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Abstract 

A least-squares fitting method is developed for advanced on-line flux mapping in the 

CANDU-PHWR system. The method solves both the core neutronics design equations 

and the detector response equations on the least-squares principle which leads one to 

normal equations. The fine-mesh finite difference two-group diffusion theory 

calculations by SCAN code for Wolsong-3 unit are conducted to obtain the simulated 

real flux distribution and detector signals. The least-squares flux monitoring 

calculations are compared with the flux distribution calculation by the SCAN code 

without detector signals. It is shown that the least-squares method produces the flux 

distribution in better agreement with reference distribution than the coarse mesh SCAN 

calculation without detector signals. Through the 500 full power day burnup-history 

simulations of Wolsong-4 unit for benchmark, the mapped detector signals are 

compared with real detector signals. Maximum root mean squares (RMS) difference 

between the mapped detector signals and real detector signals are shown to be about 

0.04 % by least-squares method, while it is about 5.43 % by the current flux-synthesis 

method. It is concluded that the least-squares fitting method is very promising as the 

advanced flux mapping methodology for CANDU-PHWR. 

1. Introduction 

The current on-line flux mapping system of CANDU designs is based on flux 

synthesis method") in which the three-dimensional flux distribution in the reactor is 
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Abstract 
 
    A least-squares fitting method is developed for advanced on-line flux mapping in the 
CANDU-PHWR system. The method solves both the core neutronics design equations 
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calculations by SCAN code for Wolsong-3 unit are conducted to obtain the simulated 
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calculations are compared with the flux distribution calculation by the SCAN code 
without detector signals. It is shown that the least-squares method produces the flux 
distribution in better agreement with reference distribution than the coarse mesh SCAN 
calculation without detector signals. Through the 500 full power day burnup-history 
simulations of Wolsong-4 unit for benchmark, the mapped detector signals are 
compared with real detector signals. Maximum root mean squares (RMS) difference 
between the mapped detector signals and real detector signals are shown to be about 
0.04 % by least-squares method, while it is about 5.43 % by the current flux-synthesis 
method. It is concluded that the least-squares fitting method is very promising as the 
advanced flux mapping methodology for CANDU-PHWR. 
 
 

1. Introduction 
 

The current on-line flux mapping system of CANDU designs is based on flux 
synthesis method1-3) in which the three-dimensional flux distribution in the reactor is 



assumed by a linear combination of a number of pre-calculated flux modes and the 

amplitudes of the modes are determined by a least-squares fit of the calculated fluxes at 

the 102 vanadium in-core detectors to the measured fluxes. This method is very fast, yet 

it suffers a few deficiencies. It requires pre-calculated modes. Because of this, it cannot 

take into account the complete core operation history for the flux or the power 

distributions. It does not provide local power distributions as accurate as desired. 

Improved methods aimed at overcoming these deficiencies have been proposed4' 5). The 

purpose of this paper is to present a new method that makes the direct use of the core 

neutronics design equations and the detector response equations on the least-squares 

fitting principle and to demonstrate that the new method can result in the improved flux 

mapping in accuracy by performing the flux mapping calculations using simulated 

detector signals through the fine-mesh neutronics calculations and the vanadium in-core 

detector signals measured at Wolsong CANDU reactor units. The new method is 

implemented into the SCAN (Seoul National University CANDU-PHWR Neutronics) 

code, which is introduced at last conference paper6). 

2. Least-Squares Fitting Method 

The new least-squares fitting method for the improved flux mapping in the CANDU 

reactor solves the steady-state, two-group diffusion equations, 

Mph=!Fcto (1) 

and the in-core detector response equations, 

D 4:13 =s (2) 

4:13 is a NG-dimensional flux vector in which N is the number of spatial meshes and G 

the number of groups — two in this problem. M and F are NG x NG square matrices 

representing destruction and production of neutrons, respectively. D is NdG x NG 

matrix in which Nd denotes the number of the in-core detectors. 

