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ABSTRACT 

A mathematical treatment has been developed to predict the release of volatile fission products 
from operating defected nuclear fuel elements. Diffusion theory is used to account for fission-
product migration in the fuel matrix and a source release into the fuel-to-clad gap. Precursor 
diffusion is also considered for the isotopes of 1-132 and Xe-135, which have relatively long-
lived precursors. The transport and release of fission products from the gap is treated as a first-
order rate process as characterized by a gap escape-rate coefficient. The fission product activity 
in the gap and coolant follows from a mass balance considering losses due to radioactive decay, 
neutron transmutation and coolant purification. The activity in both the fuel-to-clad gap and 
coolant as a function of time can therefore be predicted during all reactor operations including 
reactor shutdown, startup and bundle-shifting maneuvers. 

The model has been implemented as the STAR (Steady state and Transient Activity Release) 
code for use on personal computers with a finite-element solution of the mass transport equations 
using FEMLAB. The model parameters are derived from in-reactor experiments conducted with 
defected fuel elements containing natural and artificial failures at the Chalk River Laboratories. 
The STAR code has also been successfully validated against an analytical solution and 
benchmarked against several defect occurrences in the Bruce Nuclear Generating Station. 

1. INTRODUCTION 

With the occurrence of defected fuel, coolant can enter into the fuel-to-sheath gap and fission 
products (i.e., notably the volatile species of noble gas and iodine) will be released into the 
primary coolant.1-5 With the entry of high-pressure coolant through the defect, the fuel may be 
oxidized that can potentially enhance the fission product release.6'7 Iodine release can also occur 
on reactor shutdown when the temperature in the fuel-to-sheath gap drops below the saturation 
temperature, permitting liquid water to dissolve the soluble iodine species in the gap resulting in 
an "iodine-spiking" phenomenon." Iodine-rich water remaining in the gap on the subsequent 
startup can also be released as the size of the gap is reduced with fuel expansion.12

Defected fuel elements can release fission products and fuel debris into the primary heat transport 
system (PHTS),13 which will increase the circuit contamination and radiation exposure during 
maintenance. Operation in a defected condition can cause a reduced heat transfer in the fuel-to-
sheath gap as well as oxidation of the fuel, which may degrade the thermal performance of the 
element. In particular, fuel oxidation can result in a decrease in the thermal conductivity of the 
fuel and a reduced melting temperature for the hyperstoichiometric urania.14-17 It is therefore 
desirable to discharge defected fuel bundles as soon as possible. Hence, a better understanding of 
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oxidized that can potentially enhance the fission product release.6,7  Iodine release can also occur 
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Defected fuel elements can release fission products and fuel debris into the primary heat transport 
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defected fuel behaviour is required in order to develop an improved methodology for fuel-failure 
monitoring and coolant-activity prediction. 

2. MODEL DEVELOPMENT 

A fission product diffusion model coupled with a mass balance in the gap and coolant can be used 
to predict the coolant activity behaviour for both steady-state and transient reactor operation. The 
model can be developed for variable reactor power and coolant purification histories. In this way, 
the model can be matched to coolant activity trends and then used in a prognostic manner to 
predict the coolant activity behaviour as a function of reactor power and the coolant purification 
history. This tool could therefore be useful to estimate if an 1311 action limit would be 
approached, which is particularly relevant since the action limit has been significantly reduced 
over the past number of years. 

The radial diffusion equation for the concentration distribution C(r,t) at time t, based on a "Booth 
diffusion" model for an idealized fuel grain sphere of radius a, can be written as:18

aC(r,t) = D(t) a (
r

2 aC(r, t) j 
AC(r,t)+

Ff (t)y 
(1) 

at 2 ar ar V 

where .1. is the radioactive decay constant (s-1), D is the diffusion coefficient for a given fission 
product species in the fuel matrix (m2 s-1), Ff is the fission rate in the fuel (fission s-1), y is the 
cumulative fission yield (atom fission-1) and V is the fuel volume for the defected element. 
Defining the dimensionless variable, 77= rla, and multiplying through by V, Eq. (1) becomes: 

au(i7,t) _D'(t) a 0(_2 au07, )
ylu(77,t)+ Ff (t)y 

at 712 a ri a t/

where u= CV and D' = D/a2. The initial and boundary conditions are given as: 

u(r1,0)= 0, 0 < ri <1, t =0 

au
= 0, ri=0, t>0 

ari 

u(1,t) = 0, r/=1, t > 0 

The diffusional release to-birth rate ratio for the defected element is: 

R)  4702  Dacvl j= 3D' au 

Ff hitt-a 3 /3) an I r=a Ff yari 

Equivalently, the release rate Rd if (atom s-1) from the defected fuel element is: 

