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Abstract 

To provide support for a proactive steam generator (SG) aging management strategy, a 
survey on the corrosion susceptibility of the archived Alloy 800 tubing from CANDU SGs 
under plausible crevice chemistry conditions was conducted to assess the potential material 
degradation issues in CANDU SGs. 

Archived Alloy 800 samples were collected from four CANDU utilities. High-temperature 
electrochemical analysis was carried out to assess the corrosion susceptibility of the 
archived SG tubing under simulated CANDU crevice chemistry conditions at both 150°C 
and 300°C. The potentiodynamic polarization results obtained from the archived CANDU 
SG tubes were compared to the data from ex-service tubes removed from Darlington 
Nuclear Generating Station (DNGS) SGs and a reference nuclear grade Alloy 800 tubing. 
It was found that the removed Darlington SG tubes, with signs of in-service degradation, 
were more susceptible to pitting corrosion than the reference nuclear grade Alloy 800 
tubing. At 150°C, under the same neutral crevice chemistry conditions, the 
potentiodynamic polarization curve of the ex-service Darlington SG tubing has an active 
peak, which is a sign of propensity to crevice/underdeposit corrosion. This active peak was 
not observed in any of the potentiodynamic polarization curves of all archived Alloy 800 
CANDU SG tubing indicating that archived CANDU SG tubes are less susceptible to the 
underdeposit corrosion under SG startup conditions. The corrosion behaviour of the 
archived Alloy 800 tubes from CANDU SG was similar to that of the reference nuclear 
grade Alloy 800 tubing. The results of this survey suggest that the Alloy 800 tubing 
materials used in the existing CANDU utilities (other than ex-service DNGS tubing) will 
continue to have reliable performance under specified CANDU operating conditions. 

Ex-service SG tubing from DNGS, although showing lower than average corrosion 
resistance, still has a wide acceptable operating margin and the in-service degradation 
issues such as pitting and underdeposit corrosion could be controlled through water 
chemistry management. The test procedures used here may be considered as an optional 
examination procedure to qualify SG tubing for new or replaced SGs. It may also 
provide an assessment of the impact of in-service aging on SG tube performance. 
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1. INTRODUCTION 

A recent examination of steam generator (SG) tubes (D2 SG4 R52C60 and 
D4 SG1 R49C61) removed from Darlington Nuclear Generating Station (DNGS) found 
that these SG tubes were more susceptible to pitting corrosion in the ex-service condition 
than reference new nuclear grade Alloy 800 tubing. There is also evidence that a few 
Alloy 800 tubes at Biblis A and Borselle have detectable degradation indications, which 
may be signs of cracking. These findings suggest that Alloy 800 tubing may indeed have 
some aging degradation susceptibility after many years of service. However, degradation 
of Alloy 800 SG tubing has only been found in a few nuclear generating stations to date. 
Whether the degradation of Alloy 800 tubing is due to the imperfections in its 
compositional or metallurgical properties inherent from manufacturing or from 
environmental factors, or as a result of in-service aging requires clarification. It was 
considered useful to survey the corrosion susceptibility of the archived Alloy 800 tubing 
from CANDU® SGs under plausible crevice chemistry conditions and find out the potential 
material degradation issues in CANDU SGs. This work could provide important 
information to support proactive SG aging management. The benefit to the COG 
community is that potential steam generator tube degradation issues can be identified and 
this information supports steam generator aging management in a proactive manner. 

The corrosion susceptibility of the ex-service DNGS Alloy 800 tube was assessed under 
simulated CANDU crevice chemistry conditions at 300°C. The experimental results 
suggested that the ex-service SG tubes are more susceptible to pitting corrosion than a 
reference nuclear grade Alloy 800 tubing that has not been in-service conditions. The 
conditions and the root cause leading to the Alloy 800 SG tube degradation at DNGS are 
under investigation. The work reported here was to determine whether the Alloy 800 SG 
tubing material at other CANDU NGS will experience the same degradation issue as that 
found at DNGS. 

Archived Alloy 800 CANDU SG tubing samples were collected from Centrale nucleaire 
Gentilly-2 (CNG2), Point Lepreau Generating Station (PLGS), Bruce Nuclear Generating 
Station (BNGS), and Third Qinshan Nuclear Power Co., Ltd (TQNPC). The corrosion 
susceptibility of this available archived Alloy 800 tubing from representative 
CANDU SGs was evaluated and compared under plausible SG crevice chemistry 
conditions. 

Corrosion-related SG tube degradations including intergranular attack (IGA), pitting, 
underdeposit corrosion and SCC were normally detected in SG crevices. The chemistry 
conditions in CANDU SG crevices has been previously reported [1]. The assessments 
and analysis were performed based on the data from BNGS-A plant operation. 
Systematic SG hideout return monitoring was performed on all BNGS-A units over 
several years. The majority of the available information was obtained prior to performing 
deposit removal activities (chemical cleaning and waterlancing), which commenced in 
1993. The results of the hideout return monitoring indicated that large quantities of 
impurities had accumulated in the fouled SG crevice/underdeposit regions. The 
predominant inorganic species, based on hideout return cumulative mass amounts, were 

® 
CANDU (Canada Deuterium Uranium) is a registered trademark of Atomic Energy of Canada Limited 
(AECL). 
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calcium, sulphate, silica, chloride, sodium, potassium, and magnesium. Hideout return of 
organic species, such as acetate, was also observed. Predictions of crevice chemistry 
were performed using EPRI's MULTEQ-REDOX computer code. The MULTEQ 
predictions indicated that the normal BNGS-A SG crevice pH was bounded within a 
range of pH 4 to 9 (at SG operating temperature) and was not in a strongly acidic or 
alkaline regime [1]. The majority of the crevice pH predictions were on the 
weak-alkaline side of neutral pH. The MULTEQ predictions indicated that the crevice 
solution chemistry during operation consisted of a concentrated salt solution with the 
dominant species being sodium, chloride, and potassium and, in some cases, acetate. 
Calcium and sulphate were present in solution at much lower concentrations and were 
predicted to exist mainly in precipitate form (e.g., CaSO4) during operation along with 
other calcium-magnesium and silicate precipitates. Electrochemical potentiodynamic 
polarization curves obtained under specific environments could offer a quick and reliable 
assessment on the corrosion resistance of SG tube material. A potentiodynamic 
polarization curve provides information of corrosion rate of an alloy material as a 
function of ECP under specific environments. 

