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Abstract 

Many modeling projects on nuclear fuel rest on a quantitative understanding of the co-
existing phases at various stages of burnup. Since the various fission products have considerably 
different abilities to chemically associate with oxygen, and the 0/M ratio is slowly changing as 
well, the chemical potential (generally expressed as an equivalent oxygen partial pressure) is a 
function of burnup. Concurrently, well recognized small fractions of new phases such as inert 
gas, noble metals, zirconates, etc. also develop. To further complicate matters, the dominant 
UO2 fuel phase may be non-stoichiometric and most of minor phases have a variable 
composition dependent on temperature and possible contact with D20 in the event of a sheathing 
defect. 

The treatment discussed is a melding of several thermodynamic modeling projects over 
the past few years dealing with isolated aspects of this cornerstone multicomponent system. To 
simplify the computations, the number of elements has been limited to twenty major 
representative fission products known to appear in spent fuel. The proportion of elements was 
generated using ORIGEN except for oxygen, which was inferred from the concentration of the 
others. Provision to study the disposition of very minor fission products is included within the 
general treatment but these are introduced only on an as needed basis for a particular purpose. 
The building blocks of the model are the standard Gibbs energies of formation of the many 
possible compounds expressed as a function of temperature. To this data is added mixing terms 
associated with the appearance of the component species in particular phases. Sample output 
will be compared to the available direct knowledge gathered from post irradiation examination. 

Introduction 

The changes to fresh fuel as a result of burnup are illustrated as in Figure 1E11. In general 
four phases are to be expected, namely the oxide matrix (the largest phase by far), noble metal 
inclusions, complex oxide inclusions, and a gas. 
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Abstract 

Many modeling projects on nuclear fuel rest on a quantitative understanding of the co-
existing phases at various stages of burnup.  Since the various fission products have considerably 
different abilities to chemically associate with oxygen, and the O/M ratio is slowly changing as 
well, the chemical potential (generally expressed as an equivalent oxygen partial pressure) is a 
function of burnup.  Concurrently, well recognized small fractions of new phases such as inert 
gas, noble metals, zirconates, etc. also develop.  To further complicate matters, the dominant 
UO2 fuel phase may be non-stoichiometric and most of minor phases have a variable 
composition dependent on temperature and possible contact with D2O in the event of a sheathing 
defect.  

The treatment discussed is a melding of several thermodynamic modeling projects over 
the past few years dealing with isolated aspects of this cornerstone multicomponent system.  To 
simplify the computations, the number of elements has been limited to twenty major 
representative fission products known to appear in spent fuel.  The proportion of elements was 
generated using ORIGEN except for oxygen, which was inferred from the concentration of the 
others.  Provision to study the disposition of very minor fission products is included within the 
general treatment but these are introduced only on an as needed basis for a particular purpose.  
The building blocks of the model are the standard Gibbs energies of formation of the many 
possible compounds expressed as a function of temperature.  To this data is added mixing terms 
associated with the appearance of the component species in particular phases.  Sample output 
will be compared to the available direct knowledge gathered from post irradiation examination.    

Introduction 

The changes to fresh fuel as a result of burnup are illustrated as in Figure 1[1].  In general 
four phases are to be expected, namely the oxide matrix (the largest phase by far), noble metal 
inclusions, complex oxide inclusions, and a gas. 
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Figure 1.  Typical result of irradiating fresh fuel, after Olander[1]. 

U-O Binary System 
A thermodynamic model for the U-O binary system, shown in Figure 2, has been 

presented elsewhere[2-5], with comparisons to experimental data placing the phase boundaries.  A 
principal feature of this model is that the deviation from ideal stoichiometric fluorite 
composition, UO2, is accounted for by a hypothetical dissolved UO species or a hypothetical 
UO3 species.  The resultant relationship between temperature, O/U ratio in UO2+x and partial 
oxygen pressure very closely follows Lindemer and Besmann[6]. 
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Figure 2. Computed U-O binary phase diagram based on Gibbs energy minimization 
compared to experimental data placing critical phase boundaries. 