, au 
R. = —3D Tr/

77=1 

17=1 

(2) 

(3a) 

(3b) 

(3c) 

(4) 

(5) 

Thus, the time-dependent diffusion equation in Eq. (2) can be solved by numerical methods 
subject to the conditions in Eqs. (3a) to (3c). The derivative of this solution (at i7 = 1) is 
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where λ is the radioactive decay constant (s-1), D is the diffusion coefficient for a given fission 
product species in the fuel matrix (m2 s-1), Ff is the fission rate in the fuel (fission s-1), y is the 
cumulative fission yield (atom fission-1) and V is the fuel volume for the defected element.  
Defining the dimensionless variable, η = r/a, and multiplying through by V, Eq. (1) becomes: 

ytFtututD
t

tu
f )(),(),()('),( 2

2 +−







∂

∂
∂
∂

=
∂

∂ ηλ
η
ηη

ηη
η  

 
(2) 

where u = CV and D′ = D/a2.  The initial and boundary conditions are given as: 
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Equivalently, the release rate Rdif (atom s-1) from the defected fuel element is: 

1

3
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Thus, the time-dependent diffusion equation in Eq. (2) can be solved by numerical methods 
subject to the conditions in Eqs. (3a) to (3c).  The derivative of this solution (at η = 1) is 
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subsequently used in Eq. (5). Equation (5) is the source release rate from the fuel matrix into the 
fuel-to-clad gap for the defected element and can be used in the mass balance for the gap: 

dN g (t) = Rd
 
if (t) 

— (), + v(t))N  g (t) 

dt 
(6a) 

Here, assuming a first-order rate process for fission product release from the gap, the escape 
rate/leaching rate coefficient v (s1 ) can be considered as a function of time. Also, during reactor 
shutdown, an enhanced leaching rate constant is used for v so that the model can also reproduce 
"iodine-spiking" phenomena. The parameter v can also be adjusted to reproduce convective 
release during other transient reactor operations. The initial condition for Eq. (6a) is: 

N g (t) = 0 , t = 0 

The mass balance in the coolant is similarly given by: 

dA T c (0 = 
v(t)Ng (t) _ (,i, ± fi p (0)A i c (t) 

dt 

(6b) 

(7a) 

with a time-dependent coolant purification rate constant fl p(t) . This equation is subject to the 
initial condition: 

A T c (0 = 0 , t = 0 

The solution of the coupled Eqs. (2), (3), (5), (6) and (7) provides a prediction of both the gap and 
coolant activity as a function of time for a variable fuel element linear rating/reactor power and 
coolant purification history. One can further follow the degradation of a fuel element with a 
changing value of the escape rate/leaching rate coefficient, where this parameter can be used as a 
tuning parameter to match the observed coolant activity data (with a knowledge of the 
purification flow and reactor power history). 

2.1 Precursor Effects for 1-132 and Xe-135 

(7b) 

For isotopes that have relatively long-lived precursors, precursor effects must be considered. 
Thus, the model can be further generalized for the isotopes of 1-132 and Xe-135 to account for 
precursor diffusion as well as neutron transmutation effects. The latter effect is only important for 
the isotope Xe-135. For parent (p)-daughter (d) diffusion, using the given variable 
transformation, gives: 

au p _ D' p 0) a iii2 aup j
at 712 ari a,7 .1 P  p + F f (0 y; 

D' d 0)  (12 aud j , 
at 772 aq ari Vd+0-.07-(t))ud+Apup+Ff(t)y:: 

(8) 

where the decay of the parent isotope provides for a source of the daughter isotope. Here o-a is 

the neutron microscopic absorption cross section for Xe-135, OT is the thermal neutron flux, yci, is 

the cumulative fission yield for the parent and y pd the direct yield for the daughter. Both the 

parent and daughter are subject to the initial and boundary conditions given in Eqs. (3a) to (3c). 
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with a time-dependent coolant purification rate constant βp(t).  This equation is subject to the 
initial condition: 
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where the decay of the parent isotope provides for a source of the daughter isotope.  Here σa is 
the neutron microscopic absorption cross section for Xe-135, φT is the thermal neutron flux, is 

the cumulative fission yield for the parent and the direct yield for the daughter.   Both the 
parent and daughter are subject to the initial and boundary conditions given in Eqs. (3a) to (3c).   
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The diffusional source release rate into the fuel-to-sheath gap can again be evaluated from a 
Fick's law of diffusion: 

au 
Rdif,p = — 3DP ' P 

au 
Rdif ,d = — 3D 

a ri 

77=1 

77=1 

(9a) 

(9b) 

Similarly, the coupled mass balance equations for the gap and coolant for these isotopes are given 
respectively by: 
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where f c is the fraction of the PHTS mass which is in-core. The initial conditions for both the 
parent and daughter isotopes are again given by Eqs. (6b) and (7b). 

