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Abstract 

In this paper we present a premilinary analysis of the NEA3D-TAB-2007 transport problem 
proposed by the OECD/NEA expert group on radiative transfer. This computational benchmark 
was originally proposed by Y. Azmy in 2007 to test the performance of 3D transport methods and 
codes over a suite of problems defined by large variations in space parameters. Two deterministic 
methods were applied to generate the numerical solutions: the discrete ordinates method (SN), 
and the method of open characteristics of I.R. Suslov (MCCG). We provide comparisons between 
MCNP reference solutions and MCCG and DRAGON-SN results in order to reveal the advantages 
and limitations of both methods. 

I. Introduction 

The lattice code DRAGON [11 can solve 3D transport problems using various numerical meth-
ods. Collision probabilities (CP) were implemented first and are still widely used for lattice trans-
port calculations. More recently, an open characteristics flux solution has been made avalaible in 
2D/3D [21 and discrete ordinates method have been extended to regular 3D Cartesian geometries 
[3]. We propose in this paper to apply both methods to the NEA3D-TAB-2007 benchmark [41, and 
then to compare the numerical results generated by DRAGON with MCNP reference solutions. 

II. Presentation of the problem 

The geometry defining the benchmark consists in two embedded parallelepipeds, as depicted 
in Figure 1. The outer is referred to with the index 1 and has a unit square base and height L, 
while the inner is referenced with the index 2 and is scaled down by a parameter 'y, i.e., it has 
dimensions ry x ry x 7L. Vacuum boundary conditions are imposed on all the external faces. A 
fixed, distributed unit source with dimension (1 — 'y)/2, (1 — 'y)/2, L x (1 — 'y)/2 is localised at 
the origin as shown in Figure 2. The total macroscopic section and the scattering ratio are denoted 
as Ei and ci respectively, with i=1 or 2. The suite of benchmarks is then defined by varying all the 
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Abstract

In this paper we present a premilinary analysis of the NEA3D-TAB-2007 transport problem
proposed by the OECD/NEA expert group on radiative transfer. This computational benchmark
was originally proposed by Y. Azmy in 2007 to test the performance of 3D transport methods and
codes over a suite of problems defined by large variations in space parameters. Two deterministic
methods were applied to generate the numerical solutions: the discrete ordinates method (SN ),
and the method of open characteristics of I.R. Suslov (MCCG). We provide comparisons between
MCNP reference solutions and MCCG and DRAGON-SN results in order to reveal the advantages
and limitations of both methods.

I. Introduction

The lattice code DRAGON[1] can solve 3D transport problems using various numerical meth-
ods. Collision probabilities (CP) were implemented first and are still widely used for lattice trans-
port calculations. More recently, an open characteristicsflux solution has been made avalaible in
2D/3D [2] and discrete ordinates method have been extended to regular3D Cartesian geometries
[3] . We propose in this paper to apply both methods to the NEA3D-TAB-2007 benchmark[4], and
then to compare the numerical results generated by DRAGON with MCNP reference solutions.

II. Presentation of the problem

The geometry defining the benchmark consists in two embeddedparallelepipeds, as depicted
in Figure 1. The outer is referred to with the index 1 and has a unit square base and heightL,
while the inner is referenced with the index 2 and is scaled down by a parameterγ, i.e., it has
dimensionsγ × γ × γL. Vacuum boundary conditions are imposed on all the externalfaces. A
fixed, distributed unit source with dimension(1 − γ)/2, (1 − γ)/2, L × (1 − γ)/2 is localised at
the origin as shown in Figure 2. The total macroscopic section and the scattering ratio are denoted
asΣi andci respectively, withi=1 or 2. The suite of benchmarks is then defined by varying all the
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parameters L, -y, E1, c1, E2, c2, with the range of variation provided in Table 1. As each quantity 
can take three values, we obtain a total number of 36=729 cases. 

7 

1.1 

(0.0.0) 

Figure 1: Geometric configuration of the benchmark 
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Figure 2: Localisation of the source 

Page 2 of 14 

parametersL, γ, Σ1, c1, Σ2, c2, with the range of variation provided in Table 1. As each quantity
can take three values, we obtain a total number of36=729 cases.

