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1. INTRODUCTION 

There are two general approaches for modeling fluidelastic instability: (i) truly analytical models 
requiring little or no experimental fluid force data; (ii) analyses requiring experimental fluid force 
data which may be either the fully unsteady data or steady time averaged data (Price & Paldoussis 
1986). The first category, because of the complexity of the physics, cannot be adapted and the 
analyses using unsteady data requires a vast amount of experimental work while the quasi-static 
theory can provide a fairly acceptable solution with a reasonable number of experiments. 

The quasi-static theory is widely used in the study of aeroelasticity and flow induced vibrations. 
This theory uses static fluid force coefficients measured on a stationary body to estimate motion 
induced fluid forces on an oscillating body, supposing that at any instant in time the body is 
moving with a constant velocity equal to the actual instantaneous value of the real velocity. It is 
known that this assumption is only valid for high values of the reduced velocity (Granger & 
Paldoussis 1996). 

For a tube in a tube bundle the reduced velocity is not very high (in our case it is of the order of 
one). So the pure quasi-static assumption cannot lead to a realistic solution and it is not even 
possible to predict the fluidelastic instability for a single flexible cylinder for two-phase flow and 
air flow (Price & Paldoussis 1983) although the fluid force coefficient variations show that it is 
possible to predict fluidelastic instability in water flow (with pure quasi-static assumption). 

The quasi-static model can be improved if the effect of flow retardation (Simpson and Flower 
1977) or the effect of fluid inertia as interpreted by Lever and Weaver (1982) is taken into 
account. Using the quasi-static theory along with time delay enables one to predict instability 
both in lift and drag directions. The simplicity of using this approach along with it's capability to 
give qualitative agreement with experiments makes it a good candidate for the prediction of 
fluidelastic instability. It is also possible to go further and use the more elaborated quasi-unsteady 
method (Granger & Paldoussis 1996). 

The main objectives of this study are: (i) explicit determination of the fluid force coefficients 
based on measured data in two-phase (air-water) flow; (ii) investigation of the physics of 
fluidelastic instability using the force coefficients in single phase and two-phase flow;(iii) to 
provide a comprehensive data base for future work on the prediction of fluidelastic instability 
using quasi-steady or quasi-unsteady approaches; (iv) provide fluidelastic instability information 
for modeling and tube wear prediction. 
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2. THEORETICAL BACKGROUND 

The early eighties saw a proliferation of theoretical models for the prediction of fluidelastic 
instability. These models, developed for single phase flows, are primarily identified by their 
degree of complexity and level of empiricism. The group of "wavy-wall" models developed by 
Weaver and co-workers (1982, 1993) at McMaster University are probably the most analytical, 
requiring minimal empirical input. At the other extreme is the general unsteady model developed 
by Chen (1983) at Argonne National Laboratory. Chen's model is probably the most accurate, but 
also the most 'labor intensive' requiring a large number of coefficients to be measured in 
complex dynamic tests. The model has, however, been credited with clarifying the basic 
mechanisms underlying fluidelastic instability. 

The group of quasi-static/quasi-steady models developed by Price and Paidoussis (1983, 1984, 
and 1986) at McGill University presents a compromise by introducing a simplified analytical 
model for the velocity effects. For this reason only displacement dependent forces need to be 
determined experimentally; significantly reducing the effort required to obtain empirical inputs. 
The work reported here is part of a research program aimed at investigating the feasibility of 
adapting existing single phase flow models to the more complex two-phase flow problem. The 
quasi-steady approach has been selected in view of its moderate complexity while still remaining 
reasonably realistic. To highlight the role played by the fluid forces to be presented here, the basic 
quasi-static model for the group of cylinders subjected to cross-flow in Figure 1 is briefly 
demonstrated. 

This group of cylinders may be part of a much larger array. For simplicity, assume that the array 
is constrained such that only cylinders '1' and '2' are free to vibrate, and only in the directions 
xi and y2 , respectively; thus a two-degree-of-freedom system. The governing equations of 
motion, when the tubes are modeled as 1 d.o.f. oscillators, are 

mil +c  — fi(Xi,X1,11,Y2,.Y2,..il2,U) 
Mil2 ± CY2 ± kY2 = g2 (X1' x1' 11 0/2 , ji2 , Y2 , U). 