The system of partial differential equations (PDEs) can be solved using the commercial 
FEMLAB software package (Version 3.1) that employs a finite-element technique.19'20

3. STAR CODE VALIDATION 

The numerical implementation of the code can be tested against an analytical solution. The 
model can be further evaluated against in-reactor experiments conducted with well-characterized 
fuel failures in the X-2 defect loop at the Chalk River Laboratories (CRL).4 This evaluation 
permits a good opportunity to test the model and to specifically evaluate the model parameters. 
Finally, the model can be validated against actual defect experience in the commercial power 
reactor where the number of failures, and element power rating and coolant purification histories 
are known. 

3.1. Comparison of Numerical Model Against Analytical Solutions 

The numerical solution of the coupled mass transport equations can be compared to an analytical 
solution for the coolant activity Ac (= ANc) as derived in Ref. 21 for the long-lived isotope 1291. (A 
= 1.40 x le s-1 and y = 0.00744 atom/fission): 
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where fc is the fraction of the PHTS mass which is in-core.  The initial conditions for both the 
parent and daughter isotopes are again given by Eqs. (6b) and (7b). 
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where p= r = v/D' and 0 = / D' . This result assumes that there is no initial 

concentration profile in the fuel grain and no initial fission product inventory in the gap or 
coolant. The analytical result in Eq. (12) is also only applicable for constant coefficients of D, 
Ffi v and flp. This analysis assumes a fission rate of Ff = 5.96 x1014 fission s-1, gap escape rate 
coefficient of v = 1.4x 10-6 s-1, coolant purification rate constant of fi = 7.05x 10-5 s-1, empirical 
diffusion coefficient of D' = 4.57x 10-10 s-1 and PHTS mass of 244 Mg. For the analytical 
solution, 200 term 9  Li of this analytical relation 
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Figure 1. Comparison of the analytic versus numerical solution for prediction of the 
coolant activity concentration of 1291. 

3.2. Model Parameter Evaluation Based on X-2 Defect Experiments 

An experimental program with defective CANDU-type fuel elements was carried out at the 
CRL.4 Failed elements with various degrees of sheath damage were irradiated in separate tests in 
the X-2 experimental loop of the National Research Experimental (NRX) reactor. A brief 
summary of the fuel operating parameters for the experiments considered in the current analysis 
is detailed in Table 1. The experiments involved the irradiation of fuel elements that were either 
artificially or naturally defected. An element was artificially defected prior to irradiation with 
machined slits in the fuel sheathing. Other elements were characteristic of hydride failures found 
in power plants, which resulted from small manufacturing flaws. 

Table 1: Summary of Experiments with Single Defected Fuel Elements at CRL 

Experiment (Element) Test (Defect) Description Defect Size Linear Burnup Defect Fuel Loss (g) 
(mm2) Power (MWh/kgU) Residence Time 
Initial Final (kW/m) Initial  Final (Effective Full 

Power Days) 
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Figure 1. Comparison of the analytic versus numerical solution for prediction of the 
coolant activity concentration of 129I. 

3.2. Model Parameter Evaluation Based on X-2 Defect Experiments 
 
An experimental program with defective CANDU-type fuel elements was carried out at the 
CRL.4  Failed elements with various degrees of sheath damage were irradiated in separate tests in 
the X-2 experimental loop of the National Research Experimental (NRX) reactor.  A brief 
summary of the fuel operating parameters for the experiments considered in the current analysis 
is detailed in Table 1.  The experiments involved the irradiation of fuel elements that were either 
artificially or naturally defected.  An element was artificially defected prior to irradiation with 
machined slits in the fuel sheathing.  Other elements were characteristic of hydride failures found 
in power plants, which resulted from small manufacturing flaws.   
 

Table 1: Summary of Experiments with Single Defected Fuel Elements at CRL 

 
Defect Size 
(mm2) 

Burnup 
(MWh/kgU) 

Experiment (Element) Test (Defect) Description 

Initial Final 

Linear 
Power 
(kW/m) Initial Final 

Defect 
Residence Time 
(Effective Full 
Power Days) 

Fuel Loss (g) 
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A. Artificially-Defected Fuel 

FFO-103 (A3N) 23 through-wall slits in a helical 
pattern along sheath (each slit 36 
nun x 0.3 mm) 

272 1490' 48 0 18 15 —65 

B. Naturally-Defected Fuel 

FFO-102-1 Irradiation of elements with 
(A7A) porosity in end caps b 

- 16 0 68 153 N/A 
(A7E) b 

- 64 0 37 24 N/A 

FFO-102-3 (A7A) Reirradiation of element with 
incipient hydriding at low power 

b - 23 68 130 263 N/A 

FFO-102-2 (A7E) Reirradiation of element with 
through-wall hydriding at high 
power (Cracked hydride blisters at 
one end of element) 

