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Abstract — Operational nuclear power plants in Korea have been subject to routine periodic 

reviews of plant operational and special safety review. In this periodic safety reviews (PSRs), 

human factors are one of eleven important safety factors. This paper presents a new dynamic 

human reliability analysis method and its application for quantifying the human error 

probabilities in implementing PSRs. For comparisons of current HRA methods with the new 

method, the characteristics of THERP, HCR, and SLIM-MAUD, which are most frequency 

used method in PSAs, are discussed. The action associated with implementation of the cavity 

flooding during a station blackout sequence is considered for its application. This method is 

based on the concepts of the quantified correlation between the performance requirement and 

performance achievement. The MAAP 3.0B code and Latin Hypercube sampling technique 

are used to determine the uncertainty of the performance achievement parameter. Meanwhile, 

the value of the performance requirement parameter is obtained from interviews. Based on 

these stochastic obtained, human error probabilities are calculated with respect to the various 

means and variances of the things. It is shown that this method is very flexible in that it can be 

applied to any kind of the operator actions, including the actions associated with the 

implementation of accident management strategies. 

1. INTRODUCTION 

Staffing records, system and organization of education and training programs, the training 

infrastructures, statistics on the staff turnover and other indicators of the social satisfaction, 

social welfares, and working conditions are included for the Periodic Safety Reviews (PSRs). 

The human errors have been identified as important contributors to plant risk in many PSAs. 

Nevertheless, there is no one human Reliability Analysis (HRA) method universally accepted 

for quantifying the human error probability (HEP). The HRA methods are still being refined 

and developed. 

This paper presents a new dynamic method for assessing the human error probabilities and 

its application for quantifying the human error probability. The action associated with 
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implementation of the cavity flooding during a station blackout sequence is used as an 

example. 

This proposed method is based on the concepts of the quantified correlation between the 

performance requirement and performance achievement. The MAAP code for the sensitivity 

and screening analysis and Latin Hypercube sampling technique are used to determine the 

uncertainty of the performance achievement parameter. The value of the performance 

requirement parameter can be obtained from plant simulator training records and/or 

interviews. 

Most frequently used methods among about 18 published methods involve THERP (Swain 

and Guttmann, 1990), HCR (Hannaman, 1994), and SLIM-MAUD (Embrey, 1994). These 

three methods are discussed for comparisons with the new dynamic HRA method in the 

following Section. And the new methods is described in detail, and finally applied to the 

practical problem. 

2. HUMAN RELIABILITY ANALYSIS METHODS 

2.1. THERP 

THERP (Technique for Human Error Rate Prediction), generally called "HRA handbook", is 

the most commonly used methods in PSAs. This method treats the operator as one of the 

system components, and thus human reliability is assessed in the same manner as that of 

components. The concept of this method is that the operator's activities are decomposed down 

to the levels where basic HEP can be found in the 27 tables of the handbook. 

Operator action trees, which treat only both correct and incorrect cases, are used to 

accomplish the decomposition processes, and each branch represents one of the binary 

choices. The assigning probability to each branch is obtained from the corresponding human 

error probabilities in the handbook tables and then modified by multiplying the appropriate 

values associated with performance shaping factors (PSFs) to reflect the real situation where 

the human error occurs. 

In this method, the PSFs are classified into three categories in this method: 1) external 

PSFs that are related to the working environmental conditions such as noise/humidity and 

control room design; 2) internal PSFs such skills and ability of the operators, training, and 

attitude; and 3) physical (e.g., fatigue and hunger) and psychological factors associated with 

stress (e.g., fear and suddenness). 

In the methods, each operator is assumed to have the same failure probability in executing 

a specified task, and only dependencies between two consecutive tasks are considered. There 

are five levels of dependencies which are ZD Zero Dependency), LD (Low Dependency), MD 

(Medium Dependency), HD (High Dependency), and CD (Completely Dependency). The 

mathematical formula of each dependency level is used to calculate the failure probability of 

the crew. 
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This method has the sufficient database for modeling executive errors. But it has some 

drawbacks in addressing the cause and intention formation processes of the errors, and in 

treating dependencies among PSFs appropriately. 

