5 AC36-5 449.2 0.02% 
Average 445.8 -- -- 447.5 -- -- 0.37% 

Exit burnup 

(MWd/ton) FPD (MWd/ton) FPD 
Maximum 7866.5 BL21 387.0 7898.5 AD23 66.2 0.41% 
Minimum 7486 LF09 293.7 7496.6 AL41 442.9 0.14% 
Average 7671.8 -- -- 7662.2 -- -- -0.13% 

Maximum 
Channel 
power 

(MW) FPD (MW) FPD 
Maximum 6.804 LG24 92.1 6.833 LG24 404.8 0.43% 
Minimum 6.314 BB39 176.5 6.287 LG20 482.3 -0.43% 
Average 6.552 -- -- 6.563 -- -- 0.17% 
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Table 5 presents a comparison between parameters of both simulations. It shows that the 
linear power, exit burnup and channel power are very close in maximum, minimum and average 
values (differences less than 0.5 % in all the cases). 

Figure 3 shows the evolution of the instantaneous exit burnup in both simulations 
(manual and automatic). 
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Figure 3: Comparison of exit burnups as a function of time 

Figure 4 shows the cumulative exit burnup as a function of time and Figure 5 the axial 
asymmetry factor. 

The three figures show that the global behaviour of the parameters in the manual and the 
automatic simulations is very similar. 
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X. COMPARISONS WITH TIME AVERAGE RESULTS 

0 

In order to comply with the new channel power limits the radial shuffling strategy was 
modified adjusting the 6 burnup zones using the "time average" procedure. The changes reduce 
the channel power in the outer zones with a small increase in the power of the central region. 

With the updated strategy a new simulation over about 2400 FPD was run involving 
about 7000 reactor cases. The amount of cases allows comparing average detailed simulation 
values with "time average" values. 

Table 6 shows the exit burnup in the six burnup zones predicted by the "time average" 
calculations with the fuelling strategy selected for the Atucha-2 reactor. In the same table, a 
comparison with the average values of the simulation can be found. As can be seen the relative 
differences in transfer and exit burnup are lower than 1% in all the zones. 

Table 6: "Time average" exit and transfer burnups in each fuelling zone. Comparisons between 
TAV and average of detailed automatic simulation values 

Path Zone 

Entry 
burnup 

(MWd/tU) 

Exit 
burnup 

(MWd/tU) 

Entry 
burnup 

(MWd/tU) 

Exit 
burnup 

(MWd/tU) 
Entry 

Diff (%) 
Exit Diff 

(%) 

1 
6 0 2464 0 2482.53 0.00% 0.75% 
5 2464 7800 2482.53 7836.06 0.75% 0.46% 

2 
2 0 3365 0 3343.05 0.00% -0.65% 
4 3365 7800 3343.05 7743.20 -0.65% -0.73% 

3 
3 0 5433 0 5389.71 0.00% -0.80% 
1 5433 7800 5389.71 7723.20 -0.80% -0.98% 

Page 10 of 12 

 

-7.00%

-6.00%

-5.00%

-4.00%

-3.00%

-2.00%

-1.00%

0.00%
0 50 100 150 200 250 300 350 400 450

Full Power Days (FPD)

A
xi

al
 A

sy
m

m
et

ry
 F

ac
to

r

manual automatic  
Figure 5: Axial asymmetry factor 

 

X. COMPARISONS WITH TIME AVERAGE RESULTS 

In order to comply with the new channel power limits the radial shuffling strategy was 
modified adjusting the 6 burnup zones using the “time average” procedure. The changes reduce 
the channel power in the outer zones with a small increase in the power of the central region. 
  With the updated strategy a new simulation over about 2400 FPD was run involving 
about 7000 reactor cases. The amount of cases allows comparing average detailed simulation 
values with “time average” values. 

Table 6 shows the exit burnup in the six burnup zones predicted by the “time average” 
calculations with the fuelling strategy selected for the Atucha-2 reactor. In the same table, a 
comparison with the average values of the simulation can be found. As can be seen the relative 
differences in transfer and exit burnup are lower than 1% in all the zones. 
 
