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ABSTRACT 

Safety assessment of water-cooled nuclear reactors encompasses potential severe accidents 
where, in particular, the release of fission products (FPs) and actinides into the reactor coolant 
system (RCS) is evaluated. The ELSA module is used in the ASTEC integral code to model all 
releases into the RCS. A wide variety of experiments is used for validation: small-scale CRL, 
ORNL and VERCORS tests; large-scale Phebus-FP tests; etc. Being a tool that covers intact fuel 
and degraded states, ELSA is being improved maximizing the use of information from 
degradation modelling. Short-term improvements will include some treatment of initial FP 
release due to intergranular inventories and implementing models for release of additional 
structural materials (Sn, Fe, etc.). 
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1. INTRODUCTION 

Fission-product (FP) release during a severe reactor accident could result in considerable 
discharges of radioactivity to the environment if the containment building is deficient. Such an 
accident involves coolant loss from the reactor coolant system (RCS, or PHTS in the CANDU 
community) leading to core overheating with partial or total liquefaction and release of FPs, 
actinides and structural materials. The releases from intact fuel, liquefying fuel, fuel debris, light-
water reactor (LWR) control rods and a molten pool (see the general configuration depicted in 
Figure 1) are modelled in the ELSA v2.1 module. ELSA v2.1 is coupled to the core degradation 
module DIVA of the ASTEC V1 integral code [1]. 

All models employ a semi-empirical approach where ELSA v2.1 deals with 42 FPs, 5 
actinides and 5 structural materials from LWRs. For solid fuel (intact or debris), FPs and 
actinides are divided into three empirically-observed, behaviour-dependent categories: volatile, 
semi-volatile or non-volatile as summarized in Table 1. This modelling only deals with the 
principal mechanism governing the release, i.e. the dominant limiting phenomenon, in each of 
these categories. 

The modelling of the code is described below along with examples of validation studies 
where a wide variety of experiments is used including advanced degradation states such as in the 
large-scale Phebus-FP tests [2]. An indication is also given of future directions in terms of 
improvement and completion of the modelling. 
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2. VOLATILE FISSION-PRODUCT RELEASE FROM SOLID FUEL 

The release rate of volatile FPs depends largely on the process of solid-state diffusion out of 
UO2 fuel grains. In ELSA, the grains are assumed to be spherical and a grain size distribution is 
used to model the pellet. In addition, grain boundaries are assumed to be open rendering the 
resistance of this step in the release process unimportant. In other words, the rate-limiting step is 
diffusion out of the grains and all other effects are neglected. In particular, some volatile FPs can 
have significant pre-transient, intergranular inventories (i.e. a non-negligible fraction that has 
diffused out of the grains during normal reactor operation). The approximation of neglecting 
such inventories is most significant with respect to the fission gases but these are not of primary 
concern in the severe-accident context. Furthermore, the approach is based on tuning the 
effective diffusion coefficient used in the model on analytical, bare-fuel tests: this semi-
empiricism mitigates to some extent the neglect of secondary effects. Nevertheless, the 
intergranular-inventory aspect probably requires review with the advent of increasing fuel burn-
ups. Lastly, a final simplification is made by using a single value for the diffusion coefficient for 
all the volatile FPs; this value varies as a function of temperature and fuel oxidation (i.e., 
deviation from stoichiometry). 

The instantaneous fractional release rate, z, is obtained from the calculation of the release rate 
from a given grain in each size class and integrating all contributions over the distribution 
function: 
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where Do_1 is a function of temperature and stoichiometric deviation. This deviation, x, is 
described in ELSA as an oxygen exchange at the surface of the fuel [4]: 

dx r S 
' ff— = av ec/ (t) — x(t)  ] 

dt V 

where a is a function of temperature and has been experimentally determined between 1073K 
and 1873K for unirradiated fuel [5], xeq is the equilibrium stoichiometric deviation with respect 
to the bulk oxygen potential and SeifiT is the effective surface-to-volume ratio of the fuel where 
the surface area is that accessible to the bulk atmosphere. Hence, Seff is the simple geometrical 
area multiplied by two correction factors, one increasing the area due to surface roughness and 
microcracking of the fuel and the other reducing the area accounting for the presence of 
cladding. This latter value is zero before the cladding reaches a state of almost complete 
oxidation. 

During accident progression, UO2 can liquefy due to eutectic formation with Zr or other 
materials. In this case, based on results observed in the VERCORS HT3 test [7] as well as in 
VEGA3 [6], 100 % of the remaining volatile FPs are released instantaneously from the liquid 
fraction. Such an approach also gives good results when compared with release rates measured in 
Phebus FP tests [8] — see below, this section. 