2.2. HCR 

The HCR (human cognitive reliability) model is an empirical model based on data from 

simulators. It is used to quantify the non-response probability of the crew using some 

parameters. The non-response denotes "non-successful" in performing a specified task, where 

no action is taken within the time available. Three key parameters required to evaluate the 

non-response probability are determined for the cognitive types of skill, rule, knowledge 

based behavior (Rasmussen, 1996), median response time of the crew, and PSFs (e.g., skill, 

stress level, and quality of control room design), respectively. In order to identify the types of 

cognitive behavior, an event tree, which consists of asking whether it is a routine operating 

and whether it is covered by any written procedure, etc., is used. The median non-response 

time to perform the required task is determined from simulator data, expert judgments, and 

interviews. This method provides criteria for judging the levels of three PSFs and their 

corresponding K coefficient, where K1 represents the level of the operator's skill, K2 the 

stress level, and K3 the quality of the control room design. Based on the median response 

time and coefficients identified, the adjusted median response time is determined. This time is 

then used to match the corresponding curve, which is characterized by three parameter 

Weibull distributions. 

A major assumption of this method is that cognitive behavior can e exactly classified into 

one of three types. Recent benchmark study shows that crew responses do not fall exactly into 

any one of the three behavior types (Dimsmotr, 1984). Another assumption is that PSFs can 

only affect the non-response time, i.e., they are assumed to be independent to each other. This 

may not be true, because, under high level of stress, an operator may forget the rules 

previously stored in his mind and therefore turn from the rule-based behavior into knowledge 

based one. 

2.3. SLIM 

The SLIM (success likelihood index methodology) is a structured, expert judgment based 

technique, which can be used to assess the human error probabilities. It takes 5 steps. 

1) Selection of those tasks with the same PSFs. 

2) Assignment of relative importance to each PSF. 

3) Assignment of rating scale from 1 to 9 to each PSF in every task. 

4) Manipulation of the rating and relative weights to obtain the success likelihood index 

(SLI) for each task. 

5) Conversion of SLI into human error probabilities. 

Typical PSFs used in this method are design quality, meaningfulness of procedures, stress, 
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time pressure, seriousness of consequence, task, complexity, motivation, and quality of 

teamwork. After a group of tasks with the same PSFs are chosen, the experts are asked to 

assign the relative importance to each PSF, where it is later normalized. They then assign the 

rating scale to each PSF in every task. A scale of range from 1 to 9, which represents the level 

of the PSF, is given to each task. After these are done, re-scaling is executed by measuring the 

difference between the assigned rating and the ideal rating of each PSF. The SLI for each task 

is just the sum of the products of re-scaled rating and the relative importance of each PSF. 

HEP for each task is then calculated by the following formula: log (HEP) = a* SLID b, where 

the coefficients, a and b, can be obtained from the anchor points, which are known 

probabilities of two tasks. These known probabilities can be provided by simulators of other 

available data sources. When the elicitation of the expert judgment is carried out using a 

computer program, it is called SLIM-MAUD (multi attribute utility decomposition). 

This method also has some drawbacks. The dependencies among PSFs, a sequence of tasks, 

and control room operators are not treated appropriately. There are other issues such as 

variability in experts and inappropriate treatment of time available for a task. Another 

imperfection of his method is the huge sensitivity in withdrawing of adding a task from the 

selected group of tasks. 

2.4. Dynamic HRA methods 

The assessment of human reliability depends on the determination of both the required 

performance distribution and the achieved performance distribution. These two concepts of 

requirement and achievement are presented in Ref. erences (Apostolakis, et al, 1988; Greenm 

and Bourne, 1972). The quantified correlation between requirement and achievement 

represents a comparison between two competing variables. The method for the competition of 

two processes in time (growth time and suppression time by plant personnel) has also been 

used in fire risk analysis (Apostolakis, et al 1992). In the same manner, the success of the 

operators is governed by the time available for action (achievement) and the time required by 

the operators to diagnose the situation and act accordingly (requirement). Since both times are 

uncertain variables, the human error probability, HEP, is simply the fraction of times that the 

required time, T1 (operational time) exceeds the available time, T2 (phenomenological time). 

