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ABSTRACT 

As part of a coordinated program, AECL is developing a set of tools to aid with the 
prediction and management of steam generator (SG) performance. One important mode 
of degradation within SGs is intergranular and transgranular stress corrosion cracking 
(SCC) of SG tubing. Numerous and extensive laboratory studies have demonstrated a 
definite link between lead and SCC. The prediction of the SG degradation is hindered by 
the lack of reliable thermodynamic data on the solubilities of lead compounds under SG 
operating conditions. 

For lead induced SCC to occur, lead needs to be transported to the metal-oxide interface 
on the SG tube. AECL has been developing a model to predict such a transport of lead 
towards (or away from) the metal interface. If the direction of the lead transport can be 
predicted as a function of water chemistry conditions, practical means of dealing with SG 
contamination with Pb could be devised and Pb-SCC could be mitigated by appropriate 
adjustment of the water chemistry. The solubilities for the relevant Pb-bearing species 
under SG operating conditions are necessary for the application of this model. However, 
the lack of reliable thermodynamic data make it difficult to calculate the solubilities of 
lead compounds in typical SG under-deposit environments. 

In this paper, the experimental method used for the determination of Pb solubility is 
presented and the preliminary experimental results for lead sulphate are given as a 
function of temperature and ionic strength under the range of conditions relevant to 
CANDU SGs. 

1. Introduction 

The presence of lead (Pb) can contribute to intergranular and transgranular stress corrosion 
cracking (SCC) of steam generator (SG) tubing, which was first reported in 1965 [1]. 
Since then, lead-induced SCC of SG tubing materials has been found extensively in both 
laboratory studies and in nuclear power stations [2]. Although the detailed mechanism of 
lead-induced SCC is not well understood, lead was identified as the cause of transgranular 
cracking and leaking of SG tubes of Unit 2 of Bruce A Nuclear Generating Station 
(BNGS) [3]. The introduction of lead blankets to one of the SGs of BNGS in 1986 
exacerbated SCC and eventually resulted in the shutdown of Unit 2 in 1995 September [4]. 
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Lead can enter the SGs from lead-containing materials around the secondary circuits, 
including pump seals, bushings, lead billets, valve packings, paints, coatings, pipe thread 
sealants and lubricants, liners, etc. Turbines represent a great potential source of lead 
contamination in feedwater, because the clearance between the turbine rotor and stator is 
measured by crushing lead wires [5]. Pieces of these wires can drop into the turbine after 
each operation. Lead masses wrapped in plastic used in turbine maintenance may also 
contribute to contamination. The lead contents in carbon and stainless steel varies between 
1 and 10 mg/kg and that in copper alloys is around 100 mg/kg. Hence, the feedwater 
components provide a minor source of lead contamination. However, some types of 
carbon steel, not normally used for feed train components, may contain up to 0.35 mass % 
of lead. Chemicals used for pH control could also add lead to the system, e.g., an impurity 
concentration of 1 mg Pb/kg of morpholine could introduce 10 g of Pb per year. 

Lead species from various sources can be transported by the feedwater and deposited inside 
the SGs. A relatively large amount of lead has been found in the deposits of the secondary 
side of SGs. The typical lead concentration in the sludge ranges from 0.02% to 0.2% (200 
to 2000 mg/kg), while the concentration of dissolved lead in the feedwater is at ppt levels. 

As part of a coordinated program, AECL is developing a set of tools to aid with the 
prediction and management of SG performance. The prediction of the SG degradation is 
hindered by the lack of reliable thermodynamic data on the solubilities of lead compounds 
under SG operating conditions. Recently, a refreshed autoclave system was commissioned 
to measure the high temperature solubilities of relevant lead compounds under CANDU SG 
conditions. From these data, the dominant dissolved lead species under SG feedwater 
chemistry and the possible key lead compound(s) inducing SCC in SG tubing, can be 
determined and be used to develop a model to predict lead transport in SGs. 

The relevant impurities in the feed water are typically CV, S042-, SiO2, Fe2+/Fe3+, Ca2+, 
Mg2+, Na+, and Al3+. These impurities can become highly enriched in crevice 
environments as the solution continuously boils and will precipitate once the 
concentrations exceed the corresponding solubilities of specific components. The pH of 
the crevice solutions can be alkaline or acidic determined by the ionic composition of the 
solution in equilibrium with the precipitates. The impurities in the feed water, and 
especially in crevices, can significantly change the solubility of lead compounds in the 
SGs because of common ion effect, ionic strength, complexation, etc. 

In this paper, the experimental methods used for the determination of solubility of the Pb 
compounds are discussed and the preliminary experimental results of the solubility 
PbSO4 in water and NaCl solutions as a function of temperature are presented. 