(1) 

The quasi-static assumption postulates that the fluid forces ( f , g2 ) may be simplified to first 
order functions of positions only, thus 

and 

f0= 
1 2 acni acD1 ) 
— pU 1D CDio ± - X1 ± , y2 
2 oxi 0.Y2 

xc c ) 1 
g2 (.) = —pU21D CL20 _Fa

2 ax 1 +aay2 
L2 

" v2 i  

(2) 

(3) 

The quasi-static assumption thus 'ignores' the velocity dependence in the fluid forces. To correct 
for this, as well as account for the variable angle of attack during vibration, the more general 
quasi-steady (Price & Pa1doussis, 1983) and quasi-unsteady (Granger & Pa1doussis, 1996) models 
have been developed. For purposes of the present demonstration, equations (2) and (3) will be 
retained. Introducing these equations into the equations of motion (1) yields 
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[Mli+[C]i+[Kiff =Po (4) 

where 

and 

Fin 01 rc 01 k,, 
[M] = [ 1 [c] = [0 cl _I, [KJ= F 1 0 rid' Lk . 

k121

k22] 

k„ = k — —1 pU21D acm x„ k,2 = 1 pU21D acm y2, 
2 axi " 2 aY2 

k21 = —I pU21D acL2 IDx„ k 22 = k 
1 pu_2 c2 a  

y2. 
2 axi " 2 aye

A stability analysis of equation (4) (Paidoussis and Price, 1988) shows that the critical fluidelastic 
instability velocity, U c , for the simplified model of Figure 1 is given by 

(5) 

1/2 ic) 
L/c _K(  m(5  _ 

1

[  _ 1 2567c2  11/4

fD pD2 ' (kil — kn)+ 4k12k21 _I • 

(6) 

(7) 

Equation (7) reveals the well known Connors equation relating the critical velocity to the mass-
damping parameter. More importantly, it is demonstrated that the Connors constant K depends 
closely on the fluid force (stability) derivatives of equation (6). The Connors constant is 
extremely important since current nuclear steam generator design guidelines depend on 
knowledge of this 'constant'. 

The Connors constant has also been employed in non-linear dynamics computer codes used to 
estimate tube wear during fluidelastic instability. The constant is employed in a form of 'reverse 
engineering' to estimate the energy generated by the fluidelastic instability mechanism. In 
essence, the exercise replaces the fluid forces derivatives in equation (7) by the single 
constant K . It is clear that this is an oversimplification of the physics of the problem — raising 
doubts about the validity of the estimated energy. A valid estimate of the energy generation 
mechanism requires direct numerical simulation of equation (4). It is therefore evident that the 
fluid forces are needed for such an analysis. 

The foregoing brief exposé is the background surrounding the work reported here. The primary 
goal of the work is therefore to determine the fluid force derivatives that could be employed in a 
stability analysis as done in equations (4-7), and also in a non-linear analysis for the estimation 
tube wear rates under instability conditions. 

3. EXPERIMENTAL METHOD 

3.1 Test Apparatus 
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The air-water two-phase flow loop of the Fluid-Structure Interactions Laboratory at Ecole 
Polytechnique de Montreal was used for the experimental measurements. The loop comprises a 
25 1/s variable speed pump, a magnetic flow meter, a 2500 1 tank, a 250 1/s and compressed air 
supply system and connecting piping as shown in Figure 2. 

The compressed air was injected below a suitably designed mixer to homogenize and distribute 
the two-phase mixture uniformly below the test-section. The air flow was measured with orifice 
plates connected to a differential pressure transducer and electronic readout system. The loop was 
operated at room temperature and the pressure in the test- section was slightly above atmospheric. 
The test-section, which has an essentially rectangular cross section (99 x 191 mm), is shown in 
Figure 3. It consists of three columns of 38 mm diameter cylinders flanked on either side by half 
cylinder columns to simulate essentially the flow path in a large array of cylinders in a rotated 
triangular configuration. The pitch-to-diameter ratio, PID, was 1.5, corresponding to an inter-
cylinder gap of 19 mm. To measure the quasi-static fluid forces, the following key components 
were designed and fabricated: 

(i) Force balance (dynamometer), the force measurement system for the primary 
measurement tube; 

(ii) X-Y traverse mechanism for displacement and positioning of the primary 
measurement tube; 

(iii) Strain-gauge instrumented cylinders for the measurement of cross-coupling forces 
between the primary cylinder and its neighbors. 