Then, 

HEP = P(Ti > T2) = E Prob[(Ti > t) and 

Prob[T2 = t] = E P [(Ti > t)* ( T2 = 01 

= (1-FT(t)) FT2(t)dt (1) 

where FT1(t) is the cumulative distribution of the operational time, T1, and FT2(t) is probability 

density function(pdf) of the time, T2(phenomenological time). 
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This method takes 3 steps. 

1) Assessment of a stochastic distribution for Ti. 

2) Assessment of a stochastic distribution for T2. 

3) Evaluation of these distributions as shown in Eq. (1). 

The following Section describes an application of this method for quantifying the human 

error probabilities for an accident management action. 

3. APPLICATION OF THE DYNAMIC HRA METHOD 

The present method is applied to an operator action of flooding the cavity in a station blackout 

sequence before the core slumps. The time to core slumping is used because if the water 

reaches the vessel lower head after a significant amount of debris has relocated there, a film 

boiling situation will exist and the heat transfer will not be sufficient to cool the vessel enough 

to prevent melting and failure. Since the current EOPs do not contain specific instructions for 

initiating the flooding of the reactor cavity in the station blackout sequence, it is assumed that 

the current EOPs would be modified so that the procedures necessary to allow this strategy 

would be provided, and that the actions would be initiated at the time of core uncover. 

Based on the facts that the station would be blacked out, but the core exit thermocouples 

that might help in detecting core uncover would be available, the failure of the plant operators 

to correctly initiate the strategy would be governed by two uncertain variables. The diagnosis 

and decision time (Td) is the tie available for the operators to initiate flooding of the reactor 

cavity. The auxiliary operators outside the control room are assumed to be available to operate 

the fire pump system. 

It might take the operators time (Ta) to detect core uncover, to dispatch an auxiliary 

operator to the emergency fire pump, and to start the fire pumps (Jae and Apostolakis, 1992). 

The major uncertainty is associated with the critical time determined by the phenomena 

occurring during the melt progression. Since the water must reach to top of the vessel lower 

head before the core slumps, the critical time, Tc is Tcs-Tcu (the time from core uncover (Tcu) 

to core slumping (Tcs)). Another relevant parameter is the time required to fill the reactor 

cavity up to the required level, Tt. This parameter is known and is a function of the reactor 

cavity volume [624m3(164,830ga1)] of the reference plant and fire pump capacity (2,140 gpm), 

and is calculated to be 77 min (Korea Electric Power Corporation, 2000). 

Using Tcu as the reference time, the human error probability associated with the 

probability that t (Ta+Td+Tf) exceeds Tc (Tcs-Tcu) can be derived from Eq. (1) as follows: 

HEP = Pr (t > Ta-Tc„) 

= f [1-Ft(t)] fTc(t)dt (2) 

where fm(t)=probability density function (pdf) of the critical time, Tcs-Tcu, Ft(t): cumulative 

distribution function of the time required by the operators to complete the strategy. 
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By obtaining the two distributions, Ft(t) and frc(t) in Eq. (2), a human error probability, 

which likelihood of failure in performing a particular task within the time available, can be 

quantified. It should be noted that the numerous potential human performance shaping factors 

(PSFs) are incorporated in the distribution, Ft(t). The processes of determining the 

distributions of the uncertain variables are presented in the following Section. 

3.1. Distribution of the Time to Core Slumping 

3.1.1. Variable Screening for MAAP Parameters 

Sensitivity analysis investigates the effect of changes in input variables on output predictions. 