The release of volatile FPs from debris beds is based on the same approach as used for intact 
fuel. The only difference concerns the definition of the average effective ratio SelV used in the 
calculation of the stoichiometric deviation. The average geometrical ratio S is given by: 
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where nclasses is the number of debris size classes, npan the number of debris in a given class 
and r the radius of the debris classes. The correction factor for surface roughness and cracking, 
defined for release from intact fuel, is also applied to this average geometrical ratio to obtain the 
average effective ratio Sefl/V. 

Figures 2 to 4 show examples of the release of volatile FPs predicted by ELSA compared to 
experimental data. The first example is the AECL test UCE9-5 which had an argon phase 
followed by a steam-argon phase while the fuel sample was held at nearly 1500K [9]. Agreement 
is seen to be quite reasonable with the effect of accelerated release due to fuel oxidation clearly 
reproduced. This agreement can be improved if it is recalled that the Ar used contained a non-
negligible oxygen fraction which has not been accounted for here. The initial difference may also 
be related to the faster release in the test of a significant intergranular inventory. The second case 
shown is VERCORS 3, a test in a very steam-rich atmosphere with a maximum fuel temperature 
reaching 2200K [10]. It is seen that the agreement is excellent. For the Phebus FPT1 test [8], 
Figure 4, results are in good agreement except for Sb implying that the interaction with fuel 
cladding may not be satisfactory modelled (though agreement with results of analytical tests is 
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quite reasonable). Half of the volatile FP inventory is released during the oxidation phase 
occurring at 11000 s. After 15000 s, the renewed heat up by the increasing bundle power leads to 
an enhancement of the volatile FP release due to the effect of liquefaction. 
3. SEMI-VOLATILE FISSION PRODUCT RELEASE FROM SOLID FUEL 

Semi-volatile FPs are thought to diffuse to grain boundaries at approximately the same rate as 
the volatile FPs but are released from the fuel at lower rates. A rate-limiting process at the grain 
boundary or from a phase or phases precipitated between the grains (e.g. Ru) is therefore 
indicated. In ELSA the release into the open fuel porosities of intact fuel and debris beds and 
then into the bulk atmosphere is assumed to be governed by evaporation and mass-transfer 
processes. The release rate of a semi-volatile species is given by: 

dm; _ L

fi  

P. 

dt s  P 
p 

,
t 

where S is the exchange surface area, /3, and Pi are, respectively, the mass transfer coefficient 
and the effective partial pressure of FP i in the gas at the evaporating surface in the fuel grain, Pt
and p, are, respectively, the total pressure of the gas and the molar concentration of gas in the 
bulk. Note that the pressure of a species i in the bulk gas of the porosities has been assumed 
negligible compared to the pressure of that species at the evaporating surface. 

Simplified chemistry is used in the calculation of the effective partial pressures Pi. The 
method consists, for each element, of the prior identification of temperature-dependent 
correlations that give the best fit to thermodynamic-equilibrium calculations taking account of 
ambient gas conditions in analytical tests. It should be understood that the semi-empiricism of 
the approach means that no explicit knowledge of the various constants that arise (parameters 
such as fii) is necessary since these comprise a single, compound constant that is determined 
empirically. 

Concerning release from fuel debris, the approach is unchanged. 

Strictly, the release of some semi-volatile FPs could depend on the diffusion through fuel 
grains and evaporation into pellet pores. Given the neglect of the diffusion step in the current 
modelling, a safeguard is implemented to prevent (as has been found on rare occasions) higher 
release of a semi-volatile FP compared to that of volatile FPs. Thus, a limitation on the release of 
semi-volatile FPs is applied such that the instantaneous fractional release rate of semi-volatile 
FPs cannot exceed that of volatile FPs except in the case where the total release of volatile FPs 
has been reached. 

Figures 6 and 7 show examples of the results of this modelling for barium and molybdenum 
compared to the VERCORS tests [10]. Similar results have also been found for the ORNL HI/VI 
tests. It is seen that agreement is somewhat variable being often acceptable but occasionally 
unsatisfactory, particularly for Mo. This is thought to be due to incomplete understanding of the 
chemistry where the evaporating species used is not always appropriate (see §7). 
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4. LOW-VOLATILE FISSION-PRODUCT RELEASE FROM SOLID FUEL 

Since low-volatility FPs do not diffuse significantly inside the fuel matrix, the release of these 
FPs from intact fuels as well as debris beds is assumed to be governed by the volatilization of 
UO2. The fractional release is assumed to be equal to that of the volatilized fuel fraction. While 
this approach may be conservative for some FPs such as Zr, it is considered acceptable in the 
safety context that it provides a lower-limit release for all nuclides. 