Solutes in UO2 
Experimental data for the solubility of oxides in UO2 is difficult to obtain, especially at 

high temperatures. The current model incorporates 21 oxides, which are listed in Table 1. 

Table 1. Oxides (grouped by formula, where M = metal) included as solutes in UO2. 

M20 MO M20 3 MO2

Cs20 Sr0 
Rb20 Ba0 

Ce20 3
Dy20 3

CeO2
MoO2

110203 Nb02
La20 3 Np02

Nd203 PuO2 

Pr203 Te02 

Sm20 3 Zr02
Y203 

In a review paper, Kleykamprn presents data for 12 of these oxides. In a typical 
experiment involving, for example Cs20, two samples of near stoichiometric powdered UO2
(0/U = 2.003) were mixed with Cs20 inside a thoria crucible. These crucibles were sealed 
within separate tantalum capsules, as shown in Figure 3. Each assembly was annealed at either 
1273 or 2173K for 8 hours[7 . The experiment at the lower temperature did not attain 
thermodynamic equilibriumR81, but the results at 2173K yielded the following observations: the 
internal pressure of the Ta capsule was estimated, from the wall curvature, as 200 bars; an 
tantalum oxide layer deposited on the inner walls of the Ta capsule; and the level of dissolved Cs 
in the pellet was 0.07 mass% and 0.08 mol% Cs20, as determined by X—ray microanalysis. 

2 

 

UO

Figure 3. Schematic diagram of Cs20 "Solubility" Exp

This experiment does not give the solubility of Cs20 directly. 
combines with Ta and a high Cs vapour pressure causes the capsule to s
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Figure 2.  Computed U-O binary phase diagram based on Gibbs energy minimization 
compared to experimental data placing critical phase boundaries. 

Solutes in UO2 
Experimental data for the solubility of oxides in UO2 is difficult to obtain, especially at 

high temperatures.  The current model incorporates 21 oxides, which are listed in Table 1. 

Table 1.  Oxides (grouped by formula, where M = metal) included as solutes in UO2. 

M2O MO M2O3 MO2 
Cs2O SrO Ce2O3 CeO2 
Rb2O BaO Dy2O3 MoO2 

  Ho2O3 NbO2 
  La2O3 NpO2 
  Nd2O3 PuO2 
  Pr2O3 TeO2 
  Sm2O3 ZrO2 
  Y2O3  

 
In a review paper, Kleykamp[7] presents data for 12 of these oxides.  In a typical 

experiment involving, for example Cs2O, two samples of near stoichiometric powdered UO2 
(O/U = 2.003) were mixed with Cs2O inside a thoria crucible.  These crucibles were sealed 
within separate tantalum capsules, as shown in Figure 3.  Each assembly was annealed at either 
1273 or 2173K for 8 hours[7].  The experiment at the lower temperature did not attain 
thermodynamic equilibrium[7,8], but the results at 2173K yielded the following observations:  the 
internal pressure of the Ta capsule was estimated, from the wall curvature, as 200 bars; an 
tantalum oxide layer deposited on the inner walls of the Ta capsule; and the level of dissolved Cs 
in the pellet was 0.07 mass% and 0.08 mol% Cs2O, as determined by Χ–ray microanalysis. 
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Figure 3.  Schematic diagram of Cs2O “Solubility” Exp
This experiment does not give the solubility of Cs2O directly.  
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must be considered in extracting the required thermodynamic data for Cs2O dissolved in UO2
solid solution. These data are often referred to as the lattice stability of the solute oxide in the 
structure of the solvent; that is: 

C —> C S2 ° (solid) S20 (infinite dilution in UO2 (solid) ) 
(1) 

This lattice stability is the first entry in Table 2. Note that the number of moles of foreign 
solute cations per formula mass is also given. Solubility data along with the inferred lattice 
stabilities for selected lanthanide sequioxidesM also appear in Table 2. 

Table 2. Thermodynamic data for selected solute oxides in UO2. 

