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ABSTRACT 

A CANDU reactor has the unique features and the intrinsic safety related characteristics that 

distinguish it from other water-cooled thermal reactors. If there is the loss of coolant accident 

(LOCA) and a coincident failure of the emergency coolant injection (ECI) system, the heavy 

water moderator is continuously cooled, providing a heat sink for decay heat produced in the 

fuel. Therefore, it is one of major concerns to estimate the local subcooling of moderator inside 

the calandria vessel under postulated accident in CANDU safety analyses. The Canadian 

Nuclear Safety Commission (CNSC), a regulatory body in Canada, categorized the integrity of 

moderator as a generic safety issue and recommended that a series of experimental works be 

performed to verify the safety evaluation codes for individual simulated condition of nuclear 

power plant, comparing with the results of three-dimensional experimental data. 

In this study, three-dimensional analyses of fluid flow and heat transfer have been 

performed to assess thermal-hydraulic characteristics for moderator simulation conducted by 

SPEL (Sheridan Park Experimental Laboratory) experimental facility. The parametric study has 

also carried out to investigate the effect of major parameters such as flowrate, temperature, and 

heat load generated from the heaters on the temperature and flow distribution inside the 

moderator. Three flow patterns have been identified in the moderator with flowrate, heat 

generation, or both. As the transition of fluid flow is progressed, it is found that the 

dimensionless numbers (Ar) and the ratio of buoyancy to inertia forces are constant. 

1. IN TROD UCTION 

As for other water-cooled reactors, loss-of-coolant accidents (LOCA) in CANDU reactors 

can be the precursors to fuel damage, which can result in radiological consequences. However, 

a CANDU reactor has the unique features and the intrinsic safety related characteristics that 

distinguish it from other water-cooled thermal reactors. One of the safety futures is that the 

heavy water moderator is continuously cooled, providing a heat sink for decay heat produced 

in the fuel if there is a LOCA and a coincident failure of the emergency coolant injection (ECI) 

system. Under such dual failure conditions, the hot pressure tube (PT) would deform into 

contact with the calandria tube (CT), providing an effective heat transfer path from the fuel to 

the moderator. 

Under conditions of high pressure tube temperature and high coolant pressure following 
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performed  to assess thermal-hydrau lic characteristics for moderator simulation conducted  by 
SPEL (Sheridan Park Experimental Laboratory) experimental facility. The parametric study has 

also carried  out to investigate the effect of major parameters such as flowrate, temperature, and  
heat load  generated  from the heaters on the temperature and  flow d istribution insid e the 

moderator. Three flow patterns have been identified  in the mod erator with flowrate, heat 
generation, or both. As the transition of flu id  flow is progressed , it is found  that the 
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1. INTRODUCTION 
As for other water-cooled  reactors, loss-of-coolant accidents (LOCA) in CANDU reactors 

can be the precursors to fuel d amage, which can result in rad iological consequences. However, 
a CANDU reactor has the unique features and  the intrinsic safety related  characteristics that 

d istinguish it from other water-cooled  thermal reactors. One of the safety fu tu res is that the 
heavy water moderator is continuously cooled , provid ing a heat sink for decay heat produced  

in the fuel if there is a LOCA and  a coincid ent failure of the emergency coolant injection (ECI) 
system. Und er such dual failure cond itions, the hot pressure tube (PT) would  deform into 

contact with the calandria tube (CT), provid ing an effective heat transfer path  from the fuel to 
the moderator. 

Under cond itions of high pressure tube temperature and  high coolant pressure following 



LOCA accidents, the PT could strain (i.e., balloon) to contact its surrounding CT (PT/ CT 

contact). Following contact between the hot PT and the relatively cold CT, there is a spike in 

heat flux to the moderator surrounding the CT, which leads to sustained CT dryout. The 

prevention of CT dryout following PT/ CT contact depends on available local moderator 

subcooling. Higher moderator temperatures (lower subcooling) would decrease the margin of 

the CTs to dryout in the event of PT/ CT contact. As for LOCAs with coincident loss of the ECI, 

fuel channel integrity depends on the capability of the moderator providing the ultimate heat 

sink. Although a couple of computer codes such as 2DMOTH, PHOENICS, etc. were used to 

predict moderator temperature for these accidents, they were not adequately validated due to 

the uncertainty of temperature prediction. The CNSC requested to perform three-dimensional 

moderator test facility experiments with an aim to validate safety analysis tools. 