11 300b 67 37 67 19 3.5 

FFO-110 (A7A) Power cycling of an element with —0.5 - 14 to 26 130 140 281 N/A 
FFO-109 (Phase 2) (A7A) through-wall hydriding - —0.5 22 to 38 140 155 300 <0.1 

a. 
b. 
N/A 

Slits enlarged during irradiation due to fuel expansion (defect size estimated from post-irradiation examination). 
Primary defect size for A7A (0.4µm) and A7E (1.4 i.tm). 
Not available (no metallography performed at this stage of irradiation). 

The X-2 defect experiments, which cover various operating conditions and different types of fuel 
failures, can provide data for validation of the model and an estimation of the model parameters. 
The multi-slit element A3N in experiment FFO-103 represents a "worst-case" defect irradiated at 
a relatively high power of 48 kW/m where there is essentially no sheathing barrier so that fuel 
oxidation is maximized. Element A7A is a typical hydride failure that was previously irradiated 
in FF0-102-1 and FFO-102-3 and subsequently power-cycled in experiments FFO-110 and FF0-
109 (Phase II) at low (14-26 kW/m) and intermediate (22-38 kW/m) linear powers. Finally, 
element A7E, which was irradiated in experiment FF0-102-1 and then re-irradiated at a very high 
linear power of —67 kW/m in FFO-102-2 (which is beyond normal commercial operating 
conditions), represents a severe hydride failure. Thus, these experiments cover a very broad 
range of operating powers and states of element deterioration. 

The input conditions for the model were based on operational data.20,22-25 The fission yields and 
decay constant were taken from Ref. 3. For Xe-135, a neutron absorption rate of GhT = 7.862 x 
10-5 (P/51) s-1 was derived from a Wescott analysis of the X-2 loop experiments (i.e., as 
normalized to a linear power of P = 51 kW/m). 

The gap escape-rate coefficients were taken from a previous steady-state analysis of the X-2 
experiments in Ref. 3 (see Table 2). However, these coefficients were increased by a factor of 
—100 with reactor startup to account for enhanced (convective) release as the fuel-to-clad gap is 
reduced with fuel-pellet expansion. For the multi-slit element, A3N, this effect was ignored since 
the gap inventory is expected to be much less due to the presence of many defects. On reactor 
shutdown, in order to model the "iodine-spiking" phenomena, an enhanced gap escape-rate 
coefficient of 2 x 10-5 s-1 was used as suggested in Ref. 8. This leaching rate coefficient 
accounted for enhanced ionic diffusion/natural convective transport with the presence of liquid 
water in the gap. However, no release of noble gases is assumed to occur in the vertical elements 
with the presence of liquid water in the gap. In accordance with the observations in Ref. 26, Te-
132 is only assumed to be washed out of the gap on reactor shutdown. 
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FFO-109 (Phase 2) (A7A) 

 
 
23 through-wall slits in a helical 
pattern along sheath (each slit 36 
mm × 0.3 mm) 
 
 
 
Irradiation of elements with 
porosity in end caps 
 
 
Reirradiation of element with 
incipient hydriding at low power 
 
Reirradiation of element with 
through-wall hydriding at high 
power (Cracked hydride blisters at 
one end of element) 
 
Power cycling of an element with 
through-wall hydriding  
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b 

b 

 
b 

 
 
11 
 
 
 
 
~0.5 
- 

 
 
1490a 
 
 
 
 
 
 
- 
- 
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300b 
 
 
 
 
- 
~0.5 

 
 
48 
 
 
 
 
 
 
16 
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23 
 
 
67 
 
 
 
 
14 to 26 
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0 
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68 
 
 
37 
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68 
37 
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67 
 
 
 
 
140 
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15 
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24 
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19 
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N/A 
N/A 
 
N/A 
 
 
3.5 
 
 
 
 
N/A 
<0.1 

a. Slits enlarged during irradiation due to fuel expansion (defect size estimated from post-irradiation examination). 
b. Primary defect size for A7A (0.4 µm) and A7E (1.4 µm). 
N/A Not available (no metallography performed at this stage of irradiation). 
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failures, can provide data for validation of the model and an estimation of the model parameters.  
The multi-slit element A3N in experiment FFO-103 represents a “worst-case” defect irradiated at 
a relatively high power of 48 kW/m where there is essentially no sheathing barrier so that fuel 
oxidation is maximized.  Element A7A is a typical hydride failure that was previously irradiated 
in FFO-102-1 and FFO-102-3 and subsequently power-cycled in experiments FFO-110 and FFO-
109 (Phase II) at low (14-26 kW/m) and intermediate (22-38 kW/m) linear powers.  Finally, 
element A7E, which was irradiated in experiment FFO-102-1 and then re-irradiated at a very high 
linear power of ~67 kW/m in FFO-102-2 (which is beyond normal commercial operating 
conditions), represents a severe hydride failure.  Thus, these experiments cover a very broad 
range of operating powers and states of element deterioration.  