The two equations (1) and (2) can be put together in the matrix form, 

( 1
M --F 0 

J= or AcI3=b (3) 

The equation (3) is an over-determined system of equations in which the number of 

equations, i.e., (N+Nd)G, is greater than that of the unknowns, NG. Because of this, it is 
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2. Least-Squares Fitting Method 
 

The new least-squares fitting method for the improved flux mapping in the CANDU 
reactor solves the steady-state, two-group diffusion equations, 

1
λ

Φ = ΦM F                         (1) 

and the in-core detector response equations,   
sΦ =D                      (2) 

Φ  is a NG-dimensional flux vector in which N is the number of spatial meshes and G 
the number of groups – two in this problem. M and F are NG x NG square matrices 
representing destruction and production of neutrons, respectively. D is NdG x NG 
matrix in which Nd denotes the number of the in-core detectors. 
The two equations (1) and (2) can be put together in the matrix form, 
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    or   bΦ=A                                            (3) 

The equation (3) is an over-determined system of equations in which the number of 
equations, i.e., (N+Nd)G, is greater than that of the unknowns, NG. Because of this, it is 



not generally possible to find 1 that satisfies Eq. (3). Instead, one finds the least-quares 

solution to Eq. (3), which can be obtained by solving so-called normal equations. 

ATAcI)=ATb (4) 

Note that the normal equations are derived from minimizing the L2 norm of AO-b, 

the solution of which produce flux-mapped fluxes that lies in between computed fluxes 

and real on-line detected fluxes. AT is the transpose of the matrix A. Many different 

solution methods of the normal equations are available in reference 7. We found the 

conjugate gradient method is the most effective in terms of computing time. And 

diagonal preconditioning') and bi-diagonal QR preconditioning") are applied to achieve 

faster convergence of above normal equations. 

At this point, a little discussion need be made on the detector response equations. In 

the current CANDU neutronics method based on the finite-difference diffusion theory 

equations, the unknowns in Eq. (1) are the two-group fluxes at the centers of the unit 

cells each of which consists of fuel bundle and associated moderator. Because the 

vanadium detectors are located in moderator, the current reading of a vanadium detector 

gives the flux information at the site of the detector instead of the information on the 

unknowns in equation (1). To derive detector response equations (2), therefore, we 

assumed that the flux at a detector can be obtained by interpolation of the unknown 

thermal fluxes of the unit cells surrounding the detector. With this assumption, we 

represent each detector signal by 

Sd =EWP4:1)1; ; d=1,2, , Nd 
p=1 

(5) 

where Sd is signal of detector (d=1,2, Nd), Wp the weighting factor of Lagrange 

interpolation of 1st, 2nd or r i orders, p is the index of neighbor mesh and I thermal 

flux of unit cell p. The summation over p runs through all the unit cells employed in the 

interpolation. Figure 1 shows a sample configuration of a detector unit and its neighbor 

meshes for the 1st order interpolation, which uses 8 neighbor meshes' information. 

3. Numerical Results and Discussion 

We examined the applicability of the above least-squares formulation for the 

improved flux mapping in the Wolsong-3 CANDU reactor. The vanadium detector 

measurements and the flux mapping results from the Wolsong-3 plant can be utilized in 

this examination. Table 1 shows the conditions used in the examination. Before using 

not generally possible to find Φ  that satisfies Eq. (3). Instead, one finds the least-quares 
solution to Eq. (3), which can be obtained by solving so-called normal equations. 

bT TΦ =A A A                          (4) 
Note that the normal equations are derived from minimizing the L2 norm of bΦ−A , 

the solution of which produce flux-mapped fluxes that lies in between computed fluxes 
and real on-line detected fluxes. AT is the transpose of the matrix A. Many different 
solution methods of the normal equations are available in reference 7. We found the 
conjugate gradient method is the most effective in terms of computing time. And 
diagonal preconditioning7) and bi-diagonal QR preconditioning8,9) are applied to achieve 
faster convergence of above normal equations.  