In this study, an objective is to establish a sound theoretical basis for the models and then 

verifying them systematically against experiments under potential upset conditions. A three-

dimensional CFD code, FLUENT, is used to simulate the moderator circulation inside the 

calandria-like cylindrical tank. To evaluate the uncertainties, a lot of sensitivity studies are 

performed for various parameters. Comparing with experiments and previous simulated 

results, the fluid flow and temperature distribution are evaluated under the similar fluid flow 

situations. 

2. SPEL EXPERIMEN T 

SPEL experimental apparatus, which is built for the understanding of the moderator 

circulation inside the calandria of a CANDU reactor, is not a scaled model of a real CANDU 

reactor, but has salient features of a typical CANDU reactor. These features can be summarized 

as follows: 

• matrix of horizontal tubes parallel to the cylindrical axis, 

• heating of the fluid in the center region of Calandria-like tank by volumetric heat 

generation without boiling and thereby induced Buoyant flow, and 

• re-circulating flow induced by the inlet jets in the cylindrical tank. 

Thus, the fluid flow inside the cylindrical tank is expected to be the result of the interaction 

of momentum forces generated by the inlet jets with buoyancy forces by volumetric heat 

generation. 

Figure 1 shows the experimental setup of SPEL small-scale moderator facility. In the central 

region of the cylindrical tank, 52 tubes working as electrodes make a tube matrix. Around the 

tube matrix, there are free spaces for moderator fluid representing reflector region. Two inlet 

nozzles are located upward at both left and right sides of the tank. One outlet is at the bottom of 

the tank. Table 1 is the summary of dimensions and characteristics of the SPEL experimental 

apparatus. Volumetric heat generation was achieved by electrolytic resistance heating. The 

working fluid was a solution of water and sodium chloride. The copper tubes forming a tube 

matrix in the vessel acted as the electrodes. High amperage, low voltage alternating current was 

passed via the tubes through the working fluid generating heat. 
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3. MODELLING DETAILS AND ASSUMPTIONS 

To simulate the SPEL experiments, all dimensions are as close to the experimental apparatus 

as shown Fig. 2. The working fluid is water at 0.1MPa. The properties are set uniform and 

constant, independent of temperature and pressure. 

For the thermal hydraulic analysis of CANDU moderator, the general purpose CFD code, 

FLUENT-5.5, is used to solve coincidently continuity equation, momentum equations and 

energy equation. The flow is assumed to be steady, incompressible and single-phase. The 

buoyancy effects are accounted for by the Boussinesq approximation. SIMPLEC algorithm is 

used, which is recommended for the flow with strong Buoyancy effect. The standard k-c 

turbulence model associated with logarithmic wall treatment is used to model turbulence 

generation and dissipation within the vessel. Buoyancy forces are modeled using the 

Boussinesq approximation in which density is assumed to be a linear function of temperature. 

A comparison is made between previous CFD analyses based on 2DMOTH, PHOENICS, and 

the current analysis for the SPEL experiment. Moreover, the present moderator analysis model 

predicts the moderator temperature reasonably, i.e., the maximum temperature inside 

calandria-like tank is 40.3°C, which is somewhat lower than the SPEL experimental result of 

41°C. 

Figure 3 is the comparison of experimental and computed temperature along a vertical 

centerline. Figures 3-a and 3-b show that the temperature profiles predicted by both this study 

and PHOENICS is well agreed with those of the SPEL experiments. The temperature profiles 

decreases slightly from upper region. In the meanwhile, the temperature profile predicted by 

2DMOTH is underestimated at the bottom region of the Calandria compared with that of the 

SPEL experiment. In Figures 3-c and 3-d, they show the predicted temperature profiles near 

inlet of moderator. They are shown that the temperature profile decrease sharply due to the 

momentum of moderator inlet flow at the regions on the flow passage of moderator. However, 

the temperature profile increases due to the heat generation in the Calandria and it decreases at 

the bottom region due to the forced convection. Both the SPEL experiment and the predicted 

temperature are similar results and the maximum temperature deviation between those is about 

2.50. 

4. RESULTS AND COMPARISON 

According to the computational results with CFD code for SPEL geometry, it is found that 

three flow patterns, e.g., momentum dominated flow, mixed type flow and buoyancy 

dominated flow, respectively, are observed in the Calandria as shown in Fig. 4. It is also noticed 

that the onset conditions of these flow patterns mainly depend on the heat load and inlet 

velocity. 