MAAP sensitivity analysis has been performance associated with the event timing of core 

slumping for the reference plant (Korea Electric Power Corporation, 2000). The core support 

plate failure time in the MAAP output corresponds to the core slumping time. The MAAP 

parameters that may highly affect the time to core slumping are selected according to the 

suggestion from the report (Gabor, Kenton & Association, 1999) and they are listed in Table 1. 

Table 1 also lists the changes in the variables and the changes in the time to core slumping 

determined by the MAAP 3.0B code (EPRI, 1990). For example, the variation (0-2.0) in the 

initial FAOUT shows by how much it may vary due to insufficient knowledge. 
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Table 1. Sensitivity Parameters and Their Values 

Parameter Definition 

FCBLK Flag to select use of channel blockage 
model 

TEU Eutectic melting temperature 

LHEU Latent heat of fusion of eutectic 
mixture 

FAOX Zircaloy oxidation area multiplier 

TCLMAX Clad rupture temperature 

VFSEP Void fraction at which the primary 
system nature circulation stops 

FFRICR Friction factor for axial flow in core 

FFRICX Friction factor for cross flow in core 

NSAMP Coefficient to smooth numerical 
oscillation in core natural circulation 

HTSTAG Heat transfer coefficient between NC 
water and SG tube 

FATOUT Fraction of SG tube carrying 'out' flow 

FWHL Flow coefficient for hot leg counter- 
current flow 

IEVENT Event code to clear RCP suction 
volume 

Typical 
Range 

Base Case 
Value 

I At* I 
Time (s) 

0-1 0 147 

2100-2800 2500 (K) 873 

1.0E5 - 
4.3E5 

2.5E5[J/Kg] 1432 

1.0-2.0 1.0 952 

1200-2100 4502 [K] 105 

0.25-0.6 0.35 1268 

0.05-0.2 0.1 124 

.25-.45 .25 100 

1-20 10 0 

100-5000 850 
[J/sec/M2/K 

253 

0.1-0.5 0.5 257 

0.09-0.115 0.115 12 

0 or 1 0 3109 

*The maximum different between the result of base calculation (1033sec) and that of the 
bound calculation for the core slumping timing. 

In order to eliminate unimportant variables, the values of the variables given in Table 1 are 

used as the base values. Each variable is changed by an estimated amount and the MAAP 

code is run to determine the time to core slumping due to the change in that variable. The 

change in the value of a variable may result from plant-to-plant variations, statistical 

uncertainty, or state-of-knowledge uncertainty. Although the variation of each variable is not 

the maximum possible variables, it is at least a large percentage of the maximum possible 

variation. The values in the last column (At) of Table 1 are used as criteria to eliminate 

unimportant variables. Only 8 variables caused changes that were larger than three minutes. 

They are listed in Table 2. 

Table 2. Eight Variables Selected via Screening Analysis 

Variables Base Case Value Typical Range Distribution Type 

X1:FCRBLK 1 0/1 Discrete 
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FFRICR Friction factor for axial flow in core 0.05-0.2 0.1 124 

FFRICX Friction factor for cross flow in core .25-.45 .25 100 

NSAMP Coefficient to smooth numerical 
oscillation in core natural circulation 

1-20 10 0 

HTSTAG Heat transfer coefficient between NC 
water and SG tube 

100-5000 850 
[J/sec/M2/K

] 

253 

FATOUT Fraction of SG tube carrying ‘out’ flow 0.1-0.5 0.5 257 

FWHL Flow coefficient for hot leg counter-
current flow 

0.09-0.115 0.115 12 

IEVENT Event code to clear RCP suction 
volume 

0 or 1 0 3109 

*The maximum different between the result of base calculation (1033sec) and that of the 
bound calculation for the core slumping timing. 
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3.1.2. Latin Hypercube Sampling 

