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The Ontario Power Generation (OPG) fuel surveillance program was initiated in 
response to a Canadian Nuclear Safety Commission (CNSC) Generic Action Item to 
verify the condition of CANDU® fuel irradiated in Canadian reactors. As part of a 
comprehensive response, OPG committed to performing in-bay fuel inspection and hot-
cell examinations. Based on the in-bay inspection results, a selection of fuel was 
shipped from each reactor site to Chalk River Laboratories (CRL) for post-irradiation 
examination (PIE). 

Typically, 15 loose elements (from a variety of fuel bundles) or a single bundle are 
sent to CRL. The PIE is intended to 

• Provide data for assessment of fuel performance, 
• Check compliance of operating fuel with design and operating limits, 
• Determine the defect root cause for failed fuel elements, 
• Provide data to characterize the actual condition of fuel during operations, for use 

in licensing analyses, and 
• Provide longer-term assurance that measurable fuel operating parameters are 

not deviating from the established norms. 

Since 1999, a total of 103 individual fuel elements from 40 fuel bundles and two 
intact fuel bundles have been sent to CRL for PIE. The examinations are used to 
monitor several fuel performance parameters (i.e., fission gas release, grain growth, 
and residual sheath strains). Fuel performance has been good and representative of 
what has been previously observed. A total of 9 defected fuel elements from 9 fuel 
bundles have been examined. The majority of these fuel bundles (7) failed as a result 
of debris fretting. The fuel bundle defect rate at OPG remains well below 0.01 percent 
for the last five years. Details of the PIE results are presented in this paper. 
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ABSTRACT 
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in licensing analyses, and  
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 Since 1999, a total of 103 individual fuel elements from 40 fuel bundles and two 
intact fuel bundles have been sent to CRL for PIE.  The examinations are used to 
monitor several fuel performance parameters (i.e., fission gas release, grain growth, 
and residual sheath strains).  Fuel performance has been good and representative of 
what has been previously observed.  A total of 9 defected fuel elements from 9 fuel 
bundles have been examined.  The majority of these fuel bundles (7) failed as a result 
of debris fretting.  The fuel bundle defect rate at OPG remains well below 0.01 percent 
for the last five years.  Details of the PIE results are presented in this paper.  
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INTRODUCTION 

The Ontario Power Generation (OPG) Fuel and Fuel Channel Program established a 
comprehensive monitoring program as part of its commitment to the CNSC in support of 
the Generic Action Item on fuel condition "GAI-94G02". A detailed strategy for fulfilling 
this commitment was developed and implemented in 2000. The program involves in-
bay and hot-cell inspections of irradiated fuel from each of its operating stations 
(Darlington and Pickering A and B). 

The in-bay inspection documents the mechanical integrity of the fuel bundle and is 
used as part of the fuel selection process for post-irradiation examination (PIE) in the 
hot-cells. The PIE in the hot-cells is intended to 

• Provide data for assessment of fuel performance, 
• Check compliance of operating fuel with design and operating limits, 
• Determine the defect root cause for failed fuel elements, 
• Provide data to characterize the actual condition of fuel during operations, for use 

in licensing analyses, and 
• Provide longer-term assurance that measurable fuel operating parameters are 

not deviating from the established norms. 

Another component of the monitoring program is to perform engineering tests on 
irradiated and un-irradiated fuel bundles. 

On-site inspections in the irradiated fuel bays (IFB) are the most convenient and 
inexpensive inspections available to OPG, and provide a wealth of data regarding fuel 
performance and behavior. These IFB inspections are effective in resolving many fuel 
performance and design issues (e.g., the extent of bearing pad wear). However, certain 
important measurements and investigations are not possible using existing techniques 
available for IFB inspections (e.g., some defect root cause investigations, fission gas 
volume). These measurements must be performed in the hot-cells. The following table 
summarizes the various fuel performance parameters that are monitored by OPG using 
both in-bay and hot-cell techniques. 