A schematic view of the miniature dynamometer, measuring 60 mm in height, is presented in 
Figure 4. The instrument consists of two pairs of thin beams mounted such that x — y cross-
coupling is essentially eliminated. Sealing the strain gauges on the beams proved to be a 
challenge. A photo of the actual system is shown in Figure 4(b). 

The primary test cylinder is mounted on the dynamometer enabling the measurement of fluid 
forces transverse to the cylinder axis. Figure 5 shows the dynamometer calibration curves. Figure 
5(a) shows that the two pairs of beams have nearly identical calibrations. Note also that cross 
coupling between the x- and y-directions is negligible. This is crucially important for the present 
tests due to the generally large difference between the lift and drag forces. Figure 5(b) shows the 
force deformation relationship when the calibration weight is placed either at the center (M) of 
the cylinder or the extremity (E) away from the force balance. In both case identical readings are 
obtained; thus force variations along the cylinder axis do not affect the force balance output. 

Figure 6 shows the traverse mechanism on which the dynamometer is mounted. Electronic 
potentiometers measure the primary cylinder position within the tube bundle to within 0.3 mm. 

3.2 Test Procedure 

The group of 7 cylinders under investigation is shown in Figure 7. In this paper, the force 
measurements for only the cylinders labeled C, 1, 2, 3 & 4 are reported. The central cylinder 'C', 
which is mounted on the force balance, was displaced in the drag ( x —) and lift (y —) directions 
in increments of 0.028D within the area marked 'test area' in the figure. At each position, the 
flow was allowed to settle and then data acquisition was performed over a duration of one minute. 
The average lift and drag forces were then computed for each cylinder. 
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Test results are presented in the form of force coefficients CD and CL as functions of the 
dimensionless displacements i or ji of cylinder 'C'. The force coefficients, for a given cylinder, 
are calculated based on the pitch velocity Up as 

CD
F_  D2 

pU plD 

FL 
CL — ' 
- Z pU2p1D 

(8) 

Where FD and FL are the measured drag and lift forces, respectively. Table 1 shows the flow 
parameters varied during the tests. The void fraction /3 in table 1 is the superficial void fraction 
and U,, stands for homogeneous pitch flow velocity. 

Void fraction 
/6 (%) 

Flow velocity 
(UP MIS) 

0 1.84 
60 4.93 

80 4.96 

Table 1 Test Conditions 

5. RESULTS AND DISCUSSION 

5.1 Fluid force coefficients in two-phase flows 

In all the results that follow, the measured force coefficients are presented as functions of the 
central cylinder, 'C', dimensionless displacements i and ji . For cylinders 1-4, the force 
coefficients directly represent the coupling effect associated with motion of the central cylinder 
on its neighbors (Figure 7). 

The primary set of results to be presented is that for 80% homogeneous void fraction. This is the 
void fraction of interest within the U-bend region of nuclear steam generators. Figure 8 shows the 
measured lift and drag coefficients for cylinder 'C'. The lift coefficient remains essentially zero 
when the cylinder is displaced in the drag direction, Figure 8(a). This makes sense from 
symmetry considerations. The drag coefficient increases as the cylinder is displaced in the 
downstream direction, Figure 8(b). The slight increase may be associated with increased blockage 
of the flow channels downstream of the cylinder. 

The lift coefficient is strongly dependent on the transverse displacement ( .j,'). As seen in Figure 
8(b), the lift force is always directed toward the cylinder equilibrium (zero) position. The same 
behavior was found by Paidoussis et al., (1996) in air flow tests. The negative value of the 
derivative ac,clai?- was shown to directly determine instability in the quasi-steady model. For 
cylinder 'C', CD, only varies slightly with transverse displacement ji . In particular the 
derivative acpclaj,-1-..= 0 ; as would be expected from symmetry considerations. The effect of 
tube 'C' displacement on tube 1 lift ( CL, ) and drag ( C m  ) forces is shown in Figure 9. Tube 1 is 
located directly downstream of tube 'C'. Inline GO displacement of tube 'C' leaves CL, 
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unaffected; CD, shows a decreasing trend as the cylinder falls in the wake of cylinder 'C'. 
Transverse displacement (y) has a strong effect on the cylinder 1 lift coefficient, CL, , Figure 
9(b). 

