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Summary 

The current best estimate and uncertainty analysis (BEAU) methodology for LOCA safety 

analysis requires as input probability distributions for the relevant process variables as well as their 

associated uncertainties. In particular, among these process variables are maximum channel and 

bundle powers including their uncertainties. Upon deeper consideration it becomes apparent that 

it is not possible to satisfy the requirement in a straightforward manner. The reason for this is that 

the mathematical notion of the variables in the compliance with channel/bundle power licence limit 

analysis (the CU approach) are conceptually different. A crucial difference between the two ap-

proaches is that the CU analysis considers the error in the simulated variable, estimated by a Monte 

Carlo procedure, while BEAU analysis does not. The Monte Carlo procedure of the current BEAU 

analysis lacks a formal description of its fundamentals and treatment of the uncertainties, while the 

CU methodology provides a rigorous mathematical framework for the simulation of variables, its 

meaning and the associated uncertainty analyses. Using this mathematical framework, it is shown 

how to understand the BEAU simulation, what the input process variables should be and how the 

input errors should be treated. 

The result of a BEAU analysis is an extreme value, such as a maximum fuel sheath temper-

ature, and hence the crucial statistical properties of such a result depend on the understanding of 

the extreme value statistics. The current BEAU analysis may suffer from the lack of consideration 

for the extreme value statistics. In this paper some examples are provided to demonstrate the effect 

of the extreme value statistics on the final result of the desired computation. It is also argued that 

the CU approach applied in BEAU analysis leads to estimates for the simulated variables with well 

defined statistical properties. Moreover, such an approach may lead to more favourable results than 

the current BEAU analysis in a sense that the former may produce results with larger operating 

margins. 
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I. INTRODUCTION 

Many results in nuclear safety analysis rely on the ability to calculate an extreme value of 

something, say T, such as a maximum fuel temperature in LOCA BEAU analysis [1]. It is relative-

ly straightforward to find a conservative extreme value for T. But to operate a reactor under prac-

tical licensing constraints one needs to find extreme values and at the same time be adequately 

confident that they are only as extreme as is useful for the application. The need for the answer to 

lie within some band of conservatism, and the associated level of confidence vary from application 

to application. Consequently, there is a need for a general method to calculate extreme values, but 

which can be tailored to meet the needs of different applications. In addition to LOCA BEAU anal-

ysis, such applications include compliance with maximum channel power licence limits, imple-

mentation of low flow channel power limits which are maximum channel power dependent, 

compliance with minimum margin to fuel constraint, computation of NOP trip set points, etc. 

Such a general approach has been developed and is called the compliance uncertainty (CU) 

approach (based on the work on compliance with channel power licence limits [2]). It is described 

in some detail below. 

The main advantages of the CU approach are: 

• The result is a probability distribution for the error in the estimated extreme value T (consid-

ered to be a random variable), with well-defined statistical properties. This allows one to cal-

culate directly the upper bound on T for some associated probability 1 - J . In contrast, the use 

of a probability distribution for T in which the error term has not been computed explicitly is 

basically an empirical approach and has no such statistical assurance. 

• It can deliver estimates of the extreme value which are restrictive only to the degree required 

or desired because the error term is handled explicitly. 

• The nature of the estimated extreme values of Tcan be related to the characteristics of the func-

tion J  by which the values of T are generated. The way in which these two functions (i.e. 

and 7) are related is complex and it will be seen that as J  changes in nature the changes in the 

estimates of Tcan be considerable. More significantly, however, these changes in the estimated 

Tcan be qualitatively different from those seen in a more traditional approach (where the errors 

are included only implicitly). This can lead to situations where the predictions of a more tradi-

tional approach can be shown by the CU method to be non-conservative. 