There are several methods developed for the propagation of uncertainty; the method 

employed here is Latin Hypercube technique (Iman and Shortencarier, 1994). A sample size 

of 100 was used to propagate the uncertainty for the key variables though the MAAP 3.0B 

code. How each variable is sampled is determined by what kind of uncertainty is associated 

with it. Deterministic variables are sampled zero-one. This means that every sample 

observation contains either the value of 0.0 or the discrete variables (X 1 , X8). For variables 

with stochastic characteristics (X2-X7), the continuous distributions are sampled. The MAAP 

code is run for every member of Latin Hypercube samples and results in a point value for the 

time to core slumping for each member. The distribution of the time to core slumping (fTc(t) 

in Eq. (2)) is found through the MAAP 3.0B calculation using a set of input data produced by 

Latin Hypercube sampling. The cumulative distribution of the time to core slumping is shown 

in Figure 1. 
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Given the sampled timing data for the action time, maximum likelihood or moment estimators 
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been extensively used for the operational (action time) is the two-parameter Weibull 

distribution. Using moment estimators, the values of A and r3 can be obtained. 
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It is required to find fTa(t). Since the current EOPs of the reference plant are not developed 

for initiating the cavity flooding, the timing for historical events is not applicable. Instead, the 

simulator records collected for this analysis can be used. Nevertheless, no actual data were 

currently available for out use, so we were forced to assume a reasonable distribution for fTa(t). 

There is a reason to believe that initiation minutes past the time when the core uncovers. 

Contributors to this delay including stress, fear of adverse effects, and extreme environment 

might exist. After all, the performance shaping factor (PSFs) should be reflected to 

determining the distribution fTa(t). 

By interviewing the operators in the reference plant, it is assumed that the time required to 

fill the cavity is 15±10 min. Then the values of the parameters of the Weibull distribution 

related to the mean and the variance can be solved numerically by one of the parameter 

estimation methods like the moment method, the curve fitting, the Bayesian estimator, or the 

maximum likelihood estimator. Since all actions will have their own curve, a distribution will 

be determined. 

4. RESULTS 

To solve the Eq. [2]. the distributions of the random variables, the critical time (Tc) and the 

action time (Ta) should be obtained. A two-parameter Weilbull distribution, represented as 

Weilbull (A, (3), is considered here; however, the present method will work for other 

distributions as will be denoted by fTC(t) and f Ta(t), respectively. The mean value of a gamma 

function used in this study is set to be the sample mean of 96.4 min and the variance, cs2, is 
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the sample variance of 20.2 min, based on the results (Figure 1). Then, numerically the 

parameter values are obtained to A= 104.4 and p. 5.5. Using the distributions obtained by 

the approach given in the previous Section, the Eq. (2) becomes as follows: 

HEP= [1-exp{-( `}1['5 tA ) 13 -lexP{-q }]dt (3) 

where A' and ry are the scale factor and the shape factor, respectively, associated with the 

time (p' a') taken by the operators in initiating water injection into the cavity via the 

emergency fire system. 

By the Eq. (3), the HEP is calculated to be a value of 0.39. If the distribution of the critical 

time is so close to that of the time required by the operators to implement the cavity flooding 

strategy, the calculated HEP can significantly increase. The calculation results for various 

cases with different means and variances for the required time by the result for the case that 

the parameter Tf, the time required to fill the reactor cavity up to the required level, is almost 

zero. This case may happen when the action of flooding the cavity initiates much earlier 

before core uncover. 

5. CONCLUSION 

Staffing records, system and organization of education and training programs, the training 

infrastructures, statistics on the staff turnover and other indicators of the social satisfaction, 

social welfares, and working conditions are included for the Periodic Safety Reviews (PSRs). 

The human errors, which belong to the factors of the PSRs, have been identified as important 

contributors to plant risk in many PSAs in this paper. A new dynamic HRA method has been 

suggested for quantifying the human error probabilities and subsequently applied to a 

practical problem in the PSRs. The present method is very flexible in that it can be applied to 

any kind of the operator actions, including the actions associated with the implementation of 

analyze human factors in the periodic safety reviews. 

