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ABSTRACT 

A novel out-reactor method has been developed over the past few years for investigating the 
migration behaviour of fission products in oxide nuclear fuels, which allows the effects of 
thermal diffusion, radiation damage and local segregation to be independently assessed. 
Changes in tailored fission-product distributions that have been created in the near-surface region 
of polished wafers by ion implantation are precisely determined by depth profiling with high-
performance secondary ion mass spectrometry (SIMS). This provides a direct measurement of 
the diffusive spreading of a well-defined source, which has generally been recognized as the only 
reliable approach for determining diffusion coefficients. Although bombardment with high-
energy ions has been successfully used to simulate radiation-induced diffusion, the focus here 
will be on the effect of thermal diffusion. 

1. INTRODUCTION 

Segregation of fission products in oxide nuclear fuels is a determining factor for assessing 
performance and safety throughout the nuclear fuel cycle [1-4]. Overpressure swelling of the 
fuel element can occur as a result of the release of inert fission gases from the fuel matrix at high 
burnup. Several volatile fission products, notably iodine, have been implicated in fuel failures 
caused by stress-corrosion cracking of the Zircaloy sheath [5]. Release of radionuclides from 
defected fuel elements during reactor operation contributes to activity transport. Accumulation 
of segregated fission products at the fuel grain boundaries and at the fuel-sheath interface also 
enhances the potential for release of radioactivity to the environment in the event of an accident 
and from spent fuel during storage or after disposal [2-4]. Considerable effort has been 
expended over the past three decades to develop computer codes for predicting fuel performance, 
but there are still large uncertainties in the experimental data used to calibrate the physical or 
empirical models. 

Migration to the fuel grain boundaries is the first stage, and normally the rate-determining step, 
in fission-product segregation and release [3]. Three distinct regimes have been recognized for 
the diffusion of fission products within the fuel matrix during reactor operation [6]. For 
temperatures below —1000 K, migration has been shown to be athermal and directly proportional 
to the fission rate; this radiation-induced diffusion (RID) arises from transient thermal-spike and 

8th International Conference on CANDU Fuel 2003 September 21-24 
8ierne Conference internationale sur le combustible CANDU 

137 

MIGRATION BEHAVIOUR OF FISSION PRODUCTS IN CANDU FUEL 

M. SAIDYU, R.A. VERRALLb, J.F. MOURISb, I.J. MUIRa and W.H. HOCKINGu 

ABSTRACT 

aCorrosion and Surface Science Branch 
bFuel Development Branch 

AECL, Chalk River Laboratories 
Chalk River, Ontario, Canada, K0J lJ0 

A novel out-reactor method has been developed over the past few years for investigating the 

migration behaviour of fission products in oxide nuclear fuels, which allows the effects of 

thermal diffusion, radiation damage and local segregation to be independently assessed. 

Changes in tailored fission-product distributions that have been created in the near-surface region 

of polished wafers by ion implantation are precisely determined by depth profiling with high

performance secondary ion mass spectrometry (SIMS). This provides a direct measurement of 

the diffusive spreading of a well-defined source, which has generally been recognized as the only 

reliable approach for determining diffusion coefficients. Although bombardment with high

energy ions has been successfully used to simulate radiation-induced diffusion, the focus here 
will be on the effect of thermal diffusion. 

1. INTRODUCTION 

Segregation of fission products in oxide nuclear fuels is a determining factor for assessing 

performance and safety throughout the nuclear fuel cycle [ 1-4]. Overpressure swelling of the 

fuel element can occur as a result of the release of inert fission gases from the fuel matrix at high 

burnup. Several volatile fission products, notably iodine, have been implicated in fuel failures 

caused by stress-corrosion cracking of the Zircaloy sheath [5]. Release of radionuclides from 

defected fuel elements during reactor operation contributes to activity transport. Accumulation 

of segregated fission products at the fuel grain boundaries and at the fuel-sheath interface also 

enhances the potential for release of radioactivity to the environment in the event of an accident 

and from spent fuel during storage or after disposal [2-4]. Considerable effort has been 

expended over the past three decades to develop computer codes for predicting fuel performance, 

but there are still large uncertainties in the experimental data used to calibrate the physical or 
empirical models. 