Some background information about the potentiodynamic polarization curves of 
chromium containing alloys may be useful. Figure 1 shows a typical polarization curve 
for chromium-containing alloys. In the cathodic potential region, the predominant 
electrode reaction is the reduction of the oxidant(s) in the system. At the potential Ecarr 
the total current density contributed by the anodic reactions and cathodic reactions equals 
zero. Above this potential, the curve reaches an active region where the alloy surface 
experiences anodic dissolution. The components of the alloy do not dissolve at the same 
rate and, therefore, surface segregation results. The surface enriches in the beneficial 
alloying elements such as chromium. The surface films protect the alloy from further 
dissolution. When the potential reaches a point called the primary passivation 
potential (Epp), the anodic current density reaches a maximum value (icritieo) called the 
critical current density. After this point, the current density starts to fall and a passive 
film covers the alloy surface and inhibits the anodic dissolution. The current density at 
the passive state (ipassive) is called the passive current density. When the applied potential 
reaches a value called the transpassive potential (Errans), Cr3+ in the passive film starts to 
further oxidize to Cr6+ and dissolves [4]. The passive film experiences a restructuring 
stage and the curve reaches a plateau with a much higher current density than the passive 
current density. Further anodic polarization will draw the potential of the alloy to a 
region where oxygen evolution will take place. Aggressive halide anions such as 
chloride ions can cause the passive films to break down in the passive potential region. 
The breakdown of the passive film is characterized by a sudden increase in the current 
density at a potential called the pitting potential Ep. The high current density is due to a 
very fast anodic dissolution in confined areas. This local dissolution can cause pitting 
corrosion of the alloy. In a cyclic polarization, when the current density reaches a 
pre-determined threshold, the applied potential is reversed. Once pits initiate above the 
pitting potential, they will grow even after the potential decreases to a value below the 
pitting potential. Only when the potential decreases below a protection potential Eprotec, 

the reversing curve crosses the forward scan and the pits cease to develop. This potential 
under certain circumstances could be used to determine the repassivation ability of an 

Page 3 of 22 

 

calcium, sulphate, silica, chloride, sodium, potassium, and magnesium.  Hideout return of 
organic species, such as acetate, was also observed.  Predictions of crevice chemistry 
were performed using EPRI’s MULTEQ-REDOX computer code.  The MULTEQ 
predictions indicated that the normal BNGS-A SG crevice pH was bounded within a 
range of pH 4 to 9 (at SG operating temperature) and was not in a strongly acidic or 
alkaline regime [1].  The majority of the crevice pH predictions were on the 
weak-alkaline side of neutral pH.  The MULTEQ predictions indicated that the crevice 
solution chemistry during operation consisted of a concentrated salt solution with the 
dominant species being sodium, chloride, and potassium and, in some cases, acetate.  
Calcium and sulphate were present in solution at much lower concentrations and were 
predicted to exist mainly in precipitate form (e.g., CaSO4) during operation along with 
other calcium-magnesium and silicate precipitates.  Electrochemical potentiodynamic 
polarization curves obtained under specific environments could offer a quick and reliable 
assessment on the corrosion resistance of SG tube material.  A potentiodynamic 
polarization curve provides information of corrosion rate of an alloy material as a 
function of ECP under specific environments. 
Some background information about the potentiodynamic polarization curves of 
chromium containing alloys may be useful.  Figure 1 shows a typical polarization curve 
for chromium-containing alloys.  In the cathodic potential region, the predominant 
electrode reaction is the reduction of the oxidant(s) in the system.  At the potential ECorr , 
the total current density contributed by the anodic reactions and cathodic reactions equals 
zero.  Above this potential, the curve reaches an active region where the alloy surface 
experiences anodic dissolution.  The components of the alloy do not dissolve at the same 
rate and, therefore, surface segregation results.  The surface enriches in the beneficial 
alloying elements such as chromium.  The surface films protect the alloy from further 
dissolution.  When the potential reaches a point called the primary passivation 
potential (Epp), the anodic current density reaches a maximum value (iCritical) called the 
critical current density.  After this point, the current density starts to fall and a passive 
film covers the alloy surface and inhibits the anodic dissolution.  The current density at 
the passive state (iPassive) is called the passive current density.  When the applied potential 
reaches a value called the transpassive potential (ETrans), Cr3+ in the passive film starts to 
further oxidize to Cr6+ and dissolves [4].  The passive film experiences a restructuring 
stage and the curve reaches a plateau with a much higher current density than the passive 
current density.  Further anodic polarization will draw the potential of the alloy to a 
region where oxygen evolution will take place.  Aggressive halide anions such as 
chloride ions can cause the passive films to break down in the passive potential region.  
The breakdown of the passive film is characterized by a sudden increase in the current 
density at a potential called the pitting potential Ep.   The high current density is due to a 
very fast anodic dissolution in confined areas.  This local dissolution can cause pitting 
corrosion of the alloy.  In a cyclic polarization, when the current density reaches a 
pre-determined threshold, the applied potential is reversed.  Once pits initiate above the 
pitting potential, they will grow even after the potential decreases to a value below the 
pitting potential.  Only when the potential decreases below a protection potential Eprotec, 
the reversing curve crosses the forward scan and the pits cease to develop.  This potential 
under certain circumstances could be used to determine the repassivation ability of an 