In the present paper, we will 

• outline the mathematical formalism underlying the CU approach, with particular attention to 

the concept of "true value" and the application of this concept, 
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• describe how a Monte Carlo calculation using this approach is set up, 

• show explicitly how the CU and traditional (BEAU) approaches differ, 

• provide some analysis of the extreme values for a given computation 

II. THE CONCEPT OF A TRUE VALUE IN THE CU METHODOLOGY 

The "true value" of some parameter, say 
ptrue , 

is a somewhat metaphysical concept, in that 

a true value is generally unknowable and unobservable. We can speak of a measured value, say P 

and an associated error Li, and by virtue of this one can infer a true value, provided the definitions 

are kept adequately rigorous. The mathematical expression of this statement is 

p i  pt i nie (1) 

and this expression can be viewed as a definition of error. Equation (1) is sometimes written as 

p t.nie D

i 4 ,

but this is incorrect as a conceptual definition since the true value exists regardless of the error. 

(This equation is used only numerically to derive confidence limits on the true value.) Furthermore, 

since the error and the true value must be considered as variables over which we have no control, 

the observed value, P i , is dependent on them and thus the mathematical formalism of Equation (1) 

is correct. 

From Equation (1), it is evident that getting to grips with the true value requires an under-

standing of both the observed value and the error. Consider a general model in which a parameter 
Ttrue true . 

is a function, J, of n variables P
re P2  true, P3true, 

, P n , i.e., 

true = tr, Dtrue true true 
T 1 ,P 2 ,P3 , 

Given measured (or computed) values P1, P 2, P 

fined as 

T = F(P P P

C,4 

C,4 
true 

n 

. (2) 

, P n , an approximate values T of Ttrue is de-

, 

where T now includes an error, say , which can expressed as 

T = T true + . 

(3) 

(4) 
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In this expression, can be considered as a random variable and will possess some probability dis-

tribution. 

Following the standard approach for statistical testing, for a small positive number, J (such 

as 0.02), we can say that the probability that has a value greater than or equal to a value - j is 

1 - J , or 

P{ — = 1 — J . (5) 

(The minus sign in front of j is used for convenience only since j is, typically, a positive num-

ber.) Using this value of j an upper confidence bound, Tj , on Ttrue is defined as 

The important property of Tj is that 

P{ T 

T
j 

= T+ j . 

Ttrue 

(6) 

(7) 

What Equation (7) says is that if we prescribe some limit, L , then based on a choice of J 

and our derived knowledge of the error associated with T, we can state with a confidence of 1 — J 

that when Tj is less than or equal to L , Ttrue is also less than or equal to L . In the language of 

statistical testing, Tj is the test statistic, the Null Hypothesis is 
„ Ttrue 

is greater than L", and the 

Alternative Hypothesis is 
"Ttrue 

is less than or equal to L". So if the value of the test statistic Tj

is less than or equal to L , we reject the Null Hypothesis and conclude that the Alternative Hypoth-

esis is true to a confidence level of 1— J (or significance level of J ). 

Note the difference between Tj and T . In more traditional approaches, T incorporates the 

error in some non-specific way (for example applying errors to P i s in (3), in the sense that the fo-

cus is on the observed or computed value T . T is then presented as an empirical distribution which 

has no defined properties, and in order to make statements about any conservatism which T may 

include one is forced simply to specify arbitrarily some (upper) percentile of this distribution as a 

means of estimating where the desired extreme value may lie. In the CU approach, on the other 

hand, the error is treated explicitly and a variable TJ is constructed which allows inferences of 

statistical significance to be made about the parameter Ttrue

Note particularly that the values of T were obtained using some calculation model J - see 

(3). Because of this, the value of T will depend on the functional nature of J. For a particular 

function F 1 , the statistical test applied to T would produce some outcome A. For a different func-
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tion 5 -2 , some different outcome B could arise. It is possible to make these distinctions only be-

cause the CU approach treats the error explicitly and allows a statistical confidence of any desired 

level of stringency to be applied. More traditional approaches which consider the error implicitly 

allow no such distinctions to be made. Consequently, the CU approach makes it possible to choose 

an extreme value which has a proximity to the given limit appropriate to the constraints of the sit-

uation being considered. In other words, it is possible to select an extreme value in relation to a 

limit such that the degree of conservatism one wishes to incorporate in the selected extreme value 

can be specified (or minimized). 