Migration to the fuel grain boundaries is the first stage, and normally the rate-determining step, 

in fission-product segregation and release [3]. Three distinct regimes have been recognized for 

the diffusion of fission products within the fuel matrix during reactor operation [ 6]. For 

temperatures below - 1000 K, migration has been shown to be athermal and directly proportional 

to the fission rate ; this radiation-induced diffusion (RID) arises from transient thermal-spike and 

8th International Conference on CANDU Fuel 
Bieme Conference internationale sur le combustible CANDU 

2003 September 21-24 



138 

pressure-gradient effects that occur along fission tracks [7,8]. At higher temperatures, fission 
products can move by thermally activated jumps between lattice vacancies created by radiation 
damage—providing radiation-enhanced diffusion (RED) [6,8]. True thermal diffusion (TD), in 
which both the formation of lattice vacancies and the movement of fission products are thermally 
controlled, predominates only above —1700 K [6,9]. Both TD and RED are strongly influenced 
by the stoichiometry of the fuel matrix, which directly affects the vacancy population [9,10]. If 
the solubility limit of a particular fission product in the fuel matrix is exceeded, precipitation as 
microscopic intragranular particles or bubbles can occur. These sites act as effective traps or 
sinks for that fission product, thereby inhibiting its migration through the fuel matrix, unless they 
are disrupted by fission spikes (radiation-induced dissolution) [11,12]. 

Monitoring the release of radiotracers has been the standard method for assessing fission-
product migration in nuclear fuels over the past four decades; however, the correct interpretation 
of such data can be very difficult and results spanning many orders of magnitude have been 
reported [6,9,10,13-17]. Direct measurement of the diffusive spreading of a concentrated source, 
such as a deposited film, which is generally recognized as the only reliable approach for 
determining diffusion coefficients, has been previously applied only to the lattice atoms of the 
oxide nuclear fuels [14,15,17,18]. Over the past few years, an improved method for 
investigating the migration behaviour of fission products in CANDU fuels has been developed 
[19,20]. Changes in tailored fission-product distributions that have been created in the near-
surface region of polished wafers by ion implantation are precisely determined by depth profiling 
with high-performance secondary ion mass spectrometry (SIIVIS). The impact of temperature, 
radiation damage and local segregation can be independently assessed. Although bombardment 
with high-energy ions has been successfully used to simulate radiation-induced diffusion, the 
focus here will be on the effect of thermal diffusion. 

The migration of iodine in UO2 single crystals as well as polycrystalline ceramic fuel has been 
evaluated using ion-implanted distributions spanning five orders of magnitude in fluence, 
although only lower fluence results are reported here. Thermal anneals were normally performed 
under a suitably reducing atmosphere to preserve a near stoichiometric UO2 composition [16]. 
The partial differential equation that represents Fick's second law was numerically solved (using 
the Mathematica software package from Wolfram Research, Champaign, Illinois) to analyze 
diffusive spreading of the iodine and to determine accurate diffusion coefficients [21]. Sufficient 
reliable data have now been obtained to provide an Arrhenius relationship for iodine thermal 
diffusion in fuel, which will be compared with previous findings derived from release 
measurements [6,13,14,16]. The effects of trapping at defect sites and excess vacancies caused 
by higher oxygen potential during annealing will be illustrated. Preliminary results from studies 
of the thermal diffusion of erbium, which is soluble in the uraninite lattice, will also be 
presented. 

2. EXPERIMENTAL PROCEDURES 

The experiments reported here were performed on UO2 single crystals as well as 
polycrystalline UO2 wafers —2 mm thick, which had been sintered to —97% of the theoretical 
density, with polygonal, equiaxed grains mainly 5-15 p,m in size (fuel-grade ceramic). 
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Mechanical damage created by polishing one face of each sample to a 0.05 gm finish was 
removed by annealing at 1500°C in an atmosphere of Ar-4%H2 [22]. Tailored concentration 
profiles of stable isotopes of erbium as well as iodine were then introduced into the near-surface 
region of the polished face by ion implantation. Buried layers, with near-Gaussian distributions 
of fission products, at mean projected ranges of -75 nm and -150 nm, were created by 
employing ion-implantation energies in the 400 keV to 1.2 MeV range. These layers were 
initially produced with a pelletron (at Chalk River Laboratories (CRL)) and later with a tandem 
accelerator (operated by Interface Science Western at the University of Western Ontario 
(UWO)). In all cases, the focussed ion beam was rastered across the sample to ensure uniform 
implantation, and the wafers were divided in two, three or four pieces to obtain identical 
duplicate samples. The implanted-ion fluence was varied over five orders of magnitude—from 
10 1 ions/cm2 to 1016 ions/cm2 (data for high fluences were presented in an earlier paper [20]). 