8th International Conference on CANDU® Maintenance 2008 November 16-18
Metro Toronto Convention Centre, Toronto, Ontario

Page 3 of 22



8th International Conference on CANDU® Maintenance 2008 November 16-18 
Metro Toronto Convention Centre, Toronto, Ontario 

alloy. However, due to the uncertainty of the local chemistry and the huge IR drop inside 
the pit, using Eprotec to determine the corrosion resistance of an alloy may be misleading. 
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Figure 1 Schematic Plots of Typical Polarization Curves for Chromium 
Containing Alloys 

As described earlier, for the majority of the CANDU SGs, crevice pH was on the 
weak-alkaline side of neutral pH. This is the basis used to evaluate the archived 
CANDU SG tubing under neutral crevice chemistry conditions. In addition to this 
reason, the potentiodynamic polarization curves of Alloy 800 SG tubing obtained 
previously [2] suggest that acidic crevice chemistry conditions are too aggressive to 
assess the in-service corrosion susceptibility of SG tubing. On the other hand, alkaline 
crevice chemistry conditions are too benign for Alloy 800 tubing degradation and also 
not a good environment to evaluate any in-service corrosion susceptibility. Only the 
potentiodynamic polarization curves obtained in the neutral crevice chemistry conditions 
show a distinctive pitting potential and a clear active peak. Therefore the neutral crevice 
chemistry conditions are selected for performing tests to assess the corrosion 
susceptibility of the archived Alloy 800 from different CANDU SGs. 
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2. METHODOLOGY 

2.1. Material and Sample Preparations 

Archived SG tubes from different CANDU Stations are cut to 10-mm long tube segments 
for electrochemical testing. The detailed information on the tube material is listed in 
Table 1 and Table 2. It should be noted that the DNGS tubing (Unit 2 SG 4 R52C60) has 
the lowest Ti/C ratio and the aluminum concentration is lower that ASTM standard 
specified value. IGA tests normally used for characterize the corrosion susceptibility of 
SG alloys are considered not relevant to SG tubing degradation in service and were not 
selected in this test plan. 

Table 1 
Chemical Composition of the Alloy 800 Steam Generator Materials 

(from mill test certificate if not specified) 

Material/Heat
Element 

Number/Size 

Concentration (wt %) 

C N Al Si S Ti Cr Mn Fe Ni Cu Ti/C 

ASME Standard 
SB 163 

UNS NO8800 

Max 
0.10 - 

0.15- 
0.60 

1.0 
max 

0.015 
max 

0.15- 
0.60 

19.0- 
23.0 

1.5 
max 

Bal. 30.0- 
35.0 

0.75 
max 

>12 

Reference Nuclear 
Grade Alloy 800 HT 
# 9043A 

0.015 0.028 0.41 0.10 0.002 0.42 21.7 0.80 42.4 34.1 0.03 28 

DNGS (Darlington) 
Unit 2 SG 4 
R52C60 

0.016* na 0.13 0.61 0.001* 0.22 23.0 0.3 42.0 34.8 na 14 

DNGS Unit 4 SG 
1D4 R49C61 

0.016 na 0.27 0.42 0.001 0.40 21.4 0.57 41.2 32.2 0.012 25 

BNGS (Bruce) Tube 
No. 91708 
HT # 507731 

0.014 0.013 0.22 0.49 0.001 0.45 21.78 0.57 43.29 33.11 0.034 32 

BNGS Tube No. 
92603 
HT # 50793 7 

0.009 0.010 0.21 0.43 0.001 0.55 21.65 0.49 43.39 33.20 0.032 61 

BNGS Tube No. 
95091 

HT # 50793 7 

0.010 0.011 0.23 0.53 0.001 0.56 21.75 0.50 43.18 33.17 0.034 56.0 

PLGS (Point 
Lepreau) 
HT # N/A (AECL 
analysis) 

0.024 na 0.25 0.66 N/A 0.55 22 0.57 43.0 34 0.010 23 

CNG2 (Gentilly-2) 

HT # 13350 
0.010 0.021 0.41 0.54 N/A 0.41 21 0.62 44 33 0.026 41 

Qinshan (TQNPC) 

HT # RC577 
0.009 0.009 0.30 0.49 

0.0010
0.51 21.60 0.69 43.3 32.79 0.02 57 

Qinshan (TQNPC) 
HT # WL809 

0.016 0.010 0.26 0.48 
0.0005 

0.50 21.41 0.66 43.8 32.64 0.02 31 

*by combustion; others by 1CP; na- not analysed 
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2.2. Test Environments 

The composition of the electrolytes for the simulated neutral crevice environments for 
evaluating the corrosion susceptibility of the archived Alloy 800 SG tubing is listed in 
Table 2. It should be noted that the environments listed in Table 2 are overall 
compositions of the autoclave contents. Under the test conditions precipitations are 
possible. 

Table 2 
Summary of the Composition of Model Crevice Environments 

(Solution + Precipitations) 

ID Composition pHT

NC ("Neutral") 

0.15 M* Na2SO4
0.30 M NaCl 
0.05 M KC1 

0.15 M CaC12 

p13orc = 6.10; Pllneutral = 5.16 
pHisocc = 6.03; Pllneutral = 5.56 

2.3. Electrochemical Test Method Used 

Potentiodynamic polarization tests were used to determine the corrosion susceptibility of 
the archived Alloy 800 CANDU SG tubing materials. All electrochemical polarization 
tests were performed in static autoclaves using a typical three-electrode system. The 
schematic of the electrochemical cell and sample mounting for high-temperature 
electrochemical measurements is shown in Figure 2. 