Figure 1: Geometric configuration of the benchmark

Figure 2: Localisation of the source

23rd CNS Nuclear Simulation Symposium 2008 November 2-4
Ottawa Marriott, Ottawa, Ontario

Page 2 of 14



23rd CNS Nuclear Simulation Symposium 2008 November 2-4 
Ottawa Marriott, Ottawa, Ontario 

Table 1: Range of parameters 

Parameters 
L 0.1 1.0 5.0 

7 0.1 0.5 0.9 
Ei 0.1 1.0 5.0 
Cl 0.5 0.8 1.0 
E2 0.1 1.0 5.0 
02 0.5 0.8 1.0 

Values 

M. Computational strategy 

In this section, we describe the options used for generating numerical solutions to the bench-
mark Three main parameters are to be set for both methods, i.e., spatial order of integration, 
angular quadrature order, and the inner iteration acceleration strategy selected for each solution 
algorithm. 

lILA. SN computational strategy 

Let us first consider the spatial integration strategy. The discrete ordinates method available in 
the lattice code DRAGON is based on a generalization of the classical diamond differencing (DD) 
scheme. Linear Diamond differencing (LD) scheme, which is equivalent to classical DD scheme, 
is the option by default. We have used parabolic DD scheme, so as to introduce high-order SN
results. A cubic order solution was also programmed, but it introduces numerical instabilities 
in some cases. For the angular quadrature, we have used a level-symmetric quadrature (U2„), 
restricted to S20 order. A Legendre-Chebychev angular quadrature is also available up to order 
S64, but due to memory limitations, we were not able to provide a complete suite of solutions 
for the benchmark when n > 32. In addition, it was shown that for this benchmark, a P„ T„ 
quadrature with n=32 is less accurate that LQn quadrature with n=20. Acceleration strategy of 
the source iterations is an important issue for the SN method. In case of strong heterogenous and 
highly diffusive medias, inner iterations may converge very slowly181. Hence, we use a Diffusion 
Synthetic Acceleration (DSA)E9 preconditioning of the SN method conjugated with a Krylov 
subspace method, GMRES(m)Erni. This strategy has been proven very effective for all the cases of 
the benchmark. 

Options used in the SN solver are: 

• Parabolic Diamond-Differencing scheme. 

• Uniform spatial discretization of the regular geometry by subm. 

• Sn Level-symmetric quadrature (U2„), n S20. 
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Table 1: Range of parameters

Parameters Values

L 0.1 1.0 5.0
γ 0.1 0.5 0.9
Σ1 0.1 1.0 5.0
c1 0.5 0.8 1.0
Σ2 0.1 1.0 5.0
c2 0.5 0.8 1.0

III. Computational strategy

In this section, we describe the options used for generatingnumerical solutions to the bench-
mark. Three main parameters are to be set for both methods, i.e., spatial order of integration,
angular quadrature order, and the inner iteration acceleration strategy selected for each solution
algorithm.

III.A. SN computational strategy

Let us first consider the spatial integration strategy. The discrete ordinates method available in
the lattice code DRAGON is based on a generalization of the classical diamond differencing (DD)
scheme. Linear Diamond differencing (LD) scheme, which is equivalent to classical DD scheme,
is the option by default. We have used parabolic DD scheme, soas to introduce high-orderSN

results. A cubic order solution was also programmed, but it introduces numerical instabilities
in some cases. For the angular quadrature, we have used a level-symmetric quadrature (LQn),
restricted toS20 order. A Legendre-Chebychev angular quadrature is also available up to order
S64, but due to memory limitations, we were not able to provide a complete suite of solutions
for the benchmark whenn > 32. In addition, it was shown that for this benchmark, aPn-Tn

quadrature withn=32 is less accurate thatLQn quadrature with n=20. Acceleration strategy of
the source iterations is an important issue for theSN method. In case of strong heterogenous and
highly diffusive medias, inner iterations may converge very slowly[8]. Hence, we use a Diffusion
Synthetic Acceleration (DSA)[9] preconditionning of theSN method conjugated with a Krylov
subspace method, GMRES(m)[10]. This strategy has been proven very effective for all the cases of
the benchmark.

Options used in theSN solver are:

• Parabolic Diamond-Differencing scheme.

• Uniform spatial discretization of the regular geometry bysubm.