III. MONTE CARLO CALCULATIONAL METHOD 

Because of equation (7) and the above discussion, it becomes clear that the determination 

of Tj should be the goal of a required computational procedure. This appears consistent, in prin-

ciple, with more traditional analyses, such as the current BEAU analysis, in which an upper 95% 

confidence limit on T is obtained to serve as an upper bound on a true value. However, this confi-

dence limit is not Tj (for J = 0.05) as defined in (6) and (7). In fact, we will demonstrate that this 

95% confidence limit on Tmay be much larger than TJ . Using the above mathematical formalism, 

it is clear that in order to compute Tj we need to determine the probability distribution for the error 

(see (4)) and hence the compliance uncertainty j given by (5) - this is the essence of the so-

called CU approach as mentioned earlier. 

The probability distribution for can be estimated by a Monte Carlo approach (cf. [2] and 

[3]) using actual reactor operating data. (For the sake of simplicity we will refer to Tin (2) and (3) 

as the fuel temperature.) The rationale behind the approach is the following. Let us assume that for 
true true true true true 

some reactor state the true process variables are P = [P 1 , P 2 , P 3 , , Pn ], which are 

not known to us. If we apply the available computer codes and measurements, for the same state, 

we will obtain the estimated process variables P = [P 1, P 2, P 3, , Pn]. We conceive of the true 

process variables, 
ptrue, 

as being statistically realized, along with random computational or mea-

surement errors, as the computed process variables P, which are known to us. Because computa-

tional and measurement errors have random components, the set P is not a unique realization of 

the true process variables P true  Rather, there are infinitely many other realizations of the true pro-

cess variables each of which could have been the one computed, but happened not to be. Let the 

different realizations, or hypothetical process variables, be denoted by /1(i) , j = 1, 2, 3, ... . We are 

interested in the probability distribution of the error T(i) - 
T true = 5 -(P(j) )  (p true)  cf. (2)

(3) and (4). The issue is to estimate this error without knowing 
ptrue 

Essentially, there is only one 

way to solve this problem (see [3]): 
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Although the process variable estimates P are not the true ones, let us consider a fictitious 

reactor in which they were the true ones. We assume that this fictitious reactor is not too different 

from the actual one with the process variables Ptrue . Furthermore, let us assume that the shape of 

the probability distribution 

T(J) - T = F(P(j)) - F(P), 

in the fictitious reactor is the same, or very nearly the same, as the shape of the probability distri-

bution 

T T true F(p)  F(p tni 

in the real reactor. Note that we are not assuming that P and P true are equal; they are certainly 

not. We are only assuming that the way in which random errors enter the computation does not 

vary rapidly as a function of P true , so that P can serve as a reasonable surrogate. 

Now, in the fictitious reactor, the distribution of T(i) - T is within our ability to calculate. 

The formulation of the Monte Carlo procedure is as follows. For a (real) reactor state, let P be the 

set of computed or measured process variables and T = F(P) . We randomly select 

❑= [ D2, 113, C.: ,171 /1] ,

(cf. Equation (1)), from the known error distributions and compute 

T
(1) 

= F(P , 
(1) = 7,(1) 

T. 

(1) 
, of course, is only one possible random realization of . For a different set of random values 

of El, we compute 

T
(2) = 5 -(1°

(2) 
= T(

2) 
- T . 