Compound 
Solubility in UO2

(%) 
Temperature 

(K) 

Lattice Stability 
(w.r.t. solid) 

(J/mol) 
Cations per 

Formula mass 

Cs2O 2173 230 2 

La2O3 69 523 -2686+8.505T 2 

La2O3 50 1523 2 

Pr2O3 55 1523 -4268+8.505T 2 

Nd2O3 68 1523 -7714+8.505T 2 

PuO2 totally miscible 0 1 

NpO2 totally miscible 0 1 

The behaviour adopted for PuO2 was derived from the PuO2-UO2 diagram, which was 
determined by Lyon and Baily[91. Their results, together with the calculated phase diagram, are 
shown in Figure 4. This diagram, based on ideal mixing of the actinide oxides in UO2, shows 
that UO2 and PuO2 are completely miscible in both the solid and liquid phases, which is 
confirmed elsewhereE10'111. 
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Figure 4. UO2 — PuO2 phase diagram determined by Lyon and Baily. 

In general the agreement shown here is sufficient, considering the lack of data for this 
system and the error inherent for measurements at extremely high temperatures, to make this 
model acceptable. 

A similar treatment was applied for the UO2—Np02 binary system, using melting data 
taken from Russian work[12'13]. The lattice stabilities for PuO2 and NpO2 in Table 2 are set to 
zero. For the UO2—ZrO2 binary system, a complete model incorporating the three crystal 
structures of ZrO2 has been developed[51. 

Noble Metals 

The presence of noble metal inclusions (the so-called "white" or "five metal" inclusions) 
in irradiated fuel has been well documentedR14-2°1 and thermodynamic models for these 
inclusions have been developed, validated, and presented previous'y[21-23]. A phase diagram 
representative of the Mo-Pd-Rh-Ru quaternary is shown in Figure 5. This may be understood as 
four Gibbs triangles for the ternary combinations of elements. The triangles are arranged so that 
Rh-Pd, Rh-Ru, and Pd-Ru binary edges on the central triangle are common to the surrounding 
three ternary systems. 
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Rh-Pd, Rh-Ru, and Pd-Ru binary edges on the central triangle are common to the surrounding 
three ternary systems. 
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In the results of a typical calculation shown later in Figure 7, the metallic inclusions are 
in the close packed hexagonal crystal structure, which is to be expected[16'241. Furthermore, it has 
been reported[161 that for alloys with low Mo content in the alloy (e.g., when the Mo is depleted 
by the presence of excess oxygen), the fcc-solid phase appears in conjunction with the cph-solid 
phase. The noble metal inclusions may be two phased under some circumstances. The present 
treatment accounts for this possibility. 

Non-Fluorite Oxide Phases 

A separate oxide phase is known to occur in irradiated fuel and is well 
documentedE1'17'19'251. These oxide inclusions of the type (Ba,Sr)(U,Pu,Zr,Ln,Mo)03, form a 
"grey" phase with a perovskite structure[191, and result because of the extremely limited solubility 
of BaO and SrO in other actinide oxidesEll. However, the presence of zirconium generally leads 
to the formation of zirconates. As a result of X-ray microanalysis of this grey phase, Kleykamp 
includes Cs with the Ba and SrE71, which agrees with others[171. Thus, it is not surprising to see 
the formation of one of these compounds in a calculation, and in fact, others form as well when 
the level of oxygen in the system increases. 