• Sn Level-symmetric quadrature (LQn), n ≤ 20.
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• DSA-preconditionning and GMRES(10) acceleration of the inner iterations. 

• 10-5 convergence criterion. 

Two parameters will vary namely subm, the level of spatial discretization, and n, the order of 
the angular quadrature. 

IV. MOC computational strategy 

The set of options for this solver are more numerous than for the SN case and include param-
eters in both geometry tracking module and MOC flux solver itself.E21 Premilinary studies have 
shown that a high track density is mandatory, due to small dimensions of computational cells 
required to insure low relative error. Furthermore, an attempt was made to use a 3D prismatic 
MOC formalism, however strong restrictions appeared, due to numerical instabilities of the trak-
ing operator. This occured when relative errors generated by the 3D prismatic extension of the 
tracking module NXT: are very close to machine numerical precision. As a consequence, we were 
compelled to use the full 3D taking operator, in such a way that CPU time for generating the 
tracking lines combined with the flux resolution made the MOC solution was far more expensive 
in computing ressources than the SN method. Regarding the source integration, a step character-
istics (SC) and a diamond differencing (DD) strategy are avalaible. We used for this benchmark 
the DD scheme, which is slightly better than the SC for a given spatial discretization. For the 
angular discretization, a Legendre-Chebychev (Pn-Tn) quadrature was selected. Concerning the 
source integration strategy, in order to reduce computational ressources, no asymptotical treatment 
of the vanishing sources is applied and tabulated exponentials are used. To insure faster conver-
gence of the inner iterations, a SCR-preconditionning (Self-Collision Rebalancing) [61 is combined 
with an Krylov subspace method, GMRES(m). The ACA-preconditionning (algebraic collapsing 
acceleration)[5] has been established as a more powerfull procedure to reduce inner iterations, how-
ever in monokinetic problems, ACA leads to a large overhead in term of computational ressource. 
As a result, SCR is faster than ACA in terms of CPU time. 

Options used are in the tracking module NXT: 

• Uniform discretization of the geometry by a factor of subm. 

• Track density p (density of integration lines in cm-2). 

• Angular quadrature of type Pte,-Tn with nangl, value lower than 46. 

MCCG flux solver options are: 

• Diamond Differencing scheme along the tracking lines. 

• No asymptotical treatment for vanishing optical thicknesses. 

• SCR preconditionning of inner iterations. 
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• GMRES(m) Krylov Subspace method for accelerating SCR preconditionned inner iteration. 

• 10-5 convergence criterion. 

Hence, for the MCCG solutions, the parameters that will be changed to generate the three 
required runs are: 

1. subm, corresponding to the level of mesh refinement of the geometry. 

2. p, the track density. 

3. nangl, the angular quadrature order. 

V. MCNP computational strategy 

We present briefly the strategy adopted by the organizers to provide MCNP5 solutions for the 
entire suite of benchmarks. Since this study is done using temporary MCNP5 reference solutions, 
note that for some cases, Monte-Carlo solutions exhibit 0 scoring or significant statistical error. All 
Monte-Carlo results used in this work are obtained with 2 billion particle histories. Final reference 
MCNP5 solutions are expected to be computed using a suitable biasing method, such as a variance 
reduction technique M. 

VI. Parametric study 

In this section, we briefly present the parametric study performed with both the MOC and SN 
numerical methods. The procedure applied here is quite simple albeit fastiduous, and is usually 
reffered as model refinement. It consits in increasing the order of angular and spatial discretiza-
tion, to observe a linear decrease in error. We finally obtain minimas for our level of angular and 
spatial discretizations for which our numerical solutions are in the asymptotic regime. In some 
cases, increasing the level of discretization may lead to an increase in error: this is mainly due to 
shortcomings of the method invoked during the generation of the numerical solutions. The method-
ology applied for both methods involved an independent study of the angular and spatial quadra-
ture parameters. Hence, we initially impose a relatively fine spatial discretization, and increase 
progressively the order of the angular quadrature. Once the angular quadrature has converged, 
the spatial quadrature is coarsened progressively (decrease in the order of the spatial quadrature). 
Note that for MCCG calculations, the density of tracking is another variable of great influence. We 
then assume that the combined minimums in space and angle discretizations is sufficient to ensure 
that the asymptotic regime has been reached. This is not a rigorous method, especially when a 
strong coupling exists between space and angular variables, as it occurs when streaming effects 
are important. To avoid this issue, we have selected the case 222222, defined by L = 1.0; 7 = 0.5; 
El = E2 = 1.0 and ci = c2 = 0.8. 
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• GMRES(m) Krylov Subspace method for accelerating SCR preconditionned inner iteration.