(2) 
is another possible random realization of the error . This process is repeated for j = 1, 2, 3, 

4 ... N, where N is a large number, such as 10,000 or 100,000. The values (1) , (2) , (3) , ..., de-

termine the probability distribution for . Finally, the compliance uncertainty j is computed from 

(5) and the (well defined) upper bound Tj on T true is computed from (6). 
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IV. UNDERSTANDING OF THE TRADITIONAL BEAU COMPUTATION 

Using the above terminology, the traditional BEAU Monte Carlo methodology can be de-

scribed as follows. At every simulation stage j = 1, 2, 3, ..., randomly obtain 

❑= [ D2, 113, C.4 ,Eln] 

from the known error distributions, and also randomly obtain P = [P 1, P 2, P 3, , P n] from the 

given probability distributions. (Note that in the previous Section P is not chosen randomly but, 

rather is given for the specific reactor state.) A new random realization of the fuel temperature is 

T(i) = rF(P j = 1, 2, 3, ..., 

The set of values T(1) , T(2) , T(3) , ..., (in fact, the same as in the previous Section) determine the 

probability distribution Tsim . The upper 95th percentile of this distribution, denoted by T95 , is 

deemed to be an "upper bound" on the true value T true

The above statement on the nature of T95 does not provide a quantitative relationship to 

the true value T true , similar to (7), since there is no error reference in the above computation. T95

is simply greater than 95% of the approximate values and hence "somewhat likely" to be greater 
than T true 

A quantification of the "somewhat likely" requires knowledge of the error. In the con-

text of our understanding of the Monte Carlo procedure described in the previous Section, Tsim is 

in fact an approximation of the fuel temperature T in the fictitious reactor, which itself is an ap-

proximation of the fuel temperature T true in the actual reactor. Thus, as an approximation of the 

fuel temperature in the actual reactor, Tsim is a "worse" approximation to T true than T is. Con-

sequently, it is reasonable to expect T95 to be significantly different (probably larger) than the rig-

orously defined upper bound TJ in (6). 

In order to appreciate that the two described approaches are indeed different, we applied 

the CU and the traditional methodologies to compute estimates of maximum channel power. Using 

the described notation, the process variables P = [P 1, P 2, P 3, , P n] would be the channel pow-

ers and the computation J would be the maximum function. The result, 5(P) , i.e., max(P), is 

denoted by Smax for the CU approach and Qsmiamx for the traditional BEAU approach (these play 

the role of T above). In the CU approach, Smax is computed with J = 2%. The probability density 
m 

functions for Smax and Qsim ax are presented in the figure below. These were computed using actual 

reactor operational data over a three year period - almost 2000 sates for all Darlington reactor 

Units. The 95th percentiles Smj a9x5 and Qsmiamx'95 , respectively, are indicated in the figure as well. We 

observe that Smax5 is much smaller than Qsmi amx'95 demonstrating that the traditional BEAU approach 

is unnecessarily pessimistic in this case. That is, Qsmiamx would suggest that there is a significant pe-
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V. PROPERTIES OF THE BEAU MONTE CARLO METHODOLOGIES WITH 
RESPECT TO EXTREME VALUE STATISTICS 

The result of a BEAU analysis is an extreme value, such as a maximum fuel sheath temper-

ature, and hence the crucial statistical properties of such results depend on the understanding of the 

extreme value statistics. We observe that the traditional BEAU Monte Carlo method (described in 

the previous Section) does not possess a formal mathematical framework and no useful statistical 

properties of Tsim , or T 95 are given (some analysis to that effect is presented below). The so-

called CU approach described in Section II. does possess a formal mathematical framework and 

important statistical properties can be demonstrated - such as property (7). (Recall that the funda-

mental distinction between the two approaches is that the goal of the Monte Carlo procedure in the 
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reference to such an error.) The seeming disadvantage) of the CU approach is that it is computa-
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tionally more expensive in that all (or possibly only a subset) of reactor channels are involved, 

while in the current implementation of the BEAU method only one reactor channel is considered. 

It is to be understood, however, that the latter approach may be deficient due to the lack of consid-

eration for the extreme value statistics. In this Section we will provide some examples to demon-

strate the effect of the extreme value statistics on the final result of the desired computation. 