Figures 5-7 show the effects of major input parameters, e.g., the inlet velocity and the 

temperature of moderator and the heat load generated from heaters on the temperature and 

velocity distribution inside Calandria. From the effect of inlet velocity of moderator shown in 

Fig. 5, as the inlet velocity is increased, which causes the momentum to be increased both of the 

maximum and the outlet temperatures are decreased. It is also noticed that the ranges of inlet 

velocity where the mixed type flow is observed, broaden as the heat load of heaters is increased. 
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4. RESULTS AND COMPARISON 
Accord ing to the computational results with CFD code for SPEL geometry, it is found  that 

three flow patterns, e.g., momentum dominated  flow, mixed  type flow and  buoyancy 

dominated  flow, respectively, are observed  in the Calandria as shown in Fig. 4. It is also noticed  
that the onset cond itions of these flow patterns mainly depend  on the heat load  and  inlet 

velocity. 

Figures 5-7 show the effects of major input parameters, e.g., the inlet velocity and  the 

temperature of moderator and the heat load  generated  from heaters on the temperature and  
velocity d istribution insid e Calandria. From the effect of inlet velocity of moderator shown in 

Fig. 5, as the inlet velocity is increased , which causes the momentum to be increased  both of the 
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In Figure 6, it is shown the effect of inlet moderator temperature. It is found that the 

maximum and the discharge temperatures are changed linearly with the changes of the inlet 

moderator temperature. It is also noticed that the inlet moderator temperature does not have a 

big effect on the temperature distribution inside Calandria. 

When the heat load is increased, the maximum and the discharge temperatures are 

increased regardless of the flow patterns inside Calandria, as shown in Fig. 7 in the condition of 

momentum dominated flow. 

Figure 8 shows the flow pattern map of moderator inside Calandria resulted from the 

parametric studies. It is noticed that when Ar, the ratio of buoyancy force to inertia force, is 

about 0.5, the flow transition from buoyancy dominated flow to mixed type flow, vice versa, 

while the flow transition from mixed type flow to momentum dominated flow, vice versa, in 

the condition of 0.08 in Ar. In other words, as the transition of fluid flow is progressed, it is 

found that the dimensionless numbers, Ar are constant. Therefore, it is recommended that the 

studies on operating condition of heavy water reactor with both buoyancy force and inertia 

force, following the calculation with real geometry of Calandria and the preparation of the flow 

pattern map should be carried out in future. 

5. CONCLUSION 

Three-dimensional analyses of fluid flow and heat transfer have been performed to assess 

thermal-hydraulic characteristics for moderator simulation conducted by SPEL experimental 

facility. The parametric study has also carried out to investigate the effect of major parameters 

such as inlet velocity, temperature, and heat load generated from the heaters on the 

temperature and flow distribution inside the moderator. The main conclusions are as follows; 

• Three flow patterns have been observed in the Calandria with flowrate, heat generation, 

or both, that is, momentum dominated flow, mixed type flow and buoyancy dominated 

flow 

• The major input parameters affecting the flow patterns inside Calandria are the inlet 

velocity and heat load. However, the inlet moderator temperature does not have big 

effect on the flow pattern. 

• As the transition of fluid flow is progressed, it is found that the dimensionless numbers 

(Ar) and the ratio of buoyancy to inertia forces are constant. 
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Table 1. Summary of the Experimental Apparatus 

ID, [m] OD, [m] L, [m] Number Comment 

Test Vessel 0.74 0.775 0.254 1 

Heater Tubes 0.038 0.254 52 0.075m square pitch 

Table 2. Comparison of Experimental and Computed Temperatures 

SPEL experiments FLUENT-5.5 2DMOTH 

Inlet Temperature 30.0°C 30.0°C 30°C 

Outlet Temperature 
34.3 — 34.5°C 

(±0.2°C) 
34.1°C 34.9°C 

Maximum Temperature 41°C 40.3°C 40.4°C 

AT=Toutlet - Tinlet 5.7° C ( ± 2.0°C) 4.1°C 4.9° C 

21. 

O 

0 

c;; 

Figure 1. CANDU-6 nuclear reactor. 
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Figure 3. Comparison of experimental and computed temperatures along a vertical centerline.
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Figure 4. Typical flow pattern of moderator inside Calandria. 
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(c) momentum dominated  flow (Vin=0.40m/ s, Tin=30�, Heat Load=10kW) 

Figure 4. Typical flow pattern of moderator inside Calandria.
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Figure 8.  Flow pattern map of moderator inside Calandria. 