TABLE 1. OPG FUEL PERFORMANCE MONITORING PARAMETERS 

• Power/burnup envelope 
• Power cycling during load following 
• Chemical compatibility 
• Bearing pad wear 
• Debris fretting 
• Sheath corrosion (deposits: crud, 

oxide, hematite) 
• Bearing pad crevice corrosion 
• Fission-gas release 

• Power ramps during refueling 
• Time in air chamber of transfer 

mechanism 
• Reactor rate of power rise 
• Outer element bowing and inter-element 

spacing 
• Maximum fuel temperature 
• Fuel recycling 
• Average diametral strain at the pellet 

mid-plane 

 

 
INTRODUCTION 
 

The Ontario Power Generation (OPG) Fuel and Fuel Channel Program established a 
comprehensive monitoring program as part of its commitment to the CNSC in support of 
the Generic Action Item on fuel condition “GAI-94G02”.  A detailed strategy for fulfilling 
this commitment was developed and implemented in 2000.  The program involves in-
bay and hot-cell inspections of irradiated fuel from each of its operating stations 
(Darlington and Pickering A and B). 
 
 The in-bay inspection documents the mechanical integrity of the fuel bundle and is 
used as part of the fuel selection process for post-irradiation examination (PIE) in the 
hot-cells.  The PIE in the hot-cells is intended to 
 

• Provide data for assessment of fuel performance, 
• Check compliance of operating fuel with design and operating limits, 
• Determine the defect root cause for failed fuel elements, 
• Provide data to characterize the actual condition of fuel during operations, for use 

in licensing analyses, and  
• Provide longer-term assurance that measurable fuel operating parameters are 

not deviating from the established norms. 
 
Another component of the monitoring program is to perform engineering tests on 
irradiated and un-irradiated fuel bundles.  
 
 On-site inspections in the irradiated fuel bays (IFB) are the most convenient and 
inexpensive inspections available to OPG, and provide a wealth of data regarding fuel 
performance and behavior.  These IFB inspections are effective in resolving many fuel 
performance and design issues (e.g., the extent of bearing pad wear).  However, certain 
important measurements and investigations are not possible using existing techniques 
available for IFB inspections (e.g., some defect root cause investigations, fission gas 
volume).  These measurements must be performed in the hot-cells.  The following table 
summarizes the various fuel performance parameters that are monitored by OPG using 
both in-bay and hot-cell techniques. 
 

TABLE 1. OPG FUEL PERFORMANCE MONITORING PARAMETERS 
 
• Power/burnup envelope 
• Power cycling during load following 
• Chemical compatibility 
• Bearing pad wear 
• Debris fretting 
• Sheath corrosion (deposits: crud, 

oxide, hematite) 
• Bearing pad crevice corrosion 
• Fission-gas release 

• Power ramps during refueling 
• Time in air chamber of transfer 

mechanism 
• Reactor rate of power rise 
• Outer element bowing and inter-element 

spacing 
• Maximum fuel temperature 
• Fuel recycling 
• Average diametral strain at the pellet 

mid-plane 



Since 1999, a total of 103 individual fuel elements from 40 fuel bundles and two 
intact fuel bundles from Darlington and Pickering Nuclear Generating Stations (DNGS 
and PNGS) have been sent to CRL for PIE as part of the OPG fuel surveillance 
program. The DNGS fuel consisted of standard and long fuel bundles . The typical fuel 
surveillance PIE program consists of visual examinations, bundle and element 
mensuration, gas puncture and gas composition analysis, metallographic and 
ceramographic examination, and specialty examinations (burnup, scanning electron 
microscope, defect root cause determination). The highlights of the PIE of this fuel will 
be described in the following sections. 

RESIDUAL SHEATH STRAIN AT THE PELLET MID-PLANE LOCATION 

Typically all intact elements shipped to CRL are measured to ± 0.01 mm, using a 
dual-transducer profilometer. The element diameter is measured at three orientations: 
0°, 120°, and 240°. Diameter measurements from the three orientations are averaged 
and subsequently the diameters at the mid-pellet (MP) locations are determined. The 
percent residual sheath strain at the MP locations is calculated as follows: 