At this point, a little discussion need be made on the detector response equations. In 
the current CANDU neutronics method based on the finite-difference diffusion theory 
equations, the unknowns in Eq. (1) are the two-group fluxes at the centers of the unit 
cells each of which consists of fuel bundle and associated moderator. Because the 
vanadium detectors are located in moderator, the current reading of a vanadium detector 
gives the flux information at the site of the detector instead of the information on the 
unknowns in equation (1). To derive detector response equations (2), therefore, we 
assumed that the flux at a detector can be obtained by interpolation of the unknown 
thermal fluxes of the unit cells surrounding the detector. With this assumption, we 
represent each detector signal by 

2
1

d p
p

p

S W
=

= Φ∑  ; d=1,2, … , Nd            (5) 

where Sd is signal of detector (d=1,2, Nd), Wp the weighting factor of Lagrange 
interpolation of 1st, 2nd or 3rd orders, p is the index of neighbor mesh and 2

pΦ  thermal 

flux of unit cell p. The summation over p runs through all the unit cells employed in the 
interpolation. Figure 1 shows a sample configuration of a detector unit and its neighbor 

meshes for the 1st order interpolation, which uses 8 neighbor meshes’ information. 
 
  

3. Numerical Results and Discussion 
 

We examined the applicability of the above least-squares formulation for the 
improved flux mapping in the Wolsong–3 CANDU reactor. The vanadium detector 
measurements and the flux mapping results from the Wolsong-3 plant can be utilized in 
this examination. Table 1 shows the conditions used in the examination. Before using 



them directly, we generated the reference bundle power distribution for Wosung-3 core 

by a fine-mesh finite difference two-group diffusion theory calculation by SCAN code, 

CANDU Neutronics Analysis Code of Seoul National University6. For the fine-mesh 

reference calculation, the single unit cell adopted for the routine neutronics calculations 

in the RFSP code 3) is divided into 64 (=4x4x4) fine mesh cells. Considering that the 

RFSP calculation routinely adopt 42x34x20 coarse mesh cells, the number of fine-mesh 

cells in the reference fine-mesh calculation is 64 times the number of the coarse mesh 

cells. The fine-mesh reference calculation is also used to generate the simulated detector 

signals through Lagrange interpolation. Table 2 compares the simulated detector signals 
- generated by 42x34x20 coarse-mesh interpolation of 1st, 2nd and r i orders with the 

corresponding reference fine-mesh interpolation results. We can observe that detector 
2 nd signals generated by interpolation of 1st, and r i orders are similar between each 

other and that the interpolation of 1st order is enough for the generation of detector 

signals. The reference fine-mesh results for bundle and channel powers as well as the 

simulated detector signals are then presumed to be real. Table 3 shows a comparison of 

the maximum channel and bundle powers predicted by the least-squares flux mapping 

calculations and the ordinary core neutronics calculations without use of simulated 

detector signals on the routine 42x34x20 mesh configuration by the SCAN code. It is 

noted that the least-squares flux mapping predicts the maximum bundle and channel 

powers more closely than the ordinary core neutronics calculation that does not utilize 

the detector signals. From the standpoint of computing time, the least-squares method 

takes longer computing time. The last two-columns show that preconditioning of the 

conjugate gradient methods can save the computing time of the least-squares flux 

mapping calculation. Figure 2 shows the convergence characteristics using 

preconditioners. 