Autoclave 

LininL 

Ag/AgCl/0.65MKCI 
reference electrode 

Sample holder 

Tube sample 

Pt counter electrode 

Purging tube 

 • 

Figure 2 A 3-Electrode System for Electrochemical Measurements 
in a Static Autoclave 

Page 6 of 22 

 

2.2. Test Environments 

The composition of the electrolytes for the simulated neutral crevice environments for 
evaluating the corrosion susceptibility of the archived Alloy 800 SG tubing is listed in 
Table 2.  It should be noted that the environments listed in Table 2 are overall 
compositions of the autoclave contents.  Under the test conditions precipitations are 
possible. 

Table 2 
Summary of the Composition of Model Crevice Environments 

(Solution + Precipitations) 

ID Composition pHT 

NC (“Neutral”) 

0.15 M* Na2SO4 
0.30 M NaCl 
0.05 M KCl 

0.15 M CaCl2 

pH300°C = 6.10;   pHneutral = 5.16 
pH150°C = 6.03;   pHneutral = 5.56 

 

2.3. Electrochemical Test Method Used 

Potentiodynamic polarization tests were used to determine the corrosion susceptibility of 
the archived Alloy 800 CANDU SG tubing materials.  All electrochemical polarization 
tests were performed in static autoclaves using a typical three-electrode system.  The 
schematic of the electrochemical cell and sample mounting for high-temperature 
electrochemical measurements is shown in Figure 2. 

Autoclave

Lining

Ag/AgCl/0.65MKCl
reference electrode

Sample holder

Tube sample

Pt counter electrode

Purging tube

 
Figure 2  A 3-Electrode System for Electrochemical Measurements 

in a Static Autoclave 
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An EG&G Model 263A/99 Potentiostat/Galvanostat with a floating/auxiliary input option 
was used for the potentiodynamic polarization tests in autoclave systems. The scan rate 
was fixed at the ASTM standard recommended rate of 0.167 mV/s [5]. All samples were 
tested under isothermal conditions. Internal Ag/AgC1/0.65 M KC1 high-temperature 
reference electrodes were used to make high-temperature electrochemical measurements. 
To minimize the solution IR drop (an voltage drop in the electrolyte), the Luggin capillary 
of the reference electrode was placed close to the sample surface 1 mm). All potentials 
reported were converted to the standard hydrogen electrode scale (SHE) ([6],[7]). 

The samples for electrochemical tests were 10 mm-long segments cut from archived 
Alloy 800 tubing. To minimize the effect of differences in as-received surface conditions 
on corrosion susceptibility, the external surfaces of all tested tubing were finished by 
grinding with 600-grit silicon carbide paper and ultrasonically cleaned first with acetone, 
and then with ethanol before the tests. Tests were repeated until duplicate results were 
obtained. 

3. EXPERIMENTAL RESULTS 

3.1. Metallography Examination Results 

Data associated with the microstructure, micro hardness measurements, and grain size, an 
average of a lognormal or normal distribution were collected to assess the tube materials. 
The results are presented in Table 3 and shown in Figure 3. 

Table 3 
Vickers Hardness Measurement and Grain Size of the Alloy 800 Tubing Material 

Specimen I.D Direction Vim Range Vim Average 
Grain Size Range 

(11/n) 

Grain Size Average 

(11/n) 

ASTM B163 - 
95 HRB 
213 Vim) 

- 
#5 or finer 

63.51.tm ) 
- 

Reference Alloy 800 
HT# 9043A 

Axial 151 to 163 157 14.8 to 18.4 16.8 

Transverse 143 to 168 156 18.1 to 22.8 19.6 

G2 NGS 
HT # 13350 

Axial 144.3 to 153.0 149.3 13.46 to 15.38 14.42 

Transverse 160.3 to 186.6 175.6 8.71 to 11.96 10.33 

DNGS 
D4 SG1 R49C61 

Axial 154.3 to 174.7 162.3 7.79 to 9.57 8.77 

Transverse 192.8 to 232.3 213.6 9.75 to 12.05 10.90 

PLGS 
- 

Axial 171.0 to 173.0 172.2 5.38 to 7.94 6.66 

Transverse 166.4 to 180.6 172.4 6.38 to 7.36 6.87 

TQNPC 
HT # WL809 

Axial 159.0 to 160.8 159.9 8.61 to 11.05 9.83 

Transverse 172.2 to 180.4 177.0 8.64 to 12.76 10.70 

BNGS 
HT # 507937 

Axial 140.2 to 149.9 144.8 8.26 to 9.56 8.91 

Transverse 145.2 to 150.7 148.1 9.79 to 12.49 11.14 
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Figure 3 Microstructure of the Materials taken from the Cross-Section of the 
Alloy 800 Tubes 

The microhardness values obtained from the archived SG tubing are within the expected 
range for this material. The values for the commercial Alloy 800 were slightly lower 
than for the removed SG tube materials. The hardness value is presented in Table 3. It 
should be noted that the hardness of the removed DNGS tubing R49C61 is slightly 
exceeded the standard and the hardness values obtained for the reference nuclear grade 
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Alloy 800 Tubes 

The microhardness values obtained from the archived SG tubing are within the expected 
range for this material.  The values for the commercial Alloy 800 were slightly lower 
than for the removed SG tube materials.  The hardness value is presented in Table 3.  It 
should be noted that the hardness of the removed DNGS tubing R49C61 is slightly 
exceeded the standard and the hardness values obtained for the reference nuclear grade 
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Alloy 800 were slightly below the hardness for most of the SG materials from the CANDU 
stations. The average grain size, measured for the archived SG tube materials, ranged from 
6.7 to 14.4 gm. The grain size of the reference nuclear grade Alloy 800 material ranged 
from 14.8 to 22.8 pm, notably larger than the archived tubes from the stations. 