Table 6: “Time average” exit and transfer burnups in each fuelling zone. Comparisons between 

TAV and average of detailed automatic simulation values 
 

Path Zone  

Entry 
burnup 

(MWd/tU) 

Exit 
burnup 

(MWd/tU)

Entry 
burnup 

(MWd/tU)

Exit 
burnup 

(MWd/tU)
Entry 

Diff (%) 
Exit Diff 

(%) 

6 0 2464 0 2482.53 0.00% 0.75% 
1 5 2464 7800 2482.53 7836.06 0.75% 0.46% 

2 0 3365 0 3343.05 0.00% -0.65% 
2 4 3365 7800 3343.05 7743.20 -0.65% -0.73% 

3 0 5433 0 5389.71 0.00% -0.80% 
3 1 5433 7800 5389.71 7723.20 -0.80% -0.98% 
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Table 7 shows the channel power, maximum, minimum and average, reached in the 
simulation. The maximum value exceeds the "time average" value due to the channel power 
variation related with the burnup cycles of the fuel assemblies. In Figure 6 the channel power 
variation of the central channel and comparison with the average and the "time average" channel 
power can be seen. 

6.8 

6.6 

5.8 

5.6 
0 500 1000 1500 

full power days (FPD) 

2000 

Figure 6: Channel power evolution of the central channel AD23 

2500 

TAV 
. 11m.AVG 

Maximum channel power is closer to the limits in the three inner zones (1.8% to 3.2%) 
and larger in the two external zones. 

Table 7: Channel powers in each hydraulic zone. Comparisons between TAV and detailed 
automatic simulation 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

chann. MCP chann. MCP chann. MCP chann. MCP chann. MCP 

(kW) (kW) (kW) (kW) (kW) 

LIMIT 2535 3190 4120 5800 6920 
TAV BE12 2052 BF21 2835 BE26 3899 LE16 5131 AC22 6330 

SIMUL 
max BE12 2285 BF21 3061 BE26 4046 AE40 5614 AE14 6761 

min BE12 1927 BF21 2684 BE26 3673 LF33 5054 AA34 6344 

avg 2067 2843 3894 5298 6594 

Max/TAV-1 11.35% 7.97% 3.77% 9.41% 6.81% 

Max/LIMIT-1 -9.86% -4.04% -1.80% -3.21% -2.30% 
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Figure 6: Channel power evolution of the central channel AD23 

 
 
Maximum channel power is closer to the limits in the three inner zones (1.8% to 3.2%) 

and larger in the two external zones.  
 

 
Table 7: Channel powers in each hydraulic zone. Comparisons between TAV and detailed 

automatic simulation 
 
    Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
    chann. MCP chann. MCP chann. MCP chann. MCP chann. MCP 
      (kW)   (kW)   (kW)   (kW)   (kW) 

LIMIT     2535   3190   4120   5800   6920 
TAV   BE12 2052 BF21 2835 BE26 3899 LE16 5131 AC22 6330 

max BE12 2285 BF21 3061 BE26 4046 AE40 5614 AE14 6761 
min BE12 1927 BF21 2684 BE26 3673 LF33 5054 AA34 6344 SIMUL 

avg   2067   2843   3894   5298   6594 
Max/TAV-1     11.35%   7.97%   3.77%   9.41%   6.81% 
Max/LIMIT-1     -9.86%   -4.04%   -1.80%   -3.21%   -2.30% 
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XI. CONCLUSIONS 

The "time average" methodology provides a useful tool to obtain a first evaluation of a 
fuel management strategy in Atucha-2. Comparisons of the detailed manual simulation with the 
"time average" calculations show that the average exit burnup of the six burnup zones are close 
to the "time average" values within 2%. The maximum channel powers in the 5 hydraulic zones 
are between 8 and 10 % higher than the "time average" values. 

The automatic fuelling management program REC_AUT was implemented and tested by 
comparing its results with the simulation with the manual channel selection. The program 
showed to provide results very close to the manual fuelling. The maximum, minimum and 
average values for linear power, channel power and exit burnup are similar to the manual 
simulation with differences bellow 0.5%. 

Recent thermohydraulic studies proposed a reduction in the channel power limits in the 
outer hydraulic zones; in order to comply with these new limits the fuel management strategy 
was redefined. With REC_AUT a complete simulation of 2700 FPD was performed in about 81 
hours with the present computers (Pentium Quad 2.4 GHz); doing the same task with a manual 
selection of the channels to refuel may take a couple of months. As can be seen the time 
economy is very significant. 
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