The displacement of cylinder 'C' has the strongest effect on tube 'C' itself, and tube 1 
immediately downstream where CL varies significantly with (y) in both cases. As seen in 
figures 10 and 11 cylinders 2 and 3 in the neighbouring column show less sensitivity to tube 'C' 
displacements. The lift coefficients of cylinders 2 and 3 are essentially unchanged in Figures 
10(a) and 11(a) for the displacement of tube 'C' in x-direction. The tube 2 and 3 drag coefficients 
show an increasing trend with GO for both cylinders. Interestingly, CD2 increases as cylinder 'C' 
approaches cylinder 2 in the traverse direction, while CD3 is insensitive to .2 displacements. 

Figure 12 shows the results for tube 4, located directly upstream of tube 'C'. The displacements 
of tube 'C' only has a measurable effect on the drag coefficient CD4 when cylinder 'C' is 
displaced parallel to the flow direction, Figure 12(c). 

Tests at 60% superficial void fraction yielded force coefficient variations remarkably close to 
those measured for 80% void fraction above. Figure 13 shows a comparison of the force 
coefficients for cylinder 'C' at these two superficial void fractions. The lift coefficient ( CL, ) 
variation is practically identical at the two void fractions. The equality of the derivatives 

acLcIa5? indicates that the displacement ji has the same effect on stability in both cases. The 
drag coefficient values are slightly lower at 60% void fraction. 

A comparison of tube 1 force coefficients for the two void fractions is shown in figure 14. In this 
case the force coefficients are even closer. Although not shown here, the force coefficients for 
cylinders 2-4 show similar characteristics. The drag coefficient remains higher at 80% void 
fraction. 

5.2 Comparison with single phase flow 
Fluid forces have also been measured in water flow ( = 0% ). The results for the primary 
cylinder 'C' are presented in Figure 15. The most distinct difference is in the variation of CL, 
with the traverse displacement ji . While the steady lift force is directed towards the cylinder 
equilibrium position in the high void fraction two-phase flow case, it is directed in the opposite 
direction for water flow, Figure 15(b). The lift coefficient variation previously presented in air 
flow by Pa1doussis et al., (1996) is also shown. The derivative ac,claj, varies continuously from 
a positive value at 0% void fraction to a large negative value at 100% void fraction. For the drag 
coefficient variation in Figure 15(d), it should be noted that CD, has a local maximum at ji =0 for 
water flow, but a minimum at 60% and 80% void fractions. 

5.3 Force coefficient derivatives 
In the stability analysis outlined in Section 2, it was demonstrated that for the quasi-steady theory, 
the derivatives ac,, /ai , a ci), /ai etc. are the necessary inputs to the model, see equations (4)-(7). 
These derivatives, at (z = 0 , y =0) are estimated from the data of figures 8-15, as well as other 
results not presented here for brevity. 

Table 2 shows the force coefficients CD , CL as well as the derivatives with respect to tube 'C' 
displacements. To determine the derivatives, a third order polynomial fit of the test data was 
performed. The derivative sought then corresponded to the coefficient of the linear term. 

For both void fraction values, ,3 = 60% , = 80%, the derivative ac,clai) is the most important; 
indicating that tube 'C' transverse displacement has the most influence on the tube 'C' fluid 
forces. The next largest influence is that on tube 1 immediately downstream again in the lift 
direction. This is followed by tube 2 affected in the drag direction. Figure 16 shows a visual 
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representation of the influence of tube 'C' on its neighbors for lift or drag direction 
displacements. The length and thickness of the arrows reflect the level of influence. Only the 
most significant effects are shown. 

The results for /3 = 80% and ig = 60% are closely similar, except for the significantly larger 
derivatives for acidai for ig = 80% superficial void fraction. Besides the effect the force field 
on itself, tube 'C's influence is felt by the tubes downstream. Tubes in the same column are also 
significantly affected even when located downstream of the moving tube. However it should be 
noted that the upstream tube 4 is affected in the drag direction, while the downstream tube 1 is 
influenced in lift direction. 

Figure 16 and Table 2 give useful insights into the stability behavior of the tube bundle. Test 
results reported by Violette et al.(2006) show that the orbital motion for a group of seven 
cylinders within a rigid bundle is as shown in Figure 17, for /3 = 80% .The tubes are 
axisymmetrically flexible. Cross-flow amplitudes are dominant, supporting the importance of the 
derivative ac„lai). In another test with a column of flexible tubes, it was found that instability 
occurred when tubes were flexible in the lift direction, but no instability occurred when tubes 
were flexible only in the drag direction. This may be expected from the weaker coupling in the 
drag direction as reflected by the derivatives acija . When an adjacent flexible column was 
added, instability did occur in the flow direction highlighting the importance of the role played by 
derivatives such as acidai . 