UO2 volatilization is treated as the vaporization of UO3 from the exposed fuel surface. UO3
vapour can form in equilibrium with hyperstoichiometric UO2, fuel. The rate of volatilization is 
then proportional to the equilibrium UO3 vapour pressure, directly related to the oxygen partial 
pressure of the atmosphere. The UO3 vapour pressure in the gas bulk is assumed to be negligible. 
The approach used to model volatilization of UO2 is, thus, similar to that of the release of semi-
volatile FPs (though the evaporating surface is different) applying a mass-transfer limitation. 
Firstly, the correlation for the partial pressure of UO3 is (Alexander's basic equations following 
the VICTORIA code [11]): 

puo, = 566.43 exp 
—AG 

RT 

0.45 
X p02

with AG = 250000- 83.3 T, T in Kelvin and P02 is the oxygen partial pressure of the bulk 
atmosphere. Then the rate of U (as UO3) mass loss is given by: 

dm UO3  P 
= UO3 eff 

UO3  p t

dt 

where Seff is the effective fuel exchange area and the mass transfer coefficient, fiuw, has been 
fitted to bare-fuel tests [5,12]. The multiplicative factors accounting for pellet roughness and 
cracking and the presence of cladding in the oxidation calculation for volatile FP release are 
included in Seff here. 

Comparison with analytical data from the FPRMP project of the E.U. 4th Framework 
Programme has shown that the model performs satisfactorily but that taking account of surface-
reaction kinetics could improve the comparison [13] (i.e., the Pup3 does not instantaneously 
reach its equilibrium value at the pellet surface). Compared to results from the Phebus FPT1 test, 
good agreement is also found. 

5. CONTROL-ROD RELEASES 

Release concerns silver, indium and cadmium and/or boron and carbon depending on the type 
of rod, Ag-In-Cd alloy or B4C. The model for boron carbide is a simple loss-through-oxidation 
correlation [14]. For Ag-In-Cd rods, due to its high volatility, Cd will be released in a burst upon 
rupture of the rod where the amount, in the empirical model used here, depends on gas 
conditions. In oxidizing conditions, Cd is assumed to be completely released from the liquid 
alloy contrary to the case of a reducing atmosphere where release of Cd is limited to 10%. 
Release of Ag, In and any remaining Cd will occur during the candling of the alloy after 
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relocation of cladding. In the model of Ag-In-Cd volatilization during candling, there is no 
consideration of chemistry due to the bulk atmosphere. The released fraction is given by: 

r =[1 — exp(—ai At)] 

where cei is a function of total pressure, temperature and activation energy. The same correlations 
are applied for the release of Ag-In-Cd from the free surface of liquid alloy. 

An example of the control-rod releases predicted by ELSA is shown for the Phebus FPT1 test, 
Figure 5. Release starts at burst occurrence with the release of 72 % of the Cd. Due to the early 
relocation of the absorber rod materials to the lower bundle, where the temperatures remained 
low, the release of Ag occurring during the candling remains low compared to experimental data 
(4 % of the initial inventory against 15 % in the experiment). Modelling improvements are in 
progress taking, most notably, better account of the geometry of the evaporating surface. 

6. RELEASE FROM IN-VESSEL MOLTEN POOLS 

The basis of the model is that, given the high-temperature conditions, chemical equilibrium 
can be assumed in the magma and that mass transfer limits evaporation from the free surface of 
the liquid phase. In addition, the molten pool is axially (vertically) and radially discretized using 
a fixed grid but there is no attempt to model correctly the physics of diffusion and convection 
phenomena between pool nodes. The approximation is, instead, to assume rapid homogenization 
of the pool. Hence, the transport model between pool nodes is based on diffusion where a single, 
temperature-independent diffusion coefficient with a very large value is applied to the whole 
magma, i.e., all species diffuse rapidly and at the same rate. 

Central to the modelling is calculation of the vapour pressures of the elements at the surface 
of the molten pool. The vapour-pressure calculation requires comprehensive treatment of 
chemistry where the equilibrium assumption allows resolution by minimization of the Gibbs free 
energy of the system. The elements considered in the molten pool database are given in Table 2 
(note that elements from concrete are included since the same database will be used by an ex-
vessel model). The need to include an element in the pool was not determined solely by the 
radiotoxicity of its radioisotopes but also depended on the importance of its contribution to decay 
heating of the pool and/or its propensity to react with important elements. Generally, an ideal-
solution approximation is used since data on non-ideal behaviour are largely lacking. 