Given the lack of data, the current treatment of the four distinct solid oxide phases and 
one liquid oxide phase, listed below, is to assume ideal solution behaviour. The ideal mixing 
treatments, it should be noted, recognize the number of moles of ions contributed to the solid 
solution in relation to the formula mass of the oxide components. 

i. (Rb/Cs) Zirconate solid — (Rb,Cs)2ZrO3

ii. (Sr/Ba) Zirconate solid - (Sr,Ba)ZrO3

iii. (Rb/Cs) Uranate solid - (Rb,Cs)2U04
iv. (Sr/Ba) Uranate solid - (Sr,Ba)U04
v. (Rb/Cs) Molybdenate liquid — (Rb,Cs)MoO4

Of course the appearance of Cs, for example, in combination with Mo, Zr, or U in 
condensed phases, does not preclude Cs also existing in the vapour phase or as a dissolved oxide 
in UO2+X• 

The "Other" Metallic Phase (UPd3-URh3-URu3

As noted by Imoto[251, post-irradiation examination[26'271 of fast-breeder reactor (FBR) 
fuels has shown the presence of (U,Pu)Pd3 particles. It should be noted that similar metallic 
inclusions of URu3 and URh3 may also be possible[28'291. In the current treatment this phase is 
considered to be an ideal solution of the three solids UPd3, URh3, and URu3, data for which was 
derived from Cordfunke and Konings[301. Again the ideal mixing recognizes three atoms per 
mole of each component in the formulation. 

Rhombohedral Oxide Phase 

A potentially important solution phase involving compounds of the stoichiometry 
UO3.(Ln20 3)3, where Ln may be any lanthanide, has been recently been added to the model 311. 
This phase, treated as an ideal solution, has a rhombohedral structure and includes all the 
lanthanides except Pm, Tm, and Yb. Generally speaking this phase does not appear in normal 
fuel, but the nearness to precipitation (i.e., the activity) is output from the model. 
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In the results of a typical calculation shown later in Figure 7, the metallic inclusions are 
in the close packed hexagonal crystal structure, which is to be expected[16,24].  Furthermore, it has 
been reported[16] that for alloys with low Mo content in the alloy (e.g., when the Mo is depleted 
by the presence of excess oxygen), the fcc-solid phase appears in conjunction with the cph-solid 
phase.  The noble metal inclusions may be two phased under some circumstances.  The present 
treatment accounts for this possibility. 

Non-Fluorite Oxide Phases 
A separate oxide phase is known to occur in irradiated fuel and is well 

documented[1,17,19,25].  These oxide inclusions of the type (Ba,Sr)(U,Pu,Zr,Ln,Mo)O3, form a 
“grey” phase with a perovskite structure[19], and result because of the extremely limited solubility 
of BaO and SrO in other actinide oxides[1].  However, the presence of zirconium generally leads 
to the formation of zirconates.  As a result of X-ray microanalysis of this grey phase, Kleykamp 
includes Cs with the Ba and Sr[7], which agrees with others[17].  Thus, it is not surprising to see 
the formation of one of these compounds in a calculation, and in fact, others form as well when 
the level of oxygen in the system increases. 

Given the lack of data, the current treatment of the four distinct solid oxide phases and 
one liquid oxide phase, listed below, is to assume ideal solution behaviour.  The ideal mixing 
treatments, it should be noted, recognize the number of moles of ions contributed to the solid 
solution in relation to the formula mass of the oxide components. 

i. (Rb/Cs) Zirconate solid – (Rb,Cs)2ZrO3 
ii. (Sr/Ba) Zirconate solid - (Sr,Ba)ZrO3 
iii. (Rb/Cs) Uranate solid - (Rb,Cs)2UO4 
iv. (Sr/Ba) Uranate solid - (Sr,Ba)UO4 
v. (Rb/Cs) Molybdenate liquid – (Rb,Cs)MoO4 

Of course the appearance of Cs, for example, in combination with Mo, Zr, or U in 
condensed phases, does not preclude Cs also existing in the vapour phase or as a dissolved oxide 
in UO2+x. 

The “Other” Metallic Phase (UPd3-URh3-URu3 
As noted by Imoto[25], post-irradiation examination[26,27] of fast-breeder reactor (FBR) 

fuels has shown the presence of (U,Pu)Pd3 particles.  It should be noted that similar metallic 
inclusions of URu3 and URh3 may also be possible[28,29].  In the current treatment this phase is 
considered to be an ideal solution of the three solids UPd3, URh3, and URu3, data for which was 
derived from Cordfunke and Konings[30].  Again the ideal mixing recognizes three atoms per 
mole of each component in the formulation. 