Though the numerical calculations given here are only for illustrative purposes, assuming 

that steps to implement operator actions could be taken and the hardware available, the 

information gained from using the method would be beneficial. The method may contribute to 

reviewing the human factors in the periodic safety reviews of nuclear power plants and then 

developing more convenient and safer operating procedures. 

the sample variance of 20.2 min, based on the results (Figure 1). Then, numerically the 
parameter values are obtained to = 104.4 and = 5.5. Using the distributions obtained by 
the approach given in the previous Section, the Eq. (2) becomes as follows: 
 

HEP= ∫
∞

0
[1-exp{-(

’λ
t )  ‘}][

λ
β (

λ
t )  –1exp{-(

λ
t )  }]dt    (3) 

where ’ and ’ are the scale factor and the shape factor, respectively, associated with the 
time ( ’ ’) taken by the operators in initiating water injection into the cavity via the 
emergency fire system. 

By the Eq. (3), the HEP is calculated to be a value of 0.39. If the distribution of the critical 
time is so close to that of the time required by the operators to implement the cavity flooding 
strategy, the calculated HEP can significantly increase. The calculation results for various 
cases with different means and variances for the required time by the result for the case that 
the parameter Tf, the time required to fill the reactor cavity up to the required level, is almost 
zero. This case may happen when the action of flooding the cavity initiates much earlier 
before core uncover. 

 

5.  CONCLUSION 
 
Staffing records, system and organization of education and training programs, the training 
infrastructures, statistics on the staff turnover and other indicators of the social satisfaction, 
social welfares, and working conditions are included for the Periodic Safety Reviews (PSRs). 
The human errors, which belong to the factors of the PSRs, have been identified as important 
contributors to plant risk in many PSAs in this paper. A new dynamic HRA method has been 
suggested for quantifying the human error probabilities and subsequently applied to a 
practical problem in the PSRs. The present method is very flexible in that it can be applied to 
any kind of the operator actions, including the actions associated with the implementation of 
analyze human factors in the periodic safety reviews. 

Though the numerical calculations given here are only for illustrative purposes, assuming 
that steps to implement operator actions could be taken and the hardware available, the 
information gained from using the method would be beneficial. The method may contribute to 
reviewing the human factors in the periodic safety reviews of nuclear power plants and then 
developing more convenient and safer operating procedures. 



Table 3. Dynamic Human Error Rates for the Time (Tf) Required to fill the Reactor Cavity up 

to the Required Level with Respect to the Various Mean and Variance. 

a) 

cf 5 10 15 

P 
10 0.312 0.324 0.325 
15 0.396 0.3921 0.378 
20 0.479 0.450 0.424 
30 0.541 0.517 0.480 

b) 

cf 5 10 15 20 

p 
15 6.13E-05 5.32E-04 4.15E-03 1.09E-02 
30 1.35E-03 2.79E-03 7.33E-03 1.86E-02 
60 4.92E-02 5.79E-02 7.79E-02 1.01E-01 

1 The human error rate based on the values obtained by interviewing the operators in the 

reference plant. 

The common features on all the existing HRA methods (Cooper, et al, 1998; Kim 2000), 

including the dynamic HRA method, are that they only deal with the observable human errors, 

and that the dependencies of performance shaping factors (PSFs) are not treated appropriately. 

For the results of HRA to be realistic., first, PSFs need to be considered dependent each other, 

while they are assumed to be independent in the existing methods. Second, the causes and 

intention formation processes of the observable human error need to be modeled and 

incorporated into human error assessments. 

According to such recognition, recent researches have been focused on modeling how 

human intentions are formed and how they ate executed. These developing cognitive models 

include CES (cognitive environmental simulation) model, GEMS (generic error modeling 

system) model, INTEROPS (integrated reactor operator/system) model, and COSIMO 

(Cognitive Simulation Model) (Woods, et al, 1998; Reason, 1997; Woods, et al, 1997; Bersini, 

et al, 1990). To develop better cognitive models, psychology and cognitive science will be 

necessary tools in future. 
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