3.2. Electrochemical Test Results 

Electrochemical potentiodynamic polarization tests were performed for all SG tubing 
materials at 150°C and 300°C in a neutral crevice solution. 

Figure 4 shows the experimental results of the reference Alloy 800 tubing and a sample 
prepared from the removed Darlington tubing D4 SG1 R49C61 that had a 5% through-wall 
pit. It is seen that the ex-service tubing has a narrow passive range and lower pitting 
potential. The ex-service tubing also shows an active peak at -540 mV. The passive 
current density of the Darlington tubing is also higher than the reference tubing. 

0.200 
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-0.200 
ra 
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-0.800 

-1.000 
10-8

Standard nuclear grade tube #2 

- Standard nuclear grade tube #1 
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Neutral crevice chemistry 
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• " 

• 

D4 SG1 R49C61 # 1 

D4 SG1 R49C61 #2 

10-7 10-6 10-5 i0-4 10-

Current density (A/cm2) 

Figure 4 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing and the Darlington Tubing D4 SG1 R49C61 Obtained 

at 300°C in Neutral Crevice Chemistry 
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Reference Alloy 800 Tubing and the Darlington Tubing D4 SG1 R49C61 Obtained 
at 300°C in Neutral Crevice Chemistry 
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Figure 5 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the 
Archived G2 NGS Tubing Obtained at 300°C in Neutral Crevice Chemistry 
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Figure 5 shows the potentiodynamic polarization curves of the archived SG tubing from 
CNG2 obtained at 300°C in the neutral crevice chemistry compared with the curves of 
the reference nuclear grade Alloy 800 tubing and the PLGS tubing D4SG1 R49C61 
obtained under the same conditions. From the figure, it is seen that the archived CNG2 
tubing has higher pitting potential than the Darlington tube D4SG1 R49C61, where the 
pitting potential is slightly lower than the reference Alloy 800 tubing. It is also very clear 
that CNG2 archived SG tubing did not show any active peak in the polarization curve. It 
also has lower passive current density than the Darlington tube D4SG1 R49C61 tube has. 

Figure 6 presented the superimposed polarization curves of the archived Alloy 800 tubing 
from PLGS, the reference Alloy 800 tubing and the Darlington tubing D4 SG1 R49C61 
obtained at 300°C in neutral crevice chemistry. From the figure it is seen that the pitting 
potential of the archived tubing from PLGS is very close to the pitting potential of the 
reference Alloy 800 tubing. The polarization curves of the archived PLGS tubing also 
have no active peak and have a lower passive current density than that of Darlington 
tubing D4 SG1 R49C61. 

Figure 7 shows the potentiodynamic polarization curves of the archived SG tubing 
(HT# 507937) from BNGS obtained at the same test conditions as those shown in the 
previous figures. The polarization curves are compared with those of the reference 
nuclear grade Alloy 800 tubing and the PLGS tubing D4SG1 R49C61. The data suggest 
that the archived BNGS tubing is close to the pitting potential of the reference Alloy 800 
tubing and is about 80 mV higher than that of the Darlington tube D4SG1 R49C61. The 
polarization curves of the BNGS archived SG tubing also have lower passive current 
density than that of the Darlington D4SG1 R49C61 tubing and show no active peak. 
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obtained under the same conditions.  From the figure, it is seen that the archived CNG2 
tubing has higher pitting potential than the Darlington tube D4SG1 R49C61, where the 
pitting potential is slightly lower than the reference Alloy 800 tubing.  It is also very clear 
that CNG2 archived SG tubing did not show any active peak in the polarization curve.  It 
also has lower passive current density than the Darlington tube D4SG1 R49C61 tube has. 
Figure 6 presented the superimposed polarization curves of the archived Alloy 800 tubing 
from PLGS, the reference Alloy 800 tubing and the Darlington tubing D4 SG1 R49C61 
obtained at 300°C in neutral crevice chemistry.  From the figure it is seen that the pitting 
potential of the archived tubing from PLGS is very close to the pitting potential of the 
reference Alloy 800 tubing.  The polarization curves of the archived PLGS tubing also 
have no active peak and have a lower passive current density than that of Darlington 
tubing D4 SG1 R49C61. 
Figure 7 shows the potentiodynamic polarization curves of the archived SG tubing 
(HT# 507937) from BNGS obtained at the same test conditions as those shown in the 
previous figures.  The polarization curves are compared with those of the reference 
nuclear grade Alloy 800 tubing and the PLGS tubing D4SG1 R49C61.  The data suggest 
that the archived BNGS tubing is close to the pitting potential of the reference Alloy 800 
tubing and is about 80 mV higher than that of the Darlington tube D4SG1 R49C61.  The 
polarization curves of the BNGS archived SG tubing also have lower passive current 
density than that of the Darlington D4SG1 R49C61 tubing and show no active peak. 
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Figure 8 shows the data from another archived SG tubing (HT# 507731) from BNGS 
obtained at the same test conditions as those shown in the previous Figure 7. The data show 
that the pitting potential of the archived BNGS tubing (HT# 507731) is also close to the 
pitting potential of the reference Alloy 800 tubing and is about 50 mV higher than that of the 
Darlington tube D4SG1 R49C61. Again the polarization curves of the BNGS archived SG 
tubing (HT# 507731) have lower passive current density than that of the Darlington 
D4SG1 R49C61 tubing and show no significant active peak. 
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Figure 6 Superimposed Potentiodynamic Polarization Curves of the Reference 
Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived Alloy 800 