Rhombohedral Oxide Phase 
A potentially important solution phase involving compounds of the stoichiometry 

UO3·(Ln2O3)3, where Ln may be any lanthanide, has been recently been added to the model[31].  
This phase, treated as an ideal solution, has a rhombohedral structure and includes all the 
lanthanides except Pm, Tm, and Yb.  Generally speaking this phase does not appear in normal 
fuel, but the nearness to precipitation (i.e., the activity) is output from the model. 
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Establishing the Fuel Inventory for Equilibrium Calculations 

Fuel Inventory 

The fission product inventory for any particular fuel, at a given burn-up, was generated 
by the ORIGEN 2 code. For a particular burnup, the code provides the inventory for the isotopes 
of approximately 63 elements. The greater part of these are present in very small amounts, so 
our calculations are only concerned with the 20 most important elements, ranked both by relative 
concentration (e.g., Pu, Zr, and Mo) and radiological consequence (e.g., I, Cs, Xe, and Ru). In 
addition 0 2 and 112 are added to the calculation to allow for the possible presence of steam in the 
event of a sheathing breach. 

A typical CANDU fuel composition after 175MWh/kgU burnupl is given in Figure 6. In 
the calculation, the Xe accounts for the inventory of all inert gases; mols of Kr are combined 
with Xe. It is also important to determine the correct oxygen inventory for the fuel equilibria 
calculation. For a given fuel burnup, the amount of available oxygen was determined on the 
premise that the original mass of fuel was only stoichiometric UO2. 

79.95107 U + 0.29738 Pu + 0.16719 Zr + 0.19846 Xe + 
0.12592 Mo + 0.10593 Ce + 0.11598 Ru + 0.09257 Nd + 
0.05189 Sr + 0.08325 Cs + 0.01607 Np + 0.04518 Ba + 
0.03903 La + 0.02548 Y + 0.03739 Tc + 0.02832 Pr + 
0.01635 Rb + 0.01744 Te + 0.04029 Pd + 0.00971 1 + 
0.01653 Rh + 0.00009 H + 80.85685 0 2 + x 1120= 

Figure 6. The inventory of a CANDU fuel bundle at 175MWh/kgU burnup. 

Computational Methodology 

The calculation of the fuel phase equilibrium (as distinct from the gross proportion of 
atoms) involves distributing oxygen among the candidate elements and calculating the Gibbs 
energy change from an initial condition where the elements are imagined to be uncombined 
chemically. Successive redistributions are made in a systematic way[321 until the Gibbs energy 
change can be made no more negative. The calculations depend mainly on the Gibbs energy of 
formation of the various oxides. However there are other contributions to the computation of 
Gibbs energy change that are associated with the existence of species in different phases. For the 
gas phase, it is sufficient (given the uncertainties of the data) to correct for the concentration of 
the component molecules or atoms by adding to the standard Gibbs energy 

G — G° = AG = RTIn[XP] (2) 

where G is the molar Gibbs energy of the dissolved component; G° is the molar Gibbs energy of 
the pure gas at 1 atm pressure; R is the gas constant; T is the absolute temperature; Xis the atom 
or mole fraction of the particular gaseous component; and P is the total pressure. For the 
condensed solution phases, the correction to the Gibbs energy for concentration is similar but 

1 Bin#10, power 980.3kW(f)/bundle, irradiated for 143 days, burnup 140 MWdays, and flux =2.16x 1014N/cm2•sec 
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Establishing the Fuel Inventory for Equilibrium Calculations 

Fuel Inventory 
The fission product inventory for any particular fuel, at a given burn-up, was generated 

by the ORIGEN 2 code.  For a particular burnup, the code provides the inventory for the isotopes 
of approximately 63 elements.  The greater part of these are present in very small amounts, so 
our calculations are only concerned with the 20 most important elements, ranked both by relative 
concentration (e.g., Pu, Zr, and Mo) and radiological consequence (e.g., I, Cs, Xe, and Ru).  In 
addition O2 and H2 are added to the calculation to allow for the possible presence of steam in the 
event of a sheathing breach. 