1 In a solution of mononuclear lead species, 1 µg/kg = 4.826x10-9 mol/kg. 
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5th CNS  International Steam Generator Conference
Toronto, Ontario, Canada November 26 - 29, 2006
__________________________________________________________________________________________________________________________

2 of 12



5th CNS International Steam Generator Conference 
Toronto, Ontario, Canada November 26 - 29, 2006 

3

2. Literature Review of Solubility of Lead Sulphate 

The earliest solubility data for PbSO4 were reported in 1903 [6], which gave a value of 
1.34x 10-4 mol/kg at 25°C. Clever and Johnston [7] reviewed the solubility data of PbSO4 in 
aqueous solutions and recommended the value of (1.46±0.04) x 10-a mol/kg. The solubility 
product (Ksp) of PbSO4 recommended by Smith and Martell [8] was 1.62 x 10-8 at 25°C 
while a tentative K, value 2.53 x 10-8 at 25°C was recommended by Clever and Johnson [7]. 

Experimental solubility data for PbSO4 from room temperature to 50°C was reviewed by 
Clever and Johnson [7] and their data show that the solubility of PbSO4 in water 
increases roughly linearly with increasing temperature (Figure 1) over this range. 

There is little solubility data for PbSO4 above 50°C and only two experimental points at 
60°C have been reported [9], [10] shown on Figure 1. The results suggest that the 
solubility of PbSO4 reaches a maximum at around 50°C. 

0.24 - 

0.22 - 

0.20 -
a 
g. 0.18 - o 
E 
E. 0.16 - 
.o a_ 

0.14 - 

0.12 - 

0.10 

Clever and Johnson 

} ) 
T 

this work 

Kornicker et al. 

T4i 
1 

i f
Paige 

0 10 20 30 40 50 60 70 

t(°C) 

Figure 1 Solubility of PbSO4 in water below 60°C. 

The solubility product of PbSO4 from 25 to 300°C was calculated by Helgeson [11] and 
Khodakovskiy [12] using empirical methods which estimated heat capacities of lead 
species at high temperatures from those at room temperature. The solubilities of lead 
sulphate from these Ksp calculations show maxima at 60°C and 100°C, respectively. 
However, in the absence of experimental data, it is not possible to determine which of these 
two calculations to use. 
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Figure 2 Calculated PbSO4 Ksp values of Helgeson [11] and Khodaskovskiy [12]. 

3. Experimental Methods 

3.1. Batch Method 

The purpose of the solubility measurements below 50°C using the batch method was to 
determine the time required to establish equilibrium between the solid phase and solution. 
The time to establish equilibrium, in turn, determined experimental parameters such as 
flow rate and the quantity of solid sample required for the flow through apparatus. These 
results were also used to verify the results obtained in the high-temperature flow-through 
solubility apparatus. 

The batch-method measurements were carried out using a circulated water thermostat. 
The experiments were carried out in Nalgene bottles (high-density polyethylene, HDPE) 
using high-purity ("Millipore") water. 

To avoid the uptake of carbon dioxide in the test solutions, ultra-high-purity (UHP) argon was 
used to purge the Nalgene bottle and water for 30 min before addition of the lead compound. 
The solutions were then sealed without contacting air for the equilibration period. A magnetic 
stirrer bar was used to stir the solutions slowly for 24 h. Stirring was then stopped and the 
solution was sampled after sitting for an additional 12 h to avoid sampling particulates 
suspended in the solution during sampling and to ensure that equilibrium is reached. 

Ten millilitres of solution were filtered through a 0.2 lam pore size syringe filter to remove 
particulates. The solution was then sampled with an additional two or three times at 24 h 
intervals. The samples were stored in sealed polyethylene vials for measuring pH and 
electrical conductivity, and acidified for ICP-MS analysis to determine the total Pb 
concentration. The concentration of dissolved lead species at different times was used to 
determine the equilibration time of the dissolution reactions and the solubility of the lead 
compounds. 
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3.2. High-Temperature Solubility Test Apparatus 

The measurement of lead solubility from 50 to 300°C was conducted at 9.65 MPa 
(absolute) using a high temperature flow-through system made from titanium. The 
schematic diagram of the facility and the flow direction of solution in the autoclave are 
shown in Figure 3. The major advantages of flow-through methods for solubility 
measurements have been summarized by Wesolowski et al. [13]. 