Tubing from PLGS obtained at 300°C in Neutral Crevice Chemistry 
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BNGS Tubing (HT# 507937) obtained at 300°C in Neutral Crevice Chemistry 
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Figure 7  Comparisons between the Potentiodynamic Polarization Curves of the 

Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 
BNGS Tubing (HT# 507937) obtained at 300°C in Neutral Crevice Chemistry 
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Figure 9 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 

TQNPC Tubing (HT# WL 809) obtained At 300°C in Neutral Crevice Chemistry 
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Figure 9  Comparisons between the Potentiodynamic Polarization Curves of the 
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TQNPC Tubing (HT# WL 809) obtained At 300°C in Neutral Crevice Chemistry 
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Figure 10 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 

TQNPC Tubing (HT# RC577) obtained at 300°C in Neutral Crevice Chemistry 
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Figure 9 presents the comparisons of the polarization data between the archived TQNPC 
tubing (HT# WL908), the reference Alloy 800 tubing and the Darlington D4SG1 R49C61 
tubing obtained in the neutral crevice chemistry at 300°C. The pitting potential of the 
archived TQNPC tubing (HT# WL908) is higher than the Darlington removed tubing 
D4SG1 R49C61. However, there are current peaks observed in some of the polarization 
curves at about —460 mV and —420 mV. 

Figure 10 presents the comparisons of the polarization data between another archived TQNPC 
tubing (HT# RC577), the reference Alloy 800 tubing and the Darlington D4SG1 R49C61 
tubing obtained under the same test conditions. The pitting potential of this archived TQNPC 
tubing is close to the Darlington removed tubing D4SG1 R49C61 and lower than the 
reference nuclear grade Alloy 800 tubing. Distinctive current peak is observed in the 
polarization curves of TQNPC archived tubing between —420 mV and —380 mV. 

SG shutdown and startup transients may introduce hazardous conditions for the tube 
integrity. Therefore, it is important to assess the corrosion susceptibility of the SG tubing 
materials in crevice chemistry at an intermediate temperature. In previous work to define 
the safe ECP/pH zone for SG shutdown and startup, 150°C was selected as a 
representative temperature [3]. In this work, the corrosion susceptibility of the archived 
CANDU SG tubing was also assessed at 150°C in the neutral crevice chemistry 
conditions. Figure 11 through Figure 17 compare the potentiodynamic polarization curves 
between the reference nuclear grade Alloy 800 tubing, the Darlington ex-service 
D4SG1 R49C61 tubing and the archived CANDU SG tubing, respectively. 
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D4SG1 R49C61.  However, there are current peaks observed in some of the polarization 
curves at about –460 mV and –420 mV. 
Figure 10 presents the comparisons of the polarization data between another archived TQNPC 
tubing (HT# RC577), the reference Alloy 800 tubing and the Darlington D4SG1 R49C61 
tubing obtained under the same test conditions.  The pitting potential of this archived TQNPC 
tubing is close to the Darlington removed tubing D4SG1 R49C61 and lower than the 
reference nuclear grade Alloy 800 tubing.  Distinctive current peak is observed in the 
polarization curves of TQNPC archived tubing between –420 mV and –380 mV. 
SG shutdown and startup transients may introduce hazardous conditions for the tube 
integrity.  Therefore, it is important to assess the corrosion susceptibility of the SG tubing 
materials in crevice chemistry at an intermediate temperature.  In previous work to define 
the safe ECP/pH zone for SG shutdown and startup, 150°C was selected as a 
representative temperature [3].  In this work, the corrosion susceptibility of the archived 
CANDU SG tubing was also assessed at 150°C in the neutral crevice chemistry 
conditions.  Figure 11 through Figure 17 compare the potentiodynamic polarization curves 
between the reference nuclear grade Alloy 800 tubing, the Darlington ex-service 
D4SG1 R49C61 tubing and the archived CANDU SG tubing, respectively. 
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Figure 11 Superimposed Potentiodynamic Polarization Curves of the Reference 
Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 obtained at 150°C in Neutral 

Crevice Chemistry 
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Figure 12 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 

G2 NGS Tubing obtained at 150°C in Neutral Crevice Chemistry 
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Figure 12  Comparisons between the Potentiodynamic Polarization Curves of the 

Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 
G2 NGS Tubing obtained at 150°C in Neutral Crevice Chemistry 
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Figure 13 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 

PLGS Tubing obtained at 150°C in Neutral Crevice Chemistry 

Standard nuclear grade tube #1 

PLGS # 2 

PLGS # 1 

D4 SG1 R49C61 #2 

- Neutral crevice chemistry 

- 150° C 

0.200 

0.000 

-0.200 

6 -0.400 

-0.600 

-0.800 

-1.000 
10-8 10-2 10-6 10-5 10-4 10-3

Current density (A/cm2) 

Figure 14 Superimposed Potentiodynamic Polarization Curves of the Reference 
Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived BNGS 

Tubing (HT# 507937) obtained at 150°C in Neutral Crevice Chemistry 
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Figure 14  Superimposed Potentiodynamic Polarization Curves of the Reference 

Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived BNGS 
Tubing (HT# 507937) obtained at 150°C in Neutral Crevice Chemistry 
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Figure 15 Superimposed Potentiodynamic Polarization Curves of the Reference 
Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived BNGS 

Tubing (HT# 507731) obtained at 150°C in Neutral Crevice Chemistry 
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Figure 16 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 

TQNPC Tubing (HT# WL809) obtained at 150°C in Neutral Crevice Chemistry 
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Figure 16  Comparisons between the Potentiodynamic Polarization Curves of the 

Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 
TQNPC Tubing (HT# WL809) obtained at 150°C in Neutral Crevice Chemistry 
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Figure 17 Comparisons between the Potentiodynamic Polarization Curves of the 
Reference Alloy 800 Tubing, the Darlington Tubing D4 SG1 R49C61 and the Archived 