A typical CANDU fuel composition after 175MWh/kgU burnup1 is given in Figure 6.  In 
the calculation, the Xe accounts for the inventory of all inert gases; mols of Kr are combined 
with Xe.  It is also important to determine the correct oxygen inventory for the fuel equilibria 
calculation.  For a given fuel burnup, the amount of available oxygen was determined on the 
premise that the original mass of fuel was only stoichiometric UO2. 

79.95107 U + 0.29738 Pu + 0.16719 Zr + 0.19846 Xe +
0.12592 Mo + 0.10593 Ce + 0.11598 Ru + 0.09257 Nd +
0.05189 Sr + 0.08325 Cs + 0.01607 Np + 0.04518 Ba +
0.03903 La + 0.02548 Y + 0.03739 Tc + 0.02832 Pr +
0.01635 Rb + 0.01744 Te + 0.04029 Pd + 0.00971 I +
0.01653 Rh + 0.00009 H + 80.85685 O2 + x H2O=

 
Figure 6.  The inventory of a CANDU fuel bundle at 175MWh/kgU burnup. 

Computational Methodology 
The calculation of the fuel phase equilibrium (as distinct from the gross proportion of 

atoms) involves distributing oxygen among the candidate elements and calculating the Gibbs 
energy change from an initial condition where the elements are imagined to be uncombined 
chemically.  Successive redistributions are made in a systematic way[32] until the Gibbs energy 
change can be made no more negative.  The calculations depend mainly on the Gibbs energy of 
formation of the various oxides.  However there are other contributions to the computation of 
Gibbs energy change that are associated with the existence of species in different phases.  For the 
gas phase, it is sufficient (given the uncertainties of the data) to correct for the concentration of 
the component molecules or atoms by adding to the standard Gibbs energy 

 [ ]lnG G G RT XP− = ∆ =o  (2) 

where G  is the molar Gibbs energy of the dissolved component; Gº is the molar Gibbs energy of 
the pure gas at 1 atm pressure; R is the gas constant; T is the absolute temperature; X is the atom 
or mole fraction of the particular gaseous component; and P is the total pressure.  For the 
condensed solution phases, the correction to the Gibbs energy for concentration is similar but 

                                                 
1 Bin#10, power 980.3kW(f)/bundle, irradiated for 143 days, burnup 140 MWdays, and flux =2.16×1014N/cm2·sec 
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involves the activity coefficient as well as the mole fraction of that component in the phase 
involved. 

G — G° = AG = RT 1n[y X] (3) 

where G is the molar Gibbs energy of the dissolved component; G° is the molar Gibbs energy of 
the pure condensed phase, which is not sensitive to the hydrostatic pressure in the range of 
interest (0-100 atm); and y is the activity coefficient. 

In dilute solution, such as the fission products in UO2, y is nearly concentration independent but 
temperature dependent where the data warrant. Care must be taken in calculating the value of X 
for each component particularly in UO2 phase, since the formula mass for the component oxide 
may be associated with the introduction of more than one mole of cations (i.e., "foreign species") 
to the solution. For example, one mole of La2O3 dissolved in UO2 contributes 2 moles of La3+; 
this factor must be taken into account in calculating concentrations for the UO2 phase. There is 
relatively little data to guide the choice of activity coefficients for each oxide component other 
than the findings gathered by KleykampR331. 

A Typical Burn-up Calculation 

The results of a typical burnup calculation are presented in Figure 7. 

The instigation to develop a First Principles Fuel model was in support of the Industry 
Standard Toolset (IST) SOURCE 2.0 code[21' 4'35]. In the original treatment, inspired by 
Cubicciotti[36-39], the Gibbs energy minimization calculations were based on the assumptions[35]

that: all gases mix ideally; the liquid metallic elements, if present, mix in an ideal solution; and 
all other condensed species are mutually insoluble stoichiometric compounds. 