For further examination, we carried out core depletion calculation to 500 effective full 

power days and flux-mapping calculations at a number of discrete core burnup steps for 

Wolsong-4. Table 4 compares the maximum bundle powers at several different effective 

full power days in the Wolsong-4 from the two flux-mapping methods, the least-squares 

method implemented in the SCAN code and the current synthesis method. Table 5 and 

Figure 3 compares the difference between the actual vanadium flux signals and the 

estimated detector thermal fluxes in the Wolsong-4. Because the true bundle powers are 

not known, there is no way of knowing the superiority of one method over the other in 

prediction accuracy. Yet Table 5 and Figure 3 clearly shows that the proposed least-

squares method is advantageous because the mapped detector flux signals from it are 

closer to the actual detector flux signals than those from the current synthesis method. 
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The above results demonstrate that the least-squares fitting method is very promising 

as the advanced flux mapping methodology. Besides being accurate, it has more 

advantages than the synthesis method in that it does not need the pre-calculation of 

equations that is necessary in the synthesis method. 
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Table 1 Numerical Simulation Benchmark Condition from Phase-B Simulation of 

Wolsong Unit 3 

Variable Value 

Boron Concentration(ppm) 9 

Moderator Temp(K) 310.10 

Coolant,Fuel Temp(K) 305.31 

Moderator Purity(w%) 99.81 

Coolant Purity(w%) 99.24 

Device Condition 
Normal

(ADJ in, MCA out, SOR out) 

Table 2 Detector Signal Vs Interpolation Order (Wolsong Unit 3) 

Mesh model 
64 nodes / 1 n 

1st order 
Reference 

42x34x20 
1St order 

42x34x20 
2nd order 

42x34x20 
3rd order 

Interpolated 
detector thermal 

flux diff [go] 

emax - 6.03 6.66 6.47 

Eavg - 1.26 1.09 1.12 

Mesh model 
64 nodes / 1 n 

2nd order 
Reference 

42x34x20 
1St order 

42x34x20 
2nd order 

42x34x20 
3rd order 

Interpolated 
detector thermal 

flux diff [go] 

Emax 5.86 6.49 6.31 

Eavg - 1.23 1.10 1.12 

Mesh model 
64 nodes / 1 n 

3rd order 
Reference 

42x34x20 
1St order 

42x34x20 
2nd order 

42x34x20 
3rd order 

Interpolated 
detector thermal 

flux diff [go] 

emax - 5.84 6.47 6.29 

Eavg - 1.24 1.09 1.11 
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42x34x20 
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detector thermal 

flux diff [%] εavg - 1.24 1.09 1.11 

 
 
 



Table 3 Comparison of Ordinary Neutronics Calculation without Use of Detector 

Signals and Least Squares Flux Mapping Calculation 

Method Reference 
Without use 
of detector 

signals 

Least Squares 
using detector 

signals 

Least Squares 
with Diagonal 
Precondition 

Least Squares 
with 

Bi-diagonal 
QR 

Precondition 

Mesh Configuration 168x136x80 42x34x20 42x34x20 42x34x20 42x34x20 

Number of iterations - 84(1) 84 + 529(2) 84 + 270 84 + 164 

5 Maximum channel 
power[W] and position 

6973 (006) 6975 (006) 6977 (F08) 6977 (F08) 6977 (F08) 

6972 (N05) 6958 (017) 6973 (F15) 6973 (F15) 6973 (F15) 

6963 (017) 6951 (F08) 6968 (006) 6968 (006) 6970 (006) 

6959 (N18) 6947 (N06) 6960 (017) 6960 (017) 6962 (017) 

6958 (M05) 6943 (N05) 6947 (N05) 6948 (N05) 6950 (N05) 

5 Maximum bundle 
power[W] and position 

789 (E12 07) 780 (D12 07) 789 (D12 07) 789 (D12 07) 789 (D12 07) 

788 (E1 1 07) 779 (D1107) 788 (D1107) 788 (D1107) 788 (D1107) 

787 (El 1 06) 779 (E12 07) 788 (D1106) 788 (D1106) 788 (D1106) 

786 (D12 07) 778 (D1106) 787 (D12 06) 787 (D12 06) 787 (D12 06) 