The natural continuation of this work involves quantitative stability analysis of the tube bundle 
employing the force derivatives of table 2. This is currently under way. 

6. Conclusions 

Lift and drag coefficients have been measured for a rotated-triangle tube bundle subjected to two-
phase flow. A centrally located tube was displaced in the cross-flow and inflow directions and 
forces coefficients measured on the tube itself as well as on four of the closest neighbors. The 
inter-tube couplings, represented by the derivatives acliai-i, ac / ax etc., were of primary 
interest. 

In comparison to single phase flow, inter-tube coupling was found to be weaker in two-phase 
flow. Tube displacement were found to mainly affect the group of tubes downstream of the 
displaced tube in the case of two-phase flow while for single phase flow, it was the group of 
upstream tubes that was most affected. Tubes in the same column were found to be strongly 
coupled in the cross-flow direction but generally less so in the inflow direction. 

The present results give added insight into recent stability tests in two-phase flow. For instance, 
the weak inflow coupling may explain why a single column of flexible tubes (within an otherwise 
rigid array) is unstable when free to vibrate in the cross-flow direction, but completely stable 
when only flexible in the inflow direction. 

Possibly the most important contribution of the present work is the data base of fluid force 
derivatives themselves. The derivatives are the inputs needed for a quantitative stability analysis 
of a tube bundle subjected to two-phase flow. Furthermore, the nonlinear forces may be employed 
in direct numerical simulations of post instability behaviour of tube bundles which is necessary 
for tube wear estimation. 
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8. Nomenclature 

c : Total damping (N.s/m) 
CD , C, : Drag and lift coefficient 

Fp , F L : Force in drag and lift directions(N) 

f : Frequency (Hz) 

k : Stiffness (N /m) 
m : Total mass (kg/m) 
P, D,1: Pitch , tube diameter and tube length(m) 
U : Mixture velocity 
U., Up , Uc : Free stream, pitch, critical pitch velocity (m/s) 

x , y : Tube position in drag and lift direction (m) 

, y : Non dimensional displacements in drag and lift direction( xID,yID) 

: Displacement, velocity and acceleration vector (m, m/s and m/s2) 

: Superficial void fraction 

: Logarithmic decrement 
p: Two-phase mixture density (kg/m3) 
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Vp(m/s)= 3.93 
,6 = 60% 

CD CL CD,i CL,i. CD,5-, CL,53

CENTRAL 0.44 0.01 0.11 0.01 0.02 -0.60 
TUBE1 0.48 -0.01 -0.10 0.00 -0.01 0.36 
TUBE2 0.43 -0.02 0.17 -0.05 -0.19 0.04 
TUBE3 0.54 0.00 0.09 0.00 0.04 0.06 
TUBE4 0.48 0.01 -0.07 0.11 0.15 0.02 

Vp(m/s)= 3.97 
ia = 80% 

CD CL CD,i CL,i CD,;, CL,53

CENTRAL 0.48 0.00 0.10 -0.01 -0.03 -0.58 
TUBE1 0.49 0.00 -0.13 0.04 0.02 0.32 
TUBE2 0.45 -0.03 0.15 -0.04 -0.21 0.05 
TUBE3 0.56 0.01 0.08 0.02 -0.04 -0.12 
TUBE4 0.51 -0.03 -0.25 0.06 0.13 0.04 

Vp(m/s)= 1.84 
ia = 0% 

CD CL CD,i CL,i CD,j, CL ,.p

CENTRAL 0.37 0.00 0.29 0.02 0.04 0.65 
TUBE1 0.42 0.02 0.01 -0.02 -0.02 -0.14 
TUBE2 0.40 0.00 0.07 0.06 0.12 -0.08 
TUBE3 0.40 -0.01 -0.22 0.14 -0.08 0.00 
TUBE4 0.41 0.00 0.16 0.01 -0.02 0.29 

Data extracted from Price, S. J., et al. (1988) 