 
The input conditions for the model were based on operational data.20,22-25  The fission yields and 
decay constant were taken from Ref. 3.  For Xe-135, a neutron absorption rate of σaφT  = 7.862 × 
10-5 (P/51) s-1 was derived from a Wescott analysis of the X-2 loop experiments (i.e., as 
normalized to a linear power of P = 51 kW/m).   
 
The gap escape-rate coefficients were taken from a previous steady-state analysis of the X-2 
experiments in Ref. 3 (see Table 2).  However, these coefficients were increased by a factor of 
~100 with reactor startup to account for enhanced (convective) release as the fuel-to-clad gap is 
reduced with fuel-pellet expansion.  For the multi-slit element, A3N, this effect was ignored since 
the gap inventory is expected to be much less due to the presence of many defects.  On reactor 
shutdown, in order to model the “iodine-spiking” phenomena, an enhanced gap escape-rate 
coefficient of 2 × 10-5 s-1 was used as suggested in Ref. 8.  This leaching rate coefficient 
accounted for enhanced ionic diffusion/natural convective transport with the presence of liquid 
water in the gap.  However, no release of noble gases is assumed to occur in the vertical elements 
with the presence of liquid water in the gap.  In accordance with the observations in Ref. 26, Te-
132 is only assumed to be washed out of the gap on reactor shutdown.   
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The empirical diffusion coefficients were fit to the coolant activity concentration data for the 
various experiments. This parameter accounts for the effect of intergranular (solid-state) 
diffusion, intra and inter-granular bubble coalescence, grain-boundary interlinkage and grain-
boundary sweeping. The fitted results are slightly different from that obtained in the previous 
steady-state analysis of Ref. 3 since the latter analysis only pertains to a small sampling period 
whereas the current analysis requires an average value over the whole irradiation period since the 
diffusion coefficient changes with increased fuel oxidation effects. Thus, D' (in s-1) was derived 
from a previous correlation as a function of the linear fuel element power P (in kW/m) based on 
sweep gas experiments with =oxidized fue1;27 however, this relation is multiplied by a simple 
enhancement factor (4 2 . ) to account for fuel oxidation effects: 

(13) 
Di (P)=( x-2 . fr )exp{cio + aiP + a2P2 } 

where ao = -30.856311, a2 = -0.039332 and a2 = 2.056960 x 10-3. Here 42 is a correction factor 
used to match the steady-state value for oxidized fuel and s is a tuning factor employed for the 
current transient analysis to reproduce an average value for the complete irradiation period (see 
Table 2 and Figure 2(a)). The same diffusion coefficient is used for all species (i.e., tellurium, 
iodine and noble gas species). The effect of fuel cracking on reactor shutdown/startup, however, 
has not been modelled in the current simulations since this effect is expected to be of less 
importance.12,28 
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The empirical diffusion coefficients were fit to the coolant activity concentration data for the 
various experiments.  This parameter accounts for the effect of intergranular (solid-state) 
diffusion, intra and inter-granular bubble coalescence, grain-boundary interlinkage and grain-
boundary sweeping.  The fitted results are slightly different from that obtained in the previous 
steady-state analysis of Ref. 3 since the latter analysis only pertains to a small sampling period 
whereas the current analysis requires an average value over the whole irradiation period since the 
diffusion coefficient changes with increased fuel oxidation effects.  Thus, D′  (in s-1) was derived 
from a previous correlation as a function of the linear fuel element power P (in kW/m) based on 
sweep gas experiments with unoxidized fuel;27 however, this relation is multiplied by a simple 
enhancement factor (ξX-2 ⋅ξtr ) to account for fuel oxidation effects:  

( ) { }2
2102 exp)( PaPaaPD trX ++⋅=′ − ξξ  

(13) 

where a0 = -30.856311, a1 = -0.039332 and a2 = 2.056960 × 10-3. Here ξX-2 is a correction factor 
used to match the steady-state value for oxidized fuel and ξtr is a tuning factor employed for the 
current transient analysis to reproduce an average value for the complete irradiation period (see 
Table 2 and Figure 2(a)).  The same diffusion coefficient is used for all species (i.e., tellurium, 
iodine and noble gas species).  The effect of fuel cracking on reactor shutdown/startup, however, 
has not been modelled in the current simulations since this effect is expected to be of less 
importance.12,28 
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A comparison of the predicted and measured trends for the coolant activity concentration for the 
various experiments for several selected isotopes of iodine and noble gas is shown in Figure 3 to 
Figure 6. There is generally a good agreement between the model results and experimental data 
for all isotopes. As demonstrated in Figure 3 to Figure 6, precursor effects must be considered for 
the coolant activity concentration prediction of I-132 and Xe-135. 