786 (D1107) 778 (E1107) 784 (E12 07) 784 (E12 07) 784 (E12 07) 

Channel 
power diff 

rY01 

Emax 

(position) 
- 5.76 (022) 3.93 (022) 3.95 (022) 4.11 (022) 

Eavg - 1.17 0.73 0.73 0.74 

CPU TIME(3) [sec] - 1.80 6.63 4.91 4.60 

(1) Ordinary neutronics calculation without use of detector signals 

(2) Number of (SOR/Chebyshev) outer iteration + number of (CGNR) inner iteration 

(3) CPU Time on P4. 1.8GHz PC 
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Method Reference 
Without use 
of detector 

signals 

Least Squares 
using detector 
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Least Squares 
with Diagonal 
Precondition 

Least Squares 
with 
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QR 
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6959 (N18) 6947 (N06) 6960 (O17) 6960 (O17) 6962 (O17) 

5 Maximum channel 
power[W] and position 

6958 (M05) 6943 (N05) 6947 (N05) 6948 (N05) 6950 (N05) 

789 (E12 07) 780 (D12 07) 789 (D12 07) 789 (D12 07) 789 (D12 07) 

788 (E11 07) 779 (D11 07) 788 (D11 07) 788 (D11 07) 788 (D11 07) 

787 (E11 06) 779 (E12 07) 788 (D11 06) 788 (D11 06) 788 (D11 06) 

786 (D12 07) 778 (D11 06) 787 (D12 06) 787 (D12 06) 787 (D12 06) 

5 Maximum bundle 
power[W] and position 

786 (D11 07) 778 (E11 07) 784 (E12 07) 784 (E12 07) 784 (E12 07) 

εmax  

(position) 
- 5.76 (O22)  3.93 (O22) 3.95 (O22) 4.11 (O22) Channel 

power diff 
[%] εavg - 1.17 0.73 0.73 0.74 

CPU TIME(3) [sec] - 1.80  6.63  4.91  4.60  

(1)   Ordinary neutronics calculation without use of detector signals 

(2)   Number of (SOR/Chebyshev) outer iteration + number of (CGNR) inner iteration 

(3)   CPU Time on P4. 1.8GHz PC 



Table 4 Maximum Channel Powers from Two Flux-Map Calculations : 

Least Squares Method and Flux Synthesis Method 

FPD 
(Full Power Days) 

Max Channel Power [Kw] and Position 

SCAN Flux Synthesis Method Difference [%] 

49 6846 006 6820 017 0.38 

101 6585 P07 6543 006 0.64 

197 6905 P11 6856 P11 0.71 

298 6891 Q08 6887 006 0.06 

399 6991 Q08 6956 Q08 0.50 

486 6986 R15 6926 P07 0.87 

Table 5 Comparison of Differences from Real Detector Flux Signals and Flux Signals 

Mapped by Least Squares Method and Flux Synthesis Method 

FPD 
(Full Power Days) 

RMS Difference [%] MAX Difference [%] 

SCAN 
Flux Synthesis 

Method 
SCAN 

Flux Synthesis 
Method 

49 0.03 1.70 0.15 -4.44 

101 0.03 1.62 0.10 -5.03 

197 0.04 1.76 0.15 3.81 

298 0.03 1.76 -0.09 4.38 

399 0.04 1.82 0.10 5.43 

486 0.04 1.97 0.12 -5.13 
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Figuie 1 Configuration of a Detector Unit and Neighbor Meshes 
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Figure 1  Configuration of a Detector Unit and Neighbor Meshes 

 

 
 
 

Figure 2  Convergence Characteristics of Numerical Methods 
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Figure 3 Difference Estimation between Real Detector Flux Signals and Mapped Flux 

Signals (486FPD of Wolsong Unit 4) 
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Figure 3  Difference Estimation between Real Detector Flux Signals and Mapped Flux 
Signals (486FPD of Wolsong Unit 4) 
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