Re=1.85x104
P/D=1.375 
06 = 100% 

CD CL CD,i CL,i CD,j, CL ,.p

CENTRAL 0.51 0 -0.39 0 0 -18.07 
TUBE1 - - -0.27 0 0 -0.98 
TUBE2 - 0.38 1.87 0.25 -1.98 
TUBE3 - - -2.63 0 -0.12 1.24 
TUBE4 - 0.28 0 0 -5.36 

Table 2 Force coefficients and their derivatives 

Vp(m/s)= 1.84 
,6 = 0% 

(no mixture) 

CD CL CD ,x CL ,x CD,j, CL ,Y

CENTRAL 0.58 0.00 0.34 0.07 0.01 0.27 

Table 3 Force coefficients and their derivatives (without mixture) 
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10. FIGURES 
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(b) 

Fig, 4(a): Test section schematic view of dynamometer and, (b) photo of dynamometer mounted on 
force balance. 
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Fig. 5(a): Calibrations for the two dynamometer axes, (b) Calibrations comparison for two force 
locations 'E' and 'NI'. 
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Fig. 6: x-y traverse system 
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Fig. 5(a): Calibrations for the two dynamometer axes, (b) Calibrations comparison for two force 

locations ‘E’ and ‘M’. 
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Fig. 8: Measured (a,b) lift and (c,d) drag force coefficients for the central cylinder, ‘C’, 

( 3.96 /PU m s= , 80%β = ). 

test 
area

1
2
3

4
C

5th CNS  International Steam Generator Conference
Toronto, Ontario, Canada November 26 - 29, 2006
__________________________________________________________________________________________________________________________

14 of 19



5th CNS International Steam Generator Conference 
Toronto, Ontario, Canada November 26 - 29, 2006 

0.10 

0.05 

CL, 
0.00 

-0.05 

-0.10 
-0.2 -0.15 -0.1 -0.05 0 0.05 01 0.15 0 2 

x!D 

0.60 

0.55 

0.50 

0.45 

0.40 
-0.2 -0.15 -0.1 -0.05 0 

x!D 

(a) 

(c) 

0.05 01 0.15 02 

0.10 
(b) 

0.05 

0.00 

-0.05 

-0.10 
-0.2 -0.1 0 0 1 0 2 

Y/D 

0.60 

0.55 

0.50 

0.45 

0.40 

(d) 

-0.2 -0.1 0 

YID 

01 02 

Fig. 9: The effect of tube 'C' displacement on the measured (a,b) lift and (c,d) drag force coefficients 
for tube 1 (Up = 3.96m /s /3 = 80%). 
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Fig. 10: The effect of tube 'C' displacement on the measured (a,b) lift and (c,d) drag force coefficients 
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Fig. 9: The effect of tube ‘C’ displacement on the measured (a,b) lift and (c,d) drag force coefficients 

for tube 1 ( 3.96 /PU m s= , 80%β = ). 
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Fig. 10: The effect of tube ‘C’ displacement on the measured (a,b) lift and (c,d) drag force coefficients 

forces for tube 2 ( 3.96 /PU m s= , 80%β = ). 
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Fig. 11: The effect of tube 'C' displacement on the measured (a,b) lift and (c,d) drag force coefficients 
for tube 3 (up = 3.96m /s /3 = 80%). 
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Fig. 12: The effect of tube 'C' displacement on the measured (a,b) lift and (c,d) drag force coefficients 
for tube 4 (Up = 3.96m /s /3 = 80%). 
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Fig. 12: The effect of tube ‘C’ displacement on the measured (a,b) lift and (c,d) drag force coefficients  

for tube 4 ( 3.96 /PU m s= , 80%β = ). 
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' I 
Fig. 16: Influence of tube 'C' on its neighbors for (3 = 80% each arrow indicates the magnitude 

and direction of the most important force derivative. Open arrows indicate that the cylinder 'C' 
direction of motion is normal to the cylinder force direction. 
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Fig. 15: Measured (a,b) lift and (c,d) drag force coefficients for central cylinder for 

 ( 3.96 /PU m s= , 80%β = ),  ( 3.92 /PU m s= , 60%β = ) , ( 1.84 /PU m s= , 0%β = )  
and ( 1.84 /PU m s= , 0%β = ); ‘*’ indicates test without upstream mixer.   

 
Fig. 16: Influence of tube ‘C’ on its neighbors for 80%β =  each arrow indicates the magnitude 

and direction of the most important force derivative. Open arrows indicate that the cylinder ‘C’ 
direction of motion is normal to the cylinder force direction.  
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