A "more" rigorous approach to the current BEAU method is to treat the input process vari-

ables in a similar manner as with the maximum channel power, namely, use Sax without addi-

tional error sampling. Thus, assume that 

J 
P = [Pi, P 2, P 3,

k1,4 Pn],

are the input process variables that are guaranteed to exceed their corresponding true values with 

a probability 1-J , (cf. (7)), i.e., 

pt p pt i nie 
(8) 

for all i = 1, 2, 3 ..., n, and some small J , such as 0.02. (Note that for some variables the less than 

sign may be appropriate. For the sake of simplicity of the presentation and without loss of gener-

ality, we will not distinguish such cases.) Now, for the given computation J (see (3)), we define 

Ui = F(Pj) (9) 

and the distribution for Uj (an estimate of Ttrue in (2)) may be obtained using a Monte Carlo sim-

ulation by sampling from the known distributions for Pj . Once such a distribution for UJ is com-

puted, the final result is the 95th percentile, or U95 . We will refer to the just described approach as 

the updated BEAU Monte Carlo method. 

The statistical properties of this updated BEAU methodology depend on the form of the 

function 5. For a general form of this function, an analytical determination of the statistical prop-

erties is too intractable to pursue.2 However, if 5 were monotone increasing then equation (8) 

would imply 

P{ 5-(1);) F (P truell  = 1 — J , 

1. The disadvantage can be mitigated by using parallel computation. For example, McMaster University's SharcNet 
supercomputer with the current 128 nodes can be utilized for this purpose. 
2. In case of the CU approach, the form of the function F is implicitly included in the numerical method. The uncer-
tainty j , the result of the computation, depends on the form of 5- and hence the property (7) is true for any F. 
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and hence, 

P{U 
T true 

This is the desired property (7). Thus, in case of a monotone increasing function J, we have two 

rigorously computed estimates of "maximum fuel temperatures", Uj and Tj defined, respective-

ly, by (9) and (6). As argued before, it is "cheaper" to compute Uj . However, it may or may not 
• be a better estimate than Tj . (We will consider Uj to be a better estimate then T 

U95 < T95 .) Again, this depends on the specific form of the function J. (We note that the actual 

function J is likely not monotone in all its variables and hence the CU method is needed if rigor-

ous results with known statistical properties are required. We include the monotone case as an ex-

ercise to gain deeper understanding of the issues involved.) 

In order to demonstrate the above ideas, we have arbitrarily selected five different mono-

tone increasing functions J and computed the corresponding estimates Uj and Tj by the updat-

ed BEAU method and the CU method, respectively. The computed probability density functions 

(PDFs) for each selected function J (denoted by T1, ..., T5) are depicted in the graphs below to-

gether with the graphs of the functions Ti = Ti(S) on the left hand side. The first two cases are ex-

amples of convex functions for which the CU approach is "better" (as defined above). The third 

case is a concave function and the CU approach is "worse". The last two cases are examples of 

neither convex nor concave functions and the obtained results are essentially unpredictable. In the 

fifths case the CU approach is "worse", while in the fourth case it is "better". Interestingly enough, 

in the latter case, the result would be opposite for a percentile larger than 95%. Suffice it to say that 

the form of the function J is crucial in determining the final result. 

The effect of the form of the function 5 is somewhat easier to understand in case of the 

updated BEAU approach. The mode, or, the peak of the distribution for Uj corresponds to, ap-

proximately, 6900 kW for all five cases. No such, or similar observation can be made about the po-

sition or the form of the distribution for Tj . The reason is that the function J significantly alters 

the "fuel temperature" distribution across the reactor channels which alters the extreme value dis-

tribution of the result (cf Reference X), i.e., the maximum "fuel temperature", and hence the error 
J j . Thus it is difficult to predict T a priori. 
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