Diffusive spreading of the ion-implanted fission-product layer was induced by annealing at 
peak temperatures of up to 1700°C in a high-density alumina tube furnace. The temperature was 
ramped up and down at a rate of 10°C/min, and was held at the maximum value for 150 min. 
Because of the exponential dependence of TD on temperature, lattice migration during the 
ramped portion of the anneal typically made only a minor contribution to the overall diffusive 
spreading. A type B thermocouple was used to monitor the in situ temperature. The oxygen 
potential within the tube furnace was controlled by a flowing gas mixture of Ar-4%112, which 
normally preserved a stoichiometric UO2 composition [16]. 

The distributions of fission products within both diffused and as-implanted samples were 
measured by depth profiling with a Cameca IMS 6f SIMS instrument, which has been 
customized for the safe handling of radioactive materials. A double-focussing magnetic-sector 
mass spectrometer provides high throughput for secondary ions, which are detected with an 
electron multiplier operated in the single-ion counting mode. The pressure inside the sample 

chamber was <10-9 Torr during the analyses. A Cs+ primary-ion beam was used to enhance the 

yield of negative secondary ions when depth profiling iodine (detected as whereas sputtering 

with 0 2+ was employed for analysing electropositive fission products (such as Er+) [23]. The 

focussed 10 keV Cs+ beam, with a diameter of -30 pm and a current of 25-100 nA, was rastered 
over an area of 250 pm by 250 pl on the sample surface. Secondary ions were efficiently 
collected, using a 5 kV extraction field, from a smaller region (60-100 pm in size) located in the 
centre of the sputtered area to minimize crater-edge effects [23]. For the low-fluence iodine 
implants considered here, sensitivity was optimized by selecting a large secondary-ion energy 
range (about 45 eV) that spanned the main part of the energy distribution curve [23]. Similarly, 
the focussed 12.5 keV 0 2+ primary beam, with a diameter of <50 pm and a current of -250 nA, 
was also rastered over the same area and secondary ions were again efficiently collected under 
similar conditions as indicated above. In this case, energy filtering was employed to reduce 
interference from molecular ions and thereby improve the dynamic range—secondary ions 
spanning a range of about 45 eV and centred at about 60 eV higher kinetic energy than the peak 
of the distribution were collected [23]. 

The depth scale for every sputter profile was subsequently determined by measuring the depth 
of the sputtered crater using a Tencor Alpha-Step 500 stylus profilometer, which was routinely 
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calibrated against a thin step-height standard (450±3 nm) from VLSI Standards Inc. Significant 
roughness developed in the bottom of craters sputtered in polycrystalline samples, arising from 
differences in sputtering rates for the various UO2 grain orientations [19]. An average crater 
depth was then derived from a minimum of six line scans recorded across the central region of 
each crater in two different directions. Because about 100 grains are included in the analysis 
area, the effects of different grain orientations should be largely averaged out. Depth profiles 
were always recorded in pairs—one from a diffused sample and the other from its as-implanted 
duplicate—under identical operating conditions. The concentration scale for the as-implanted 
sample was determined from the integrated area under the profile and the known implantation 
fluence [23]. A relative sensitivity factor (RSF) for or Er+ normalized to a matrix species 
could then be derived for these analytical conditions [23]. Finally, application of this RSF to the 
profile for the diffused sample allowed its concentration scale to be calibrated—independent of 
any loss due to volatilization from the surface. Generally good agreement was obtained using U, 
UO and UO2 as the matrix species for the RSF normalization. 