(d -d;  )
% Residual Sheath Strain =100x  P

di
Where dp is the average post-irradiation MP element outside diameter (OD) and ch is 

typically the manufacturer nominal OD. The average residual sheath strains at the 
element MP for DNGS and PNGS fuel ranged from compressive to tensile strain (-0.4% 
to 0.2% and —0.1% to 0.3%, respectively). The residual sheath strain at the mid-pellet 
increases with burnup and maximum element power as shown in Figures 1 and 2. The 
DNGS and PNGS MP residual sheath strain results do not exceed the 0.5% internal 
OPG threshold and are comparable to those previously reported (1). 
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FIGURE 1. DNGS FUEL ELEMENT MP RESIDUAL SHEATH STRAIN 
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FIGURE 2. PNGS FUEL ELEMENT MP RESIDUAL SHEATH STRAIN 
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FIGURE 2. PNGS FUEL ELEMENT MP RESIDUAL SHEATH STRAIN 



GAS VOLUME AND FISSION GAS RELEASE 

The majority of the intact fuel elements are punctured to determine the end-of-life 
(EOL) free gas volume within the element. The gas volume for normally operated 
DNGS and PNGS fuel (i.e., <350 MWh/kgU discharge burnup) ranged from 2 to 16 mL, 
which is well below OPG's threshold. Some of the elements also had their gas 
composition determined using a gas mass spectrometer to determined the Xe and Kr 
fission gas release. 

In addition, PNGS fuel elements that resided in a fuel channel for an extended 
period because of fueling restrictions were sent to CRL. This fuel operated to bundle 
average burnups ranging from 385 to 552 MWh/kgU. The lower power bundles had gas 
volumes that ranged from 2 to 4 mL compared to the higher power bundles whose gas 
volumes ranged from 20 to 55 mL. The PNGS bundle that operated to the highest 
burnup (well above normal discharge burnup due to fueling restrictions) exceeded the 
40 mL OPG threshold. However, PIE confirmed that the elements were intact. 

The gas volume data as a function of maximum power and element burnup is shown 
in Figure 3. 
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The plot shows that the element gas volume remains low until the element power 
exceeds about 45 kW/m. Increase in EOL gas volume is directly related to the increase 
in fission gas release (i.e., <0.1% to 7% FGR) (see Figure 4). 
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exceeds about 45 kW/m.  Increase in EOL gas volume is directly related to the increase 
in fission gas release (i.e., <0.1% to 7% FGR) (see Figure 4).   
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The FGR is the percentage of Xe and Kr released from the total Xe and Kr produced 
in the UO2 matrix into the element free void. OPG does not have an FGR compliance 
limit but the measured FGR for these recent examinations are comparable to other fuel 
operated at similar conditions (1). Similarly, the measured internal fission gas volumes 
are consistent with historical measurements. 

FUEL SHEATH HYDROGEN AND DEUTERIUM PICKUP 

Past studies have shown that hydrogen and deuterium ingress into the fuel sheath is 
not a direct threat to CANDU fuel performance; however, it may influence fuel 
performance (e.g., stress-corrosion cracking thresholds) (2), (3). As a result, sheath 
hydrogen and deuterium content is routinely monitored. The hydrogen and deuterium 
content was measured for fuel sheath samples taken from the heat-affected zone (HAZ; 
i.e., bearing pad region) and from the as-received zone (ARZ; i.e., midway between the 
bearing pad locations) using a hot-vacuum extraction mass spectrometry technique. 

The fabrication specification for sheath hydrogen concentration is 25 µg/g 
(maximum). Typically, most fuel sheaths received from the manufacturer have a 
nominal concentration of about 15 µg/g. During irradiation, additional hydrogen ingress 
comes from the element internals such as the CANLUB coating and pellets. The sheath 
hydrogen concentration from the latest measurement of PNGS and DNGS fuel 
elements ranged from 12 to 32 µg/g, which is well within the range of historical results of 
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10 to 80 µg/g. The average hydrogen concentration at the ARZ and HAZ was 
comparable (i.e., 18±3 versus 21±4 µg/g, respectively). There is no correlation of 
hydrogen ingress (ARZ and HAZ) with burnup or irradiation time as illustrated in 
Figure 5. 
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The historical deuterium sheath concentration results (ARZ and HAZ) contain a 
significant amount of scatter as shown in Figure 6; however, the data indicates that the 
deuterium ingress increases with burnup and irradiation time to some degree. The 
current data shown in Figure 7 is not as scattered as the historical data but also shows 
the same trend. 
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The deuterium content in the HAZ was typically greater than the ARZ. The 
deuterium concentrations from the latest fuel surveillance campaign were well within the 
range of historical data as shown in Table 2. 