• 10−5 convergence criterion.

Hence, for the MCCG solutions, the parameters that will be changed to generate the three
required runs are:

1. subm, corresponding to the level of mesh refinement of the geometry.

2. ρ, the track density.

3. nangl, the angular quadrature order.

V. MCNP computational strategy

We present briefly the strategy adopted by the organizers to provide MCNP5 solutions for the
entire suite of benchmarks. Since this study is done using temporary MCNP5 reference solutions,
note that for some cases, Monte-Carlo solutions exhibit 0 scoring or significant statistical error. All
Monte-Carlo results used in this work are obtained with 2 billion particle histories. Final reference
MCNP5 solutions are expected to be computed using a suitablebiasing method, such as a variance
reduction technique[7] .

VI. Parametric study

In this section, we briefly present the parametric study performed with both the MOC andSN

numerical methods. The procedure applied here is quite simple albeit fastiduous, and is usually
reffered as model refinement. It consits in increasing the order of angular and spatial discretiza-
tion, to observe a linear decrease in error. We finally obtainminimas for our level of angular and
spatial discretizations for which our numerical solutionsare in the asymptotic regime. In some
cases, increasing the level of discretization may lead to anincrease in error: this is mainly due to
shortcomings of the method invoked during the generation ofthe numerical solutions. The method-
ology applied for both methods involved an independent study of the angular and spatial quadra-
ture parameters. Hence, we initially impose a relatively fine spatial discretization, and increase
progressively the order of the angular quadrature. Once theangular quadrature has converged,
the spatial quadrature is coarsened progressively (decrease in the order of the spatial quadrature).
Note that for MCCG calculations, the density of tracking is another variable of great influence. We
then assume that the combined minimums in space and angle discretizations is sufficient to ensure
that the asymptotic regime has been reached. This is not a rigorous method, especially when a
strong coupling exists between space and angular variables, as it occurs when streaming effects
are important. To avoid this issue, we have selected the case222222, defined byL = 1.0; γ = 0.5;
Σ1 = Σ2 = 1.0 andc1 = c2 = 0.8.
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For the spatial mesh studies, a 8 20 quadrature order is imposed respectively for the SN method, 
and nang/=32 for the MCCG solver. In Figures 3 and 4, the L2 norm is a scalar quantity whose 
value represents the size (or length) of a vector error corresponding to a given discretization: 
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For the angular study, we impose respectively subm=4 and subm=8 respectively for the SN
and MCCG methods. The difference between our results and those of MCNP are then presented 
in Figure 4. 
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We clearly observe that our MOC numerical solutions are not in the asymptotic regime when 
angular and spatial discretization are set to their maximums. Error oscillations occur, both for 
angular and spatial parameters. Nethertheless, we could assume that for a spatial discretization 
in the range between 4 and 8, and an angular disretization greater than 20, the relative errors are 
acceptable. SN numerical results approach MCNP solutions for a spatial discretization greater than 
2, and when angular quadrature is greater than 816. 

VI.A. Generation of the results 

The parametric study exposed before allows us to select three level of discretization, both for 
angular and spatial parameters, in order to generate for our two numerical method the set of results 
required for the whole suite of the benchmarks. 

Accordingly, for the SN case we selected: 

1. A uniform spatial discretization of the regular geometry by subm=2 with a 816 level-symmetric 
quadrature. 

2. A uniform spatial discretization of the regular geometry by subm=3 with a 818 level-symmetric 
quadrature. 

3. A uniform spatial discretization of the regular geometry by subm=4 with a 820 level-symmetric 
quadrature. 

For the MOC solutions, the MCCG flux solver options remain the same and only the parameters 
associed with the tracking module are modified: 
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We clearly observe that our MOC numerical solutions are not in the asymptotic regime when
angular and spatial discretization are set to their maximums. Error oscillations occur, both for
angular and spatial parameters. Nethertheless, we could assume that for a spatial discretization
in the range between 4 and 8, and an angular disretization greater than 20, the relative errors are
acceptable.SN numerical results approach MCNP solutions for a spatial discretization greater than
2, and when angular quadrature is greater thanS16.