3. RESULTS AND DISCUSSION 

Thermal diffusion at 1400°C of iodine ion-implanted in a UO2 single crystal at 440 keV to a 
fluence of lx101 1 ions/cm2 is illustrated in Figure 1. The maximum iodine concentration at the 
peak of the as-implanted reference profile (about lx1016 atoms/cm3) is just below the threshold 
level previously identified for defect trapping [20]. Duplicate profiles recorded from the 
as-implanted as well as the annealed samples demonstrate excellent reproducibility, and the latter 
show clear evidence of iodine migration into the bulk matrix. A simple diffusion analysis, with a 
constant diffusion coefficient of 1.7x10-15 cm2/s over the entire depth, provided a reasonable fit 
to the altered distribution (see Introduction). Repeated experiments on polycrystalline UO2 ion-
implanted with iodine to the same fluence and annealed under the same conditions have yielded 
diffusion coefficients in the range 1 .7-3.3x10-15 cm2/s [20]. 

The impact of thermal annealing at 1465°C for 120 min on the distribution of iodine ion-
implanted in a UO2 single crystal at 930 keV to a fluence of lx1013 ions/cm2 is shown in 
Figure 2. Aside from a slight decrease in the maximum iodine concentration, which is likely due 
to the effects of RED associated with the original implantation damage [20], there has been little 
change in the distribution over the main peak. Conversely, diffusive spreading of iodine in the 
tail of the distribution is quite apparent at concentrations below —3x1016 atoms/cm3, which is 
consistent with the threshold for trapping at immobile defect sites (nanobubbles) that was 
previously inferred from experiments on polycrystalline fuel samples [20]. These results also 
provide a convincing demonstration that this migration must be due to lattice diffusion (i.e., there 
are no grain boundaries in the single crystal). Although the spreading in the tail of the 
distribution in Figure 2 can be fitted with a simplified diffusion analysis, the correct 
interpretation of these data is not straightforward. 

Significant migration of iodine, ion-implanted in polycrystalline UO2 at 440 keV to a fluence 
of 1x1011 ions/cm2, resulting from thermal annealing at 1520°C for 150 min is shown in 
Figure 3. Agreement between the measured and calculated iodine distributions in Figure 3 is 
quite good over the entire depth profile. In this case, two separate diffusion coefficients were 
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required to achieve an optimum result, but the smaller coefficient used at shallow depths should 
probably be regarded as just a fitting parameter (possibly representing implantation damage 
effects [20]). The diffusion coefficient (6.3x10-1- cm2/s) used for depths of greater than 
0.075 pm (i.e., over most of the altered distribution) is about double the values derived at 
1400°C, which is qualitatively consistent with the expected temperature dependence. More 
pronounced diffusive spreading of iodine ion-implanted in polycrystalline UO2 to a low fluence 
has been observed after annealing at temperatures of 1650°C [20]. This migration also followed 
the expected square-root dependence on annealing time and could be fitted (except right at the 
surface) with a single diffusion coefficient [20]. 

The thermal diffusion coefficients determined for iodine in stoichiometric UO2 between 
1400°C and 1650°C are plotted on an Arrhenius diagram in Figure 4 (one polycrystalline 
measurement is not shown because it is coincident with the single-crystal result). Diffusion 
coefficients previously derived from in-reactor measurements of iodine release from 
polycrystalline UO2 at 1400°C span two orders of magnitude (from 1015 to 10-13 cm2/s) [6,9,24], 
but the few data reported for small UO2 single crystals (also shown on Figure 4) nearly coincide 
with the present results. This agreement may be partly fortuitous as the in-reactor migration 
rates reflect the competing influences of trapping and radiation enhancement on diffusion. Post-
irradiation measurements of iodine release from polycrystalline UO2 samples have been 
performed at temperatures greater than 1400°C; however, the reported D/a2 values span three 
orders of magnitude and there is the additional uncertainty of choosing an appropriate radius (a) 
for the Booth spheres that are included in the analysis of release data [16,24,25]. 