TABLE 2. DEUTERIUM SUMMARY 

Element Type Deuterium Range (µg/g) 
ARZ HAZ 

PNGS (latest data) 27 to 139 124 to 300 
PNGS (historical data) 17 to 214 24 to 360 
DNGS (latest data) 25 to 130 58 to 190 
DNGS (historical data) 2 to 189 2 to 329 

COMPARISON OF MEASURED AND CALCULATED BURNUP 

Bundle average burnups are calculated using the Simulation of Reactor Operation 
(SORO) code at OPG. Recently the burnup was chemically measured for a large 
number of DNGS and PNGS fuel samples and compared to the SORO calculated 
burnup. 

Fuel chemical burnup measurements were determined by measuring the concentration 
of a fission monitor. For CANDU fuel, the stable fission monitor 139La is used for the burnup 
determinations and is measured using high performance liquid chromatography (4). The 
139La concentration is then converted to a burnup value (i.e., MWh/kgU) using a physics 
code. The chemically measured burnups were in good agreement with SORO calculated 
burnups (i.e., within ±3% of the calculated burnup) as seen in Figure 8. 
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The deuterium content in the HAZ was typically greater than the ARZ.  The 
deuterium concentrations from the latest fuel surveillance campaign were well within the 
range of historical data as shown in Table 2. 
 

TABLE 2. DEUTERIUM SUMMARY 
 

Deuterium Range (µg/g) Element Type ARZ HAZ 
PNGS (latest data) 27 to 139 124 to 300 
PNGS (historical data)  17 to 214 24 to 360 
DNGS (latest data) 25 to 130 58 to 190 
DNGS (historical data)  2 to 189 2 to 329 
 
 
COMPARISON OF MEASURED AND CALCULATED BURNUP 
 

Bundle average burnups are calculated using the Simulation of Reactor Operation 
(SORO) code at OPG.  Recently the burnup was chemically measured for a large 
number of DNGS and PNGS fuel samples and compared to the SORO calculated 
burnup. 
 
 Fuel chemical burnup measurements were determined by measuring the concentration 
of a fission monitor.  For CANDU fuel, the stable fission monitor 139La is used for the burnup 
determinations and is measured using high performance liquid chromatography (4).  The 
139La concentration is then converted to a burnup value (i.e., MWh/kgU) using a physics 
code.  The chemically measured burnups were in good agreement with SORO calculated 
burnups (i.e., within ±3% of the calculated burnup) as seen in Figure 8. 
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DEFECT ROOT CAUSE DETERMINATION 

Nine defected elements from 9 different bundles (5 PNGS and 4 DNGS bundles) were 
shipped to CRL for defect root cause determination. Two of the five PNGS defects were the 
result of debris fretting (see Figure 9). 
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FIGURE 9. PNGS ELEMENT THAT FAILED AS A RESULT OF DEBRIS FRETTING 

The remaining three defected PNGS elements experienced significant secondary 
damage and it was not possible to determine the primary defect root cause. Detailed 
examinations of the closure weld (i.e., end-cap to sheath welds) did not reveal any 
manufacturing defects. 

Two DNGS fuel bundle defects were the result of debris fretting. The other failures were 
the result of an incomplete closure weld as shown in Figure 10. 
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FIGURE 10. DNGS ELEMENT THAT FAILED BECAUSE OF AN 
INCOMPLETE CLOSURE WELD 

The fuel bundle defect rate at OPG has been well below 0.01 percent for the last five 
years. 
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The fuel bundle defect rate at OPG has been well below 0.01 percent for the last five 

years.   



CONCLUSIONS 

Overall, OPG's in-bay and hot-cell PIE program has addressed the CNSC Generic 
Action Item on fuel condition "GAI-94G02". The PIE has shown that fuel performance is 
good and is comparable to previous observations and to that predicted by fuel 
performance codes. 

A byproduct of the OPG hot-cell PIE program is that it provides researchers with a 
large variety of fuel that can be used in other research programs (e.g., oxygen-to-metal 
determination, fission product migration, etc.) (5), (6). OPG has been generous in sharing 
the results of its PIE program with industry research initiatives. 
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