The autoclave was manufactured by Autoclave Engineers Inc., and has a design pressure 
of 13.79 MPa and a design temperature of 316°C. It consists of two titanium reaction 
vessels. The inner autoclave or sample holder is used to hold the lead compounds and 
has an internal diameter of 25.4 mm (1 in.) and volume of 50 mL. To prevent 
particulates from entering the flowing systems, two titanium filters with pore sizes of 
30 gm are installed to sandwich the sample powder, and a silver membrane with a 0.2 gm 
pore size is installed at the outlet of the autoclave, as shown in Figure 4. A titanium 
spacer and the lid of inner autoclave are used to fix the position of the powder sample. A 
helical tube surrounds the outside surface of the inner autoclave and is immersed in water 
in the large outer autoclave. The lid of the large autoclave has a thermal well used to 
hold a thermocouple for temperature measurements of the inner autoclave. The entire 
autoclave is placed in an oven, which is thermostatically controlled to within ±1°C. 

A 10-L titanium feed tank is used to continuously deliver the solution for the dissolution 
reaction to the autoclave. The feed solution is purged by ultra-pure argon to remove 
carbon dioxide and prevent air ingress. Depending on the equilibration time for sample 
dissolution, the flow rate of the solution can be precisely controlled from 0.05 to 
1.5 mL/min by a positive displacement pump. The pump has a maximum pressure of 
34.5 MPa and its wetted parts are made of 316 stainless steel, sapphire and UHMW 
polyethylene. Thus, depending on the flow rate and amount of lead compound in the 
autoclave, the residence time for the dissolution reaction can range from about 10 min to 
a maximum of 8 h. Duplicate measurements were performed under selected conditions 
using two flow rates, to confirm that the selected contact time was sufficient. 

The temperatures of the autoclave, oven and sampled solutions and the pressure of the 
pressure relieve valves of sampling lines are continuously recorded by a Keithley 2700 
Data Acquisition System, Model 7700, with 20 channels. 

About ten millilitres of solution was taken and stored in sealed polyethylene vials for 
measuring pH and electrical conductivity, and acidified for ICP-MS analysis to determine 
the total Pb concentration. The identity of the solid phase (PbSO4) was confirmed after 
selected measurements using X-ray diffraction. 

The sample coolers were checked for lack of accumulation of lead by occasional washing 
with diluted nitric acid. 
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4. Experimental Results and Discussion 

4.1 Solubility of PbSO4 in Water 

The solubility data of PbSO4 (Figure 5) at 25°C and those above 25°C were determined 
using the batch method and flow-through method with flow rate ranging from 0.6 to 
1.5 ml/min., respectively. These flow rates correspond to a residence time of 11 to 
25 minutes. Kinetic experiment [9] showed that dissolution of PbSO4 in pure water 
reached equilibrium within 1.5 hour at 25°C and 15 minutes at 60°C. The solubility data at 
different flow rates are consistent within the experimental uncertainty and agree very well 
with those of Clever and Johnson [7] and Kornicker et al. [9], indicating that the dissolution 
of PbSO4 in batch method and flow through method reached equilibrium. 

The pH values of the sampled solutions at 25°C generally range from 5.0 to 5.5. A buffer 
solution was not used to control the pH because of the possible formation of complexes with 
the buffer and safety issues. The concentrations of S042- in solution, and the effects of S042-
and pH on the solubility of lead sulphate will be determined in the future experiments. 

Preliminary solubility data obtained using the flow through method suggest that the 
solubility of PbSO4 in water reaches a maximum around 50°C; above 100°C, the solubility 
of PbSO4 is almost independent of temperature within experimental uncertainty (Figure 5). 

Hydrolysis and complexing of Pb2+ in aqueous solutions were neglected by Winger [6]. 
Kolthoff et al. [14] measured the solubility of PbSO4 in Na2SO4 at 25°C and did not find 
lead forming a complex ion with sulphate even at high sulphate concentration. However, 
Hachimi et al. [15] examined the literature data and concluded that the solubility of PbSO4
is controlled by the reaction, 

PbSO4(s) = Pb2+ + S042- (Eq. 1) 

and the formation of complexing species PbSO4(aq). All of these authors did not consider 
the hydrolysis of Pb2+ in aqueous solutions at 25°C. 

Hydrolysis reaction of 

S042- + H2O = HSO4 + OK (Eq. 2) 

is not important below 200°C using the dissociation equilibrium constant of HSO4 [16]. For 
example, only 0.03% and 5% of total sulphate are present as HSO4 at 25 and 175°C, 
respectively, in the PbSO4 dissolved solution. 

Using critically reviewed literature data [8] of the hydrolysis reaction, 

Pb2+ + H2O = Pb(OH)± + It (Eq. 3) 

and the complexing reaction, 

Pb2++ S042- = PbSO4 (aq) (Eq. 4) 

the authors of the paper calculated the concentrations of the hydrolysed species PbOtif and 
the complexing species PbSO4 (aq) in the PbSO4 dissolved solution at 25°C. It was found 
that the concentrations of Pb(OH)± and PbSO4 (aq) are about 0.4% and 7% of the total 
dissolved lead, respectively. The concentration of Pb(OH)± was estimated to be 2% of total 
dissolved Pb using our measured pH at 25°C. Given the experimental uncertainty of 
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solubility measurement, it is reasonable to ignore the hydrolysis of Pb2+ and the formation 
of other complexes such as PbSO4(aq) at 25°C. 