In-reactor studies have indicated that I, Xe and Kr diffuse at comparable rates throughout the 
three diffusion regimes (TD, RED and RID) described in the Introduction [6]. Extensive 
measurements of fission-gas release from irradiated UO2 fuels have yielded widely varying 
results [13-15]. Although some of this divergence undoubtedly reflects real effects, such as 
single-atom diffusion versus trapping, significant problems with release measurements and their 
interpretation have also been recognized [13-15,17]. The magnitude of the conundrum is 
captured by the four relations shown graphically in Figure 4 for D1, D2, D3 and D,I, which have 
been commonly used to represent fission-gas thermal diffusion (where k is the Boltzmann 
constant and T is the absolute temperature). The first relation (D1) was derived from early 
studies of out-reactor anneals of lightly irradiated UO2 (fission-product concentrations below the 
trapping threshold) [26], but has subsequently been claimed to closely represent in-reactor 
measurements taken to a much higher burnup [6]. Based upon a comprehensive review of 
fission-gas release literature up to 1987, D2 and D3 were recommended for the low-concentration 
and high-concentration limits, respectively [14]. The last relation (D4) was derived from out-
reactor anneals of high-burnup UO2 fuel [27] and has subsequently been claimed to be 
appropriate for in-reactor migration in the thermal-diffusion regime [9]. Although the lines for 
D1 and D3 fall within the vicinity of our new data, neither the activation energies nor the 
frequency factors are optimum; furthermore, the original basis for D3 (high trapping) does not 
apply here. A recent theoretical analysis of iodine migration in UO2 concluded that the 
controlling process would likely be uranium self-diffusion, in which case the D4 activation 
energy would be correct [28]. The values of the activation energy (3.44 eV) and frequency 
factor (4.75x10-5 cm2/s) obtained from a fit to our data (also shown in Figure 4) differ from all of 
the published results, although the divergence is least for the Di relation. 
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constant and Tis the absolute temperature). The first relation (D1) was derived from early 
studies of out-reactor anneals of lightly irradiated UO2 (fission-product concentrations below the 
trapping threshold) [26] , but has subsequently been claimed to closely represent in-reactor 
measurements taken to a much higher burnup [6]. Based upon a comprehensive review of 
fission-gas release literature up to 1987, D2 and D3 were recommended for the low-concentration 
and high-concentration limits, respectively [14]. The last relation (D4) was derived from out
reactor anneals of high-burnup UO2 fuel [27] and has subsequently been claimed to be 
appropriate for in-reactor migration in the thermal-diffusion regime [9]. Although the lines for 
D1 and D3 fall within the vicinity of our new data, neither the activation energies nor the 
frequency factors are optimum; furthermore, the original basis for D3 (high trapping) does not 
apply here. A recent theoretical analysis of iodine migration in UO2 concluded that the 
controlling process would likely be uranium self-diffusion, in which case the D4 activation 
energy would be correct [28]. The values of the activation energy (3.44 eV) and frequency 
factor (4.75x10·5 cm2/s) obtained from a fit to our data (also shown in Figure 4) differ from all of 
the published results, although the divergence is least for the D 1 relation. 
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An extraordinary result obtained by annealing a polycrystalline UO2 sample, ion-implanted 
with iodine at 440 keV to a fluence of lx101 1 ions/cm2, for a second time at a temperature of 
1500°C for a period of 150 min (previously annealed at 1400°C for 150 min) is displayed in 
Figure 5. Iodine appears to have migrated deeply into the bulk of the sample with virtually no 
loss from the surface (equivalent results were obtained from duplicate profiles). Repeated 
anneals of other samples (up to as many as four times) have never produced comparable 
behaviour. The plateau in the iodine concentration over depths between about 0.1 p.m and 
0.7 [tm cannot be explained solely on the basis of thermal diffusion. Conversely, a simple 
diffusion model provided a reasonable fit to the iodine distribution at depths beyond 0.7511m, 
with a diffusion coefficient of 3x10-13 cm2/s, which is almost two orders of magnitude larger than 
would have been predicted from the results above. An elevated oxygen potential at any point 
during the thermal anneal, sufficient to cause a small degree of hyperstoichiometry and an 
abundance of uranium lattice vacancies, offers the most plausible explanation for the behaviour 
observed in Figure 5. Because coulometric titration of the sample after the diffusion experiment 
did not reveal detectable levels of excess oxygen, this may have been a transient phenomenon. 
Failure of the tube furnace, used for the thermal anneals, during the next run suggests oxidation 
of the sample surface resulting from air ingress through an incipient crack. 