VI.A. Generation of the results

The parametric study exposed before allows us to select three level of discretization, both for
angular and spatial parameters, in order to generate for ourtwo numerical method the set of results
required for the whole suite of the benchmarks.

Accordingly, for theSN case we selected:

1. A uniform spatial discretization of the regular geometrybysubm=2 with aS16 level-symmetric
quadrature.

2. A uniform spatial discretization of the regular geometrybysubm=3 with aS18 level-symmetric
quadrature.

3. A uniform spatial discretization of the regular geometrybysubm=4 with aS20 level-symmetric
quadrature.

For the MOC solutions, the MCCG flux solver options remain thesame and only the parameters
associed with the tracking module are modified:
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1. An uniform discretization of the geometry by a factor of 2 with track density of 5 x 102
integration lines in crra-2 . and an angular quadrature of type P„ T„ with nang1=16. 

2. An uniform discretization of the geometry by a factor of 3 with a track density of 5 x 102
integration lines in crra-2 and an angular quadrature of type P,;  T„ with nang1=24. 

3. An uniform discretization of the geometry by a factor of 4 with a track density of 1 x 103
integration lines in crn-2 and an angular quadrature of type P,;  T„ with nang1=32. 

VII. Analysis of the results 

In this section, we provide comparison of our SN and MCCG numerical results with the MCNP 
reference solutions. The large number of data generated, typically 15 x 729 per run, burdens 
strongly the analysis. We choose to use the mean relative error by case, namely: 

1 15 t o 
— 

an(%) 15 E 
computed MCNP 

sml MCNP 

Hence, we will establish the total number of cases n that satisfy a criterion on the mean relative 
error: 

on ce 

with e a tolerance on the mean relative error in %. 
Another option is to compute the number n of cases between two bounding error limits as: 

el  < S 62 

with el  and 62 tolerances on the mean relative error in %. We can then define the number n 
as a function of e, which leads to a straightforward evaluation of the performance of a method. 
The distribution of results and the cumulative distribution as a function of error are presented 
respectively in Figures 5 and 6. 
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1. An uniform discretization of the geometry by a factor of 2 with track density of5 × 102

integration lines incm−2. and an angular quadrature of typePn-Tn with nangl=16.

2. An uniform discretization of the geometry by a factor of 3 with a track density of5 × 102

integration lines incm−2 and an angular quadrature of typePn-Tn with nangl=24.

3. An uniform discretization of the geometry by a factor of 4 with a track density of1 × 103

integration lines incm−2 and an angular quadrature of typePn-Tn with nangl=32.

VII. Analysis of the results

In this section, we provide comparison of ourSN and MCCG numerical results with the MCNP
reference solutions. The large number of data generated, typically 15 × 729 per run, burdens
strongly the analysis. We choose to use the mean relative error by case, namely:

δn(%) =
1

15

15
∑

i=1

Φi
computed− Φi

MCNP

Φi
MCNP

Hence, we will establish the total number of casesn that satisfy a criterion on the mean relative
error:

δn ≤ ǫ

with ǫ a tolerance on the mean relative error in %.
Another option is to compute the numbern of cases between two bounding error limits as:

ǫ1 ≤ δn ≤ ǫ2

with ǫ1 and ǫ2 tolerances on the mean relative error in %. We can then define the numbern
as a function ofǫ, which leads to a straightforward evaluation of the performance of a method.
The distribution of results and the cumulative distribution as a function of error are presented
respectively in Figures 5 and 6.
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Figure 6: Cumulative distribution of results in function of the mean relative error 