The solubility product constant, Ksp, of PbSO4 can be calculated from its solubility in 
water, 

K =a 2+ a 2- (Eq. 5) 
sp Pb SO4

where a „ and a 2_ are the activities of Pb2+ and S042-, respectively. 
Pb-  ' SO4

0.20 - 

I I 
0.15 

0 
E 0.10 
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Figure 5 Preliminary data on the solubility of PbSO4 in water from 25 to 300°C 
determined using the flow through method. The data at 25°C (A) were 

determined using the batch method. 

Assuming no ion pair formation such as PbSO4(aq) and no Pb hydrolysis in solution, the 
mean activity coefficients, y+ of PbSO4 were estimated using the extended Debye-Hiickel 
equation, 

Jilog y, = — AZ +Z _ 
1 + RN/1 

(Eq. 6) 

where A and B are constants [17]; I is the ionic strength; and Z+ and Z_ are the charges of 
cation and anion. The measured total Pb concentrations was used as the concentration of 
Pb2+ and S042-. The solubility product, 1.85 x 10-8, at 25°C estimated from our 
experimental data, 0.152 mmol/kg, lies between the values of 1.62 x 10-8 recommended 
by Smith and Martell [8] and 2.53 x 10-8 by Clever and Johnson [7]. 
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It is noted that neglecting hydrolysis and complexes probably is not valid at high 
temperatures. This issue will be addressed when the data on solubility of PbSO4 as a 
function of pH become available and the Ksp above 25°C will be reported. 

4.2. Solubility of PbSO4 in NaC1 solutions 

To assess the effect of ionic strength on the concentration of dissolved lead species the 
solubility of PbSO4 was measured by the batch method at 30, 50 and 70°C in various 
NaCl solutions (Figure 6). The solubility of PbSO4 increases with increasing 
concentration of NaCl and increasing temperature. 

8 

• 3 0 ° C 
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• 7 0 ° C 
• 

• 

• 

• * 
0  

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

mNaci(mol/kg) 

Figure 6 Solubility of PbSO4 as a function of NaCl concentration and temperature. 

Unlike the solubility in pure water where a maximum was observed at 50°C, the 
solubility of PbSO4 in the presence of NaCl increases with increasing temperature from 
30 to 70°C. 

The variation in the measured solubility of PbSO4 as a function of the concentration of NaCl 
is consistent with that predicted using electrolyte solution theory. For a sparingly soluble 
salt, the relation between solubility and activity coefficient can be expressed as [18]: 

ln S(c) = ln S(0) — ln 7, (Eq. 7) 

where S(c) and S(0) are the solubilities of the sparingly soluble salt in electrolyte solution 
and pure water, respectively; and y+ is the mean activity coefficient of the salt in solution. 

If the mean activity coefficient is represented by the Pitzer equation [19], equation (2) 
becomes 

/— 
ln S(c) = ln S(0) + Z,ZA + 

b 
L  V 1  , 2 ln(1 + NI)11

-F1 bla i 
(Eq. 8) 
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where Z+ and Z are the charges of the cation and anion in the sparingly soluble salt, 
respectively; A9 is the Debye-Hiickel osmotic parameter [17]; and b has a value of 1.2. 
Therefore, a plot of In S(c) vs. 

1/7
,  + 2 1n(1 + bA/7) 

1+bla b 
(Eq. 9) 

should be linear. The solubility data for PbSO4 in NaCl are plotted in this manner in Figure 
7 and the expected linear behaviour is observed over the range of ionic strengths studied. 

This shows that the effect of ionic strength effect on PbSO4 can be represented well by 
the Pitzer equation. 

5. Conclusions 

Preliminary data on the solubility of PbSO4 was determined in pure water from 25 to 
300°C using a combination of batch method and flow-through method, from which the 
solubility product constant at 25°C was calculated. These results show that PbSO4 has a 
maximum solubility at 50°C, and above 100°C the solubility is almost independent of 
temperature within experimental error. Because of the possibility of ion pairs and 
hydrolysis at high temperatures, additional data are required before the solubility 
products at high temperature can be calculated. 

The solubility of PbSO4 increases with increasing NaCl concentration and temperature and 
the behaviour can be described by the Pitzer equation. Measurements of the solubility of 
PbSO4 in NaCl solutions indicate that impurities present in SGs can increase the 
concentration of dissolved lead species through the effect of ionic strength. 
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Figure 7 Solubility of PbSO4 in NaCl solutions at temperature 30 (.), 50 ( ), and 
70°C (A), respectively. 
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