The rare earth elements are an important family of fission products that have high solubility in 
the fuel matrix—as lattice substituents for uranium [9]. Simple thermal diffusion of rare earth 
elements in uraninite at modest concentrations would therefore be expected, without the 
complications of trapping and release encountered for iodine. The distribution of 166Er ion-
implanted in polycrystalline UO2 at 1230 keV to a fluence of 3.36x1012 ions/cm2 is shown in 
Figure 6, before and after thermal annealing at 1600°C for 150 min. Surprisingly, the anneal 
appears to have had the greatest impact on the tail of the distribution, although evidence of 
erbium migration is apparent throughout the depth profile. Duplicate profiles recorded at other 
locations on the annealed sample demonstrated excellent reproducibility. The calculated 166Er 
distribution agrees very well with the measured profile after the thermal anneal. The calculated 
distribution was obtained using a small diffusion coefficient (8.3x10-16 cm2/s) ford < 0.4 prn, a 
relatively large diffusion coefficient (5.8x10-14 cm2/s) ford > 0.8 p.m and a smoothly changing 
value across the transition zone (0.4-0.8 ilm). By analogy with the iodine results above, the 
small diffusion coefficient could be interpreted as being clue to trapping and the large diffusion 
coefficient would then represent the intrinsic diffusion rate. However, as already noted, trapping 
effects are not expected for rare earth elements at such low concentrations and the smooth 
diffusive spreading across the peak of the distribution in Figure 6 is not what was observed for 
iodine above the trapping threshold. 

Alternatively, the small diffusion coefficient could represent the intrinsic diffusion rate and the 
larger coefficient might reflect enhanced migration involving the grain boundaries. This 
interpretation is now supported by recent experiments on a UO2 single crystal (equivalent to 
those shown in Figure 6) that revealed no evidence of enhanced migration of l66Er in the tail of 
the distribution. The Arrhenius relationship that has been recommended for uranium diffusion in 
stoichiometric UO2 predicts a diffusion coefficient of 5.5x10-16 cm2/s at 1600°C [19], which is in 
good agreement with the value derived from the main part (d < 0.4 um) of the erbium 
distribution above. A lattice substituent for uranium in UO2 might reasonably be expected to 
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diffuse at a similar, but not necessarily identical, rate to uranium. Grain-boundary diffusion is 
generally presumed to be much faster than lattice diffusion, although there are relatively few 
reliable measurements [29]. Whether the overall migration (as determined by depth profiles) is 
significantly enhanced depends not only on the relative diffusion rates but also the effective 
cross-sectional area of the grain boundaries. 

4. CONCLUSIONS 

The recently developed ion-implantation/SIMS method for investigating the migration 
behaviour of fission products in oxide nuclear fuels has been further refined and tested. 
Additional studies of iodine are consistent with previous experiments and preliminary new 
results have been obtained for erbium. Improvements have also been made in the techniques 
used to model diffusive spreading. The effects of thermal diffusion, radiation damage and local 
segregation or trapping can be independently assessed, although quantitative analysis remains 
difficult if one process does not predominate. 

The diffusion coefficients determined for iodine at low concentrations in both single-crystal 
and polycrystalline UO2 at 1400°C are in excellent agreement with previous in-reactor 
measurements on small UO2 single crystals [6]. This suggests that the impact of trapping on the 
in-reactor migration rate (at higher fission-product concentrations) has been largely negated by 
radiation effects. Sufficient reliable data on iodine thermal migration in stoichiometric UO2 are 
now available to evaluate published Arrhenius relationships, which predict diffusion coefficients 
spanning five orders of magnitude. The new data fall near the midrange of the predicted values; 
however, none of the Arrhenius expressions provide a good fit over the full range of 
temperatures. Diffusion information derived from fission-product release measurements is 
clearly very difficult to interpret properly—in the absence of detailed information on the 
microscopic redistribution, severe complications arising from trapping and radiation damage 
may not be recognized. Preliminary values of the activation energy (3.44 eV) and frequency 
factor (4.75x107- cm2/s) obtained from a fit to our recent data differ significantly from all of the 
published results. 

A greatly enhanced iodine diffusion rate observed in one experiment has been attributed to 
excess uranium lattice vacancies caused by an excursion in the oxygen potential during the 
thermal anneal. It should be feasible to explore this effect on a systematic basis by annealing 
samples at different elevated oxygen potentials in a controlled fashion. 

Preliminary measurements indicate that lattice diffusion of erbium in stoichiometric UO2 is 
comparable with uranium self-diffusion, although evidence of a faster diffusion process 
associated with grain boundaries was also obtained. 
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