Table 2: Evaluation of Model Parameters 

Experiment 0/U 

Ratio 

Linear 

Powers 

Model Parameter 

Empirical Diffusion Coefficient, D'(s') Escape-Rate Coefficient, v (s-') 

(kW/m) Steady-State Currentb x-2 t Steady-State Current 

I NG I NG I NG 

FFO-103 2.28 51.0 5.01x10-9 2.14x10-9 3.01x10-8 4450.6 6.0 1.8x104 2.3x104 1.8x104 2.3x104

FF0-110 - 26.0 6.55x 1042 6.38x 1042 6.55x 1042 114.01 1.0 - - 6.8x 10-8 9.3x 10-7

FFO-109-2 33.0 6.86x 10-11 5.00x 10-11 1.10x 104° 673.20 1.6 6.8x 10-8 4.9x 10-5 6.8x 10-8 4.9x 10-5

FF0-102-2' -2.14 66.6 4.46x 104° 2.56x 10-9 3.80x 10-9 143.11 1.0 2.5x 1e 8.4x 10-6 2.5x 104 8.4x 104

(a) Linear power at which steady-state diffusion coefficient was measured or maximum linear power; (b) Evaluated with Eq. (13); (c) As 
detailed in Ref. 20, the escape rate coefficients were reduced by a factor of 3 (iodine) and increased by a factor of 1.5 (noble gas) during 
part of the irradiation history from the steady-state values proposed in Ref. 3. 

As shown in Table 2 and Figure 2(a), the fitted diffusion coefficient for FFO-103 is specifically 
enhanced with a higher oxygen-to-uranium (0/U) ratio. A comparison of the (steady-state) 
empirical diffusion coefficients in Ref. 3 with the current fitted values for the X-2 analysis is also 
shown in Figure 2(b) and listed in Table 2. The empirical diffusion coefficient for experiment 
FFO-109-2 is in fact "representative" of that for typical commercial power reactor experience 
where: 

(P) = 4.28 x 10-11 exp{- 0.03933. P + 0.00205696. P2} (14) 

The range of the empirical diffusion coefficients seen in Figure 2(a) is consistent with that seen 
for intact versus defected fuel rods in German Pressurized Water Reactors (PWR) and Boiling 
Water Reactors (BWR).29
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A comparison of the predicted and measured trends for the coolant activity concentration for the 
various experiments for several selected isotopes of iodine and noble gas is shown in Figure 3 to 
Figure 6.  There is generally a good agreement between the model results and experimental data 
for all isotopes. As demonstrated in Figure 3 to Figure 6, precursor effects must be considered for 
the coolant activity concentration prediction of I-132 and Xe-135.   

 
Table 2: Evaluation of Model Parameters 

 
Model Parameter 

Empirical Diffusion Coefficient, D′ (s-1) Escape-Rate Coefficient, ν (s-1) 
Steady-State Steady-State Current 

Experiment O/U 
Ratio 

Linear 
Powera 
(kW/m) 

I NG 
Currentb ξX-2 ξtr 

I NG I NG 
FFO-103 
FFO-110 

FFO-109-2 
FFO-102-2c 

2.28 
- 
 
~2.14 

51.0 
26.0 
33.0 
66.6 

5.01×10-9 
6.55×10-12 
6.86×10-11 
4.46×10-10 

2.14×10-9 
6.38×10-12 
5.00×10-11 

2.56×10-9 

3.01×10-8 
6.55×10-12 
1.10×10-10 
3.80×10-9 

4450.6 
114.01 
673.20 
143.11 

6.0 
1.0 
1.6 
1.0 

1.8×10-4 
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6.8×10-8 
2.5×10-6  

2.3×10-4 
- 
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(a)  Linear power at which steady-state diffusion coefficient was measured or maximum linear power; (b)  Evaluated with Eq. (13); (c)  As 
detailed in Ref. 20, the escape rate coefficients were reduced by a factor of 3 (iodine) and increased by a factor of 1.5 (noble gas) during 
part of the irradiation history from the steady-state values proposed in Ref. 3. 
 