The evaporative rate of mass loss for a species is given by: 

dm P".M . = p.s 
dt RT 

Pi and T are respectively the saturated partial pressure of species i and gas temperature at the 
pool surface, Mi the molar mass of species i, R the ideal gas constant, S the free surface area of 
the pool and /3i the mass transfer coefficient for species i. The are based on the commonly-
used Chapman and Enskog approach [15] requiring definition of collision diameters and 
Lennard-Jones potentials for each species. Correlations for mass transfer are taken from [16] 
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r = [1- exp(-a/it)] 
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vessel model). The need to include an element in the pool was not determined solely by the 

radiotoxicity of its radioisotopes but also depended on the importance of its contribution to decay 

heating of the pool and/or its propensity to react with important elements. Generally, an ideal­

solution approximation is used since data on non-ideal behaviour are largely lacking. 

The evaporative rate of mass loss for a species is given by: 
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P; and Tare respectively the saturated partial pressure of species i and gas temperature at the 

pool surface, M; the molar mass of species i, R the ideal gas constant, S the free surface area of 

the pool and /J; the mass transfer coefficient for species i. The /J; are based on the commonly­

used Chapman and Enskog approach [ 15] requiring definition of collision diameters and 

Lennard-Jones potentials for each species. Correlations for mass transfer are taken from [ 16] 
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with different expressions depending on whether convection is forced or natural and laminar or 
turbulent; a quadratic summation of the expressions is used for mixed convection. 

The first application of the ELSA v2.1 code to the release of FPs from molten pools has been 
performed on two oxidic-melt experiments and a metallic-melt test from the LPP project of the 
E.U. 5th Framework Programme'. The particular interest of applying the ELSA code to these 
experiments was to test the purely evaporation-based model given that in-vessel conditions 
involve only steam-hydrogen atmospheres and, very probably, little if any sparging due to highly 
volatile components (the mixing of significant amounts of volatile species in such a pool to 
achieve sparging would appear precluded by their prior evaporation). The exercise showed that 
development effort will have to focus on the gas-phase chemistry to take account of the 
formation of gas-phase species other than those evaporating from the pool (e.g., UO3 cannot 
form when only condensed phases are considered). 

7. CONCLUSIONS 

An overview of the physical models of the ELSA v2.1 code implemented in ASTEC vl has 
been presented with some example calculations. 

With respect to solid fuel, calculation of the release of volatile FPs is seen to be satisfactory 
though some improvement in release rates would be possible by taking account of intergranular 
inventories: these can lead in analytical tests to significant early release which is underestimated 
by ELSA. However, the importance of this has to be assessed in terms of other necessary 
improvements and the apparent insignificant incidence in large-scale tests such as Phebus FPT1 
(though higher burn-ups need to be investigated). Regarding semi-volatile and low-volatile FP 
release, this can be strongly dependent on the chemistry taking place in the fuel. A semi-
empirical approach with simple correlations, derived from thermodynamic equilibrium 
calculations, is used with tuning on experiments where the great majority of these have been 
performed in reactor-representative conditions. Nevertheless, the semi-volatile correlations will 
be reviewed based on more exhaustive exploration of the impact of the bulk atmosphere and in 
the light of work on interpretation of fuel chemistry using the MFPR code [17]. Lastly, the urania 
volatilization model used for all other releases may require addition of a second limiting step due 
to surface reaction kinetics. Alternatively, the oxidation model may require review (if the fuel 
over-oxidizes, this would also explain higher volatilization). 

The in-vessel molten pool model is operational in ELSA v2.1 but data are lacking concerning 
its validation. Nevertheless, initial calculations indicate in particular that gas-phase chemistry 
cannot be ignored (rather than just dealing with chemistry in the pool for the evaporating 
species). 

Additional models planned include implementing models for further structural materials (e.g. 
Zr, Sn, Ni, Fe, Cr). The case of an ex-vessel pool will also be dealt with based on already-
prepared initial specifications and progress with modelling molten-core-concrete interactions in 
the ASTEC context. The longer term will concern generalized use of Material Data Bank 

1 These data are unpublished and proprietary; general details can be found in proceedings of recent (2002, 2003) 
FISA meetings organized by the European Commission for which EUR references do not yet exist. 
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(MDB), an IRSN tool used for chemical-equilibrium calculations, currently limited to the molten 
pool 

In conclusion, ELSA, now a robust and relatively mature tool, provides a sound basis for 
completing modelling of the relevant phenomenology and already comprises a suitable tool for 
prediction of FP release in many circumstances with a reasonable level of accuracy and an 
acceptable calculation time. 
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Figure 5: Phebus FPTI, Ag-In-Cd control rod 
releases, ELSA/data comparison 
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Figure 7: VER CO RS 1 to 6, fractional release 
of Mo, ELSA/data comparison 