The main oversimplification was the non-stoichiometry in the UO2+„ phase and the lack 
of non-ideal solution behaviour of both the solute oxides in the fuel phase and the elements in the 
noble metal phase. The results captured in SOURCE 2.0 by the Method of Chemical 
Potentials[21'34'35], differ significantly from the present treatment which addresses in greater detail 
the known aspects of the phase equilibrium. 
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involves the activity coefficient as well as the mole fraction of that component in the phase 
involved. 

 [ ]lnG G G RT Xγ− = ∆ =o  (3) 

where G  is the molar Gibbs energy of the dissolved component; Gº is the molar Gibbs energy of 
the pure condensed phase, which is not sensitive to the hydrostatic pressure in the range of 
interest (0-100 atm); and γ is the activity coefficient. 

In dilute solution, such as the fission products in UO2, γ is nearly concentration independent but 
temperature dependent where the data warrant.  Care must be taken in calculating the value of X 
for each component particularly in UO2 phase, since the formula mass for the component oxide 
may be associated with the introduction of more than one mole of cations (i.e., “foreign species”) 
to the solution.  For example, one mole of La2O3 dissolved in UO2 contributes 2 moles of La3+; 
this factor must be taken into account in calculating concentrations for the UO2 phase.  There is 
relatively little data to guide the choice of activity coefficients for each oxide component other 
than the findings gathered by Kleykamp[7,33]. 

A Typical Burn-up Calculation 
The results of a typical burnup calculation are presented in Figure 7. 

The instigation to develop a First Principles Fuel model was in support of the Industry 
Standard Toolset (IST) SOURCE 2.0 code[21,34,35].  In the original treatment, inspired by 
Cubicciotti[36-39], the Gibbs energy minimization calculations were based on the assumptions[35] 
that: all gases mix ideally; the liquid metallic elements, if present, mix in an ideal solution; and 
all other condensed species are mutually insoluble stoichiometric compounds. 

The main oversimplification was the non-stoichiometry in the UO2+x phase and the lack 
of non-ideal solution behaviour of both the solute oxides in the fuel phase and the elements in the 
noble metal phase.  The results captured in SOURCE 2.0 by the Method of Chemical 
Potentials[21,34,35], differ significantly from the present treatment which addresses in greater detail 
the known aspects of the phase equilibrium. 
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A multi-component model involving the major fission products has been developed that 
can account for the following well-documented aspects of nuclear fuel chemistry: 

a. non-stoichiometry in the UO2 fluorite phase; 

b. dilute solution behaviour of significant solute oxides; 

c. noble metal inclusions of various potential phases; 

d. zirconate and uranate solutions; 

e. a molybdenate solution; 

f. a second metal solid solution U(Pd-Rh-Ru)3; and 

g. volatile species within the inert gas phase. 

The current treatment allows for direct use in a variety of applications. For example, a 
loss-of-coolant accident in which the fuel is exposed to a changing atmosphere of hydrogen and 
steam at elevated temperature. At the other end of the temperature spectrum, calculations have 
been applied involving aqueous media yielding the leaching of fission products from the fuel of 
defected elements. The same considerations surround the disposal of spent fuel. Currently 
adjustments, in an ongoing project, are being applied to allow application to Dy-doped fuel. 
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Conclusions 

A multi-component model involving the major fission products has been developed that 
can account for the following well-documented aspects of nuclear fuel chemistry: 

a. non-stoichiometry in the UO2 fluorite phase; 

b. dilute solution behaviour of significant solute oxides; 
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d. zirconate and uranate solutions; 

e. a molybdenate solution; 

f. a second metal solid solution U(Pd-Rh-Ru)3; and 

g. volatile species within the inert gas phase. 

The current treatment allows for direct use in a variety of applications.  For example, a 
loss-of-coolant accident in which the fuel is exposed to a changing atmosphere of hydrogen and 
steam at elevated temperature.  At the other end of the temperature spectrum, calculations have 
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