As shown in Table 2 and Figure 2(a), the fitted diffusion coefficient for FFO-103 is specifically 
enhanced with a higher oxygen-to-uranium (O/U) ratio.  A comparison of the (steady-state) 
empirical diffusion coefficients in Ref. 3 with the current fitted values for the X-2 analysis is also 
shown in Figure 2(b) and listed in Table 2.  The empirical diffusion coefficient for experiment 
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Figure 2. Empirical diffusion coefficients as a function of the fuel element linear 
power for: (a) unoxidized and oxidized fuel in the current analysis; (b) comparison between 
the previous steady-state analysis and current work. 
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Figure 2. Empirical diffusion coefficients as a function of the fuel element linear 
power for: (a) unoxidized and oxidized fuel in the current analysis; (b) comparison between 
the previous steady-state analysis and current work.  
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Figure 5. Comparison between the measured and predicted coolant activity 
concentration history for iodine and noble gas species for experiment FFO-109-2. 
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Figure 6. Comparison between the measured and predicted coolant activity 
concentration history for iodine and noble gas species for experiment FFO-102-2. 
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Figure 6. Comparison between the measured and predicted coolant activity 
concentration history for iodine and noble gas species for experiment FFO-102-2. 

Page 12 of 19 

 



Fuelling A Clean Future 
9th International CNS Conference on CANDU Fuel 
Belleville, Ontario, Canada 
September 18-21, 2005 

3.3 Commercial Reactor Application 

A Model for Predicting Coolant Activity 
Behaviour for Fuel-Failure Monitoring Analysis 
B.J. Lewis, J. Higgs, et al. 

Representative fitting parameters for the fission-product release model have been evaluated by 
benchmarking the model against coolant activity data derived from well-characterized failures in 
the X-2 defect program (Section 3.2). The model can now be applied for coolant activity 
analysis in the commercial Bruce reactor for several defected fuel cases. 

A systematic assessment of the PHTS radionuclide activity in Bruce B units was carried out in 
Ref. 30. Two representative cases were selected from this survey for analysis with STAR. These 
two specific cases were chosen since a single failure was known to be present in the core at the 
given time. The irradiation histories of the defect elements, as well as the purification operations, 
were determined from the historical data. The defected element linear powers were calculated 
from bundle power histories obtained with SORO. Radionuclide activities of 1-131 and Xe-133 
were monitored in the commercial reactor. These activities were assessed with grab sample 
monitoring from the Chemistry Environmental Management (CEM) Database and with on-line 
gaseous fission product (GFP) monitoring from the Plant Information (PI) Database. Only 
activity levels greater than a preset threshold limit of 1 Ci were stored in the PI database whereas 
lower activities were available in the CEM database. Finally, the Fuels Inspection Database 
(FID) provided a documentation of the post-irradiation examination for these elements to enable a 
characterization of the defect sizes. These two cases as detailed in Table 3 can therefore be used 
to benchmark the STAR code for commercial operation with defected fuel. 

Table 3: Details of Selected Cases of Commercial Defect Experience as used for 
STAR Validation 

Survey 
Case 
Number' 

Failed Fuel 
Identification 

Date (Position)" Fuel Shift Dates 
(Position)" 

Defect Description 

Loading Discharge Shift 1 Shift 2 Primary Cause Examination Details 
1 

4 

R04508Z 

XZ2513Z 

20 Nov 99 
(Unit 5-M03/01) 

18 Jan 03 
(Unit 6-U06/04) 

8 May 00 
(M03/13) 

17 Jun 03 
(U06/12) 

13 Mar 00 
(M03/05) 

11 Apr 03 
(U06/08) 

7 May 00 
(M03/13) 

Incomplete 
weld 

Debris 
Fretting 

Broken hydride blister (5 
mm diameter). Only 
defect on element. 

Fully-separated upstream 
end cap. Small fretted 
hole in sheath in weld 
upset (0.1 nun x 0.1 nun) 

a. Case number as given in Ref. 30. 
b. Channel/bundle position. 