TQNPC Tubing (HT# RC577) obtained at 150°C in Neutral Crevice Chemistry 

These figures show that there is not a significant difference in pitting potential and 
passive current densities between these tube alloys at 150°C under the test conditions. 
Only the Darlington ex-service tubing D4SG1 R49C61 shows a distinctive active peak in 
the potentiodynamic polarization curve. From the polarization curves of archived tubing, 
there is little indication of any active peak. The archived SG tubing from CANDU SGs 
appears to be self-passive at 150°C. The significance of this active peak to the 
crevice/underdeposit corrosion initiation of the SG tubing will be discussed in the next 
section. For the convenience of comparisons the amplitude of the active peak is 
compared in FIGURE 18 and the salient parameters of the potentiodynamic polarization 
curves obtained at 300°C and 150°C in neutral crevice chemistry are listed in Table 4 and 
Table 5, respectively. 
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Figure 18 The Amplitude of the Active Peak of the Polarization Curves of different 
Alloy 800 SG Tubing obtained at 150°C in Neutral Crevice Solution 
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there is little indication of any active peak.  The archived SG tubing from CANDU SGs 
appears to be self-passive at 150°C.  The significance of this active peak to the 
crevice/underdeposit corrosion initiation of the SG tubing will be discussed in the next 
section.  For the convenience of comparisons the amplitude of the active peak is 
compared in FIGURE 18 and the salient parameters of the potentiodynamic polarization 
curves obtained at 300°C and 150°C in neutral crevice chemistry are listed in Table 4 and 
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Figure 18  The Amplitude of the Active Peak of the Polarization Curves of different 
Alloy 800 SG Tubing obtained at 150°C in Neutral Crevice Solution 
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Table 4 
The Average Electrochemical Parameters from the Potentiodynamic Polarization 
Curves of Alloy 800 SG Tubes obtained at 300°C in Neutral Crevice Chemistry 

SG Tubing ID 
Ecorr

(mV vs. 
SHE) 

EPP 
(mV vs. 

SHE) 

EP 
(mV vs. 

SHE) 

Eprotec

(mV vs. SHE) 
'Critical 

(µA/cm) 
'Passive 

(.tA/cm2 ) 

Reference Alloy 800 
HT # 9043A 

-625 -* -170 -355 27* 24 

Darlington 
D4SG1 R49C61 

-580 -540 -240 -300 83 42 

Archived CNG2 
HT # 13350 

-625 -* -225 -315 33* 20 

Archived PLGS 
Tubing 

-650 -* -210 -310 36* 23 

Archived BNGS 
HT # 507937 

-610 -* -190 -330 33* 33 

Archived BNGS 
HT # 507731 

-630 -* -190 -370 28* 20 

Archived TQNPC 
HT # WL809 

-610 -420 to -520 -170 -360 32 to 78 24 

Archived TQNPC 
HT # RC577 

-610 -420 to -380 -220 to -260 -460 to -320 70 to 210 28 

* The alloy is self-passive. No significant active peak is observed. 

Table 5 
The Average Electrochemical Parameters from the Potentiodynamic Polarization 
Curves of Alloy 800 SG Tubes obtained at 150°C in Neutral Crevice Chemistry 

SG Tubing ID 

Ecorr
(MV vs. 

SHE) 

EPP 
(mV vs. 

SHE) 

EP 
(mV vs. 

SHE) 

Eprotec

(mV vs. SHE) 
'Critical 

2 (µA/cm) 
'Passive 

2 (.tA/cm) 

Reference Alloy 800 
HT # 9043A 

-560 -420* 60 -270 5.2* 0.9 

Darlington 
D4SG1 R49C61 

-500 -380 -5 -210 15 1.8 

Archived CNG2 
HT # 13350 

-460 -375* -5 -215 3.3* 1.1 

Archived PLGS 
Tubing 

-530 -410* 10 -215 6.0* 2.2 

Archived BNGS 
HT # 507937 

-460 -375* 50 -195 6.2* 2.0 

Archived BNGS 
HT # 507731 

-490 -400* 10 -210 4.3* 2.0 

Archived TQNPC 
HT # WL809 

-515 -400* -20 -235 4.3* 1.8 

Archived TQNPC 
HT # RC577 

-485 -385* -10 -235 3.6* 1.9 

* The alloy is self-passive. No significant active peak could be observed. 
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(mV vs. 
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Epp  

(mV vs. 
SHE) 

Ep  

(mV vs. 
SHE) 

EProtec 

(mV vs. SHE)
ICritical 

(μA/cm2) 
IPassive 

(μA/cm2) 

Reference Alloy 800 
HT # 9043A -560 -420* 60 -270 5.2* 0.9 

Darlington  
D4SG1 R49C61 -500 -380 -5 -210 15 1.8 

Archived CNG2 
HT # 13350 -460 -375* -5 -215 3.3* 1.1 

Archived PLGS 
Tubing -530 -410* 10 -215 6.0* 2.2 

Archived BNGS  
HT # 507937 -460 -375* 50 -195 6.2* 2.0 

Archived BNGS  
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Archived TQNPC 
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Archived TQNPC 
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* The alloy is self-passive. No significant active peak could be observed.  
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The technical terms used in the table are defined as follows: 

Ecorr: the potential in the polarization curve where the total current density contributed 
by the anodic reactions and cathodic reactions equals zero, called the corrosion potential. 
(It is also called the ECP). 

Epp: the potential at which the anodic peak reaches its maximum current density (icritical) 
before decreasing as passive behaviour starts, called the primary passivation potential. 

the amplitude of the active peak, called the critical current density. 

iPassive: the current density at the passive state, called the passive current density. 