At the light of theses figures, we notice that the computational challenge raised by this bench-
mark is a source of large relative errors between for both MOC and SN numerical methods. Even 
though these two methods are totally different, it is worth noting that total number of cases that 
acheive a given precision c is quite similar. This can be explicited by realising that this suite of 
problems is defined by a large variation in space parameters, generating approximately the same 
number of pathologic cases for MOC and SN methods. We also display in Figures 7 to 12 the 
mean relative error by case for the three values of L. 
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At the light of theses figures, we notice that the computational challenge raised by this bench-
mark is a source of large relative errors between for both MOCandSN numerical methods. Even
though these two methods are totally different, it is worth noting that total number of cases that
acheive a given precisionǫ is quite similar. This can be explicited by realising that this suite of
problems is defined by a large variation in space parameters,generating approximately the same
number of pathologic cases for MOC andSN methods. We also display in Figures 7 to 12 the
mean relative error by case for the three values ofL.
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Evolution of relative error, L=0.1 
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Figure 7: SN results for L = 0.1. 
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Figure 7:SN results forL = 0.1.
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Figure 8: MOC results forL = 0.1.
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Evolution of relative error, L41.0 
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Figure 9: SN results for L= 1.0. 
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Figure 10: MOC results for L= 1.0. 

450 500 

Page 11 of 14 

200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

number of cases

re
la

tiv
e 

er
ro

r i
n 

%

Evolution of relative error, L=1.0

Figure 9:SN results forL = 1.0.
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Figure 10: MOC results forL = 1.0.
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Figure 11: SN results for L = 5.0. 
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Figure 12: MOC results for L = 5.0. 

700 750 

Concentrating first on the SN relative error, one observes that strong peaks appear for cases 
in which El = E2 = 5.0. Peaks are getting wose when L=5.0, due to the combined fact that 
source dimension is reduced and attenuation is high. Another class of problematic cases are when 
Ei = 0.1 and Ei = 5.0. This define a strong heterogeneous media combined with a highly 
localized neutron source. As a result, ray effects start to dominate the errors in the SN method and 
the computed fluxes oscillate seriously and become non physical. 

MOC solutions suffer globally in the same configurations especially in high absorbing/diffusive 
or heterogeneous cases (Ei = E2 = 5.0 or Ei = 50 x Ei), altough the dimensions of the source 
play an key role in the precision of the solution. As ry is growing, the source dimension is reduced, 
and the MOC computed error exceeds by far the SN errors. This is mainly a consequence of the 
flat source approximation, which is non valid in some configurations. 
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Figure 12: MOC results forL = 5.0.

Concentrating first on theSN relative error, one observes that strong peaks appear for cases
in which Σ1 = Σ2 = 5.0. Peaks are getting wose when L=5.0, due to the combined fact that
source dimension is reduced and attenuation is high. Another class of problematic cases are when
Σi = 0.1 and Σj = 5.0. This define a strong heterogeneous media combined with a highly
localized neutron source. As a result, ray effects start to dominate the errors in theSN method and
the computed fluxes oscillate seriously and become non physical.

MOC solutions suffer globally in the same configurations especially in high absorbing/diffusive
or heterogeneous cases (Σ1 = Σ2 = 5.0 or Σi = 50 × Σj), altough the dimensions of the source
play an key role in the precision of the solution. Asγ is growing, the source dimension is reduced,
and the MOC computed error exceeds by far theSN errors. This is mainly a consequence of the
flat source approximation, which is non valid in some configurations.
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VIII. Conclusion 

The NEA3D-TAB-2007 benchmark study was intended to observe limitations of deterministic 
methods, and to help reactor physicists propose new improvements for this class of numerical 
methods. We first conclude that for the MCNP reference solutions with acceptable statistical errors, 
both SN and MOC methods reach a level of accuracy close to the Monte-Carlo results. Moreover, 
other deterministic solutions such as produced by the IDT code [11] have similar relative errors. 
However, DRAGON-SN results suffer deeply in some configurations (L = 5.0) from ray effects, a 
typical shortcoming appearing in case of strong heterogeneous medias. Rising the quadrature order 
has been established as the most powerfull solution to avoid this restriction. As a consequence, 
new angular quadratures have been implemented, such as QR (quadruple Range) quadrature up to 
the 872 order [121. For the MOC method, if bad angular discretization is also an important issue, 
an inadequate spatial mesh discretization detoriorates the flat source approximation and leads to a 
rapid growth of the numerical errors. Finally, an important issue is also computational time. In this 
case, the SN method was far more advantagous than the MOC method. To complete this study, it 
would be interesting to compare CPU time for SN and MOC methods with that of MCNP. 
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