The actual element linear powers and purification flows for these cases are shown in Figure 8 and 
Figure 7. These parameters as input into STAR are also shown along with the model input of the 
gap escape rate coefficients. The gap escape rate coefficients were fitted to reproduce the 
coolant activity concentrations (which are consistent with those values obtained for the X-2 
experiments in Table 2). The empirical diffusion coefficients are also similar to those for the X-2 
experiments in Figure 2(a). The analysis for the Bruce Case 1 uses Eq. (14), whereas the Bruce 
Case 4 employs a coefficient that is five times greater. The same diffusion coefficient was used 
for both iodine and noble gas. A slightly larger coefficient had to be used for element XZ2513Z 
(Case 4) since the defect was very large with a separated end cap leading, presumably, to greater 
fuel oxidation. For instance, the rare gas diffusion coefficient in hyperstoichiometric UO2+, is 
seen to increase through the vacancy-enhanced component as the square of the stoichiometry 
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given time.  The irradiation histories of the defect elements, as well as the purification operations, 
were determined from the historical data.  The defected element linear powers were calculated 
from bundle power histories obtained with SORO.  Radionuclide activities of I-131 and Xe-133 
were monitored in the commercial reactor.  These activities were assessed with grab sample 
monitoring from the Chemistry Environmental Management (CEM) Database and with on-line 
gaseous fission product (GFP) monitoring from the Plant Information (PI) Database.  Only 
activity levels greater than a preset threshold limit of 1 Ci were stored in the PI database whereas 
lower activities were available in the CEM database.   Finally, the Fuels Inspection Database 
(FID) provided a documentation of the post-irradiation examination for these elements to enable a 
characterization of the defect sizes.  These two cases as detailed in Table 3 can therefore be used 
to benchmark the STAR code for commercial operation with defected fuel.  
 

Table 3: Details of Selected Cases of Commercial Defect Experience as used for 
STAR Validation 

Date (Position)b Fuel Shift Dates 
(Position)b 

Defect Description Survey 
Case 
Numbera 

Failed Fuel 
Identification 

Loading Discharge Shift 1 Shift 2 Primary Cause Examination Details 
1 
 
 
 
4 

R04508Z 
 
 
 
XZ2513Z 

20 Nov 99 
(Unit 5-M03/01) 
 
 
18 Jan 03 
(Unit 6-U06/04) 

8 May 00 
(M03/13)  
 
 
17 Jun 03 
(U06/12) 

13 Mar 00 
(M03/05) 
 
 
11 Apr 03 
(U06/08) 
 
 

7 May 00 
(M03/13) 
 

Incomplete 
weld 
 
 
Debris 
Fretting 

Broken hydride blister (5 
mm diameter).  Only 
defect on element.  
 
Fully-separated upstream 
end cap.  Small fretted 
hole in sheath in weld 
upset (0.1 mm × 0.1 mm) 

a.  Case number as given in Ref. 30. 
b.  Channel/bundle position. 
 
The actual element linear powers and purification flows for these cases are shown in Figure 8 and 
Figure 7.  These parameters as input into STAR are also shown along with the model input of the 
gap escape rate coefficients.   The gap escape rate coefficients were fitted to reproduce the 
coolant activity concentrations (which are consistent with those values obtained for the X-2 
experiments in Table 2).  The empirical diffusion coefficients are also similar to those for the X-2 
experiments in Figure 2(a).  The analysis for the Bruce Case 1 uses Eq. (14), whereas the Bruce 
Case 4 employs a coefficient that is five times greater. The same diffusion coefficient was used 
for both iodine and noble gas.  A slightly larger coefficient had to be used for element XZ2513Z 
(Case 4) since the defect was very large with a separated end cap leading, presumably, to greater 
fuel oxidation.  For instance, the rare gas diffusion coefficient in hyperstoichiometric UO2+x is 
seen to increase through the vacancy-enhanced component as the square of the stoichiometry 
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with STAR during transient operation. Interestingly, noble-gas spiking is also observed on 
shutdown for the commercial defects (i.e., for the horizontal orientation of the CANDU fuel 
channel), whereas enhanced releases for the noble gases only occurred on shutdown with the 
vertically-oriented elements in the X-2 defect loop (where presumably noble gases became 
trapped at the top of the element when liquid water filled the element). 
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4. CONCLUSIONS 
 
1. A general time-dependent model entitled STAR (Steady-state and Transient Activity 

Release) has been developed to detail the coolant activity behaviour of the short-lived 
iodine and noble gas species during steady reactor operation, as well as for transient 
conditions of reactor shutdown, startup and bundle-shifting operations.  The fission 
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product transport model is based on solid-state diffusion in the fuel matrix and first-order 
kinetics in the fuel-to-sheath gap. The effect of precursor diffusion and neutron 
absorption has been incorporated into the treatment. The loss of fission products by 
radioactive decay and coolant purification (i.e., ion exchange and degassing operations) 
has also been considered. This model has been solved numerically using the FEMLAB 
finite-element solver. The model can be used for prediction of the activity in both the 
fuel-to-clad gap and primary coolant for defective fuel as a function of time. 

2. The code has been tested against an analytical solution of the coolant activity. The model 
has been benchmarked against well-characterized in-reactor experiments with defected 
elements conducted in the X-2 defect loop facility at the CRL. The model has been 
further validated against several defect occurrences in the commercial Bruce NGS (where 
a single failure was present). The code is successfully able to predict the iodine and 
noble gas inventory during steady operation as well as enhanced releases in the primary 
coolant that occur during reactor shutdown, startup and bundle shifting operations. 
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