Eb : a potential called the pitting potential. Aggressive halide anions such as chloride 
ions can cause the passive films to breakdown in the passive potential region. The 
breakdown of the passive film is characterized by a sudden increase in the current density 
at this potential. 

Epmtec: the protection potential. In a cyclic polarization, when the current density reaches 
a pre-determined threshold, the applied potential is reversed. Once pits initiate, they will 
grow even after the potential decreases to values below the pitting potential. Only when 
the potential decreases below the protection potential does pitting stop. This change is 
indicated by the reversing curve crossing the forward scan as it returns to lower 
potentials. This potential is sometimes used to verify the repassivation ability of an alloy. 
However, this potential is determined by the local chemistry in a developing pit, which is 
controlled by many factors, such as the geometry of the pit and whether it is covered or 
opened, etc. It should be used cautiously to verify the localized corrosion susceptibility 
of passive metals. 

4. DISCUSSION 

The potentiodynamic polarization data presented in Section 3 revealed that the 
electrochemical behaviours of the archived CANDU SG alloys under the test conditions 
are similar to that of the reference nuclear grade Alloy 800. However, the 
electrochemical behaviour of the ex-service Darlington tube D4SG1 49C61 in the neutral 
crevice chemistry differs from other Alloy 800 SG tubing surveyed. At 300°C, the 
Darlington tubing D4SG1 R49C61 has lower pitting potential and higher passive current 
density than the other tested tubing. The Darlington tubing D4SG1 R49C61 also has an 
active peak between the free corrosion potential Eco„ and the passive region. This trend 
is even more clear and significant 150°C. An active peak is only seen in the polarization 
curve of Darlington tubing D4SG1 R49C61 and is not seen in the polarization curves of 
the other surveyed tubing. The conditions and the root cause leading to the Alloy 800 SG 
tube degradation at DNGS are under investigation in a separate COG work package 
(COG 40817). This active peak is a sign that indicates the alloy may be susceptible to 
crevice/underdeposit corrosion. This can be explained by the IR drop induced crevice 
corrosion mechanism proposed by H. Pickering ([8],[9],[10],[11]). This mechanism 
suggests that the IR drop that exists along a geometrically restricted crevice is responsible 
for crevice corrosion. In contrast to the conventional views of localized corrosion, in 
which the chemistry compositional change inside the cavity is regarded as the most 
significant consideration, the IR drop mechanism considers the potential drop between 
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the surface inside the crevice and the surface outside the crevice to be the determining 
parameter that is responsible for depassivation and accelerated dissolution inside the 
crevice. This IR drop "shifts" the potential inside the crevice towards the active region, 
while the surface outside the crevice remains in the passive region. 

One of the successes of the IR drop theory is its rationalization for the shape of the attack 
inside the crevice [11]. Figure 19 schematically illustrates the interpretation of the attack 
shape, based on the IR drop theory. The IR drop theory also explained vividly that an 
alloy, which is self-passive (i.e., no active peak), is unlikely to be susceptible to 
crevice/underdeposit corrosion. 

Passive 
Region 

Active 
Region 

Cathodic 
Region 

Log I 

Figure 19 Schematic Illustration of the IR Drop Mechanism of Crevice Corrosion 

All Alloy 800 SG tubes studied in this work are qualified nuclear grade SG tubing 
according to the current nuclear SG tube specifications except the aluminum concentration 
of the DNGS tubing (Unit 2 SG 4 R52C60) is lower that ASTM standard specified value. 
So far there is no strong evidence suggesting that the difference between the grain size 
hardness and elemental composition for any of the SG tubing investigated could affect the 
corrosion susceptibility of the alloy. However, one fact should be noted that the Alloy 800 
tubing removed from Darlington SG had a history of more than a decade of service. 
Whether the difference in the electrochemical corrosion behaviour between the archived 
Alloy 800 tubing and the ex-service Darlington Alloy 800 tubing was due to the aging of 
the materials under the SG operating conditions requires further investigation. The anodic 
peaks observed in polarization curves obtained from TQNPC archived tubing at 300°C is 
not resulting from aging. The root cause of these active peaks and their implication to SG 
tube integrity is unknown. 

5. CONCLUSIONS 

Based on the survey of the corrosion susceptibility of the archived Alloy 800 SG tubing 
from different CANDU stations, the following conclusions could be made: 

1. All archived CANDU Alloy 800 SG tubing and the reference nuclear grade Alloy 800 
tubing, except the TQNPC tubing, show similar electrochemical corrosion behaviour 
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Figure 19  Schematic Illustration of the IR Drop Mechanism of Crevice Corrosion 
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at 300°C in a neutral crevice chemistry solution, which is the most probable 
environment SG tubing will encounter during CANDU operation. 

2. The electrochemical polarization curve of the Darlington removed tubing 
D4SG1 C49R61, which had in-service underdeposit corrosion, has a lower pitting 
potential and a higher passive current density than most of the archived Alloy 800 
tubing tested at 300°C under neutral crevice chemistry conditions. The TQNPC 
archived tubing is an exception among the archived CANDU SG tubes tested. It 
shows an active peak in the polarization curve. This phenomenon is more apparent 
for TQNPC tubing heat # RC577, which not only has a distinctive active peak in the 
polarization curve between — 420 mV and —380 mV but also has a lower pitting 
potential than most of other archived Alloy 800 tubing. 

3. At 150°C under the same neutral crevice chemistry conditions, the potentiodynamic 
polarization curve of the ex-service tubing shows an active peak, which is a sign of 
propensity of crevice/underdeposit corrosion. This active peak was not observed in 
any of the potentiodynamic polarization curves of the archived CANDU Alloy 800 
SG tubing, including the TQNPC tubing, indicating that all archived tubing tested 
were less susceptible to the underdeposit corrosion than the ex-service Darlington 
tubing under startup conditions. 
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