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ABSTRACT 

We have analyzed using diffusion and transport theory methods an axially infinite 2—D 
representation of a CANDU reactor fueled with 37 element bundles. Our studies indicate that a 
relatively fine mesh is required to ensure that the reactor model is spatially converged for both 
diffusion and transport calculations. The effect of using the more physical annular boundary 
condition in transport is very small while it leads to much higher errors in diffusion. 

The power distribution computed using diffusion theory are more peaked towards the core 
center than their transport counterpart with differences reaching 6 % near the core/reflector 
interface. When full cell homogenization is considered, the differences in the coolant void 
reactivity between a transport and a diffusion calculation show that the diffusion theory simu-
lates relatively well this effect. On the other hand, using the pin model in transport yields much 
larger differences in coolant void reactivity. 

I. INTRODUCTION 

Most CANDU reactor simulations are realized in diffusion theory because it is believed 
that this approximation is adequate to represent the neutron behavior inside the core. A 3—D 
Cartesian model is generally considered and computer codes such as RFSPL31 or DONJONL41
are used to evaluate the power distribution inside the core. Fuel cell properties depending 
on the burnup are obtained from transport calculations using codes such as WIMS-AECIP or 
DRAGON.L21 Those properties are generally condensed to a 2 energy group structure for cooled 
and voided configurations. The properties could then be incorporated in a time-average model 
of the reactor designed to reproduce an equilibrium state of the core or in any other burnup 
distribution representative of the reactor at the time of the voiding. The coolant void reactivity 
(CVR) is finally calculated in static theory from the two eigenvalues computed for the voided 
and cooled reactor configurations. 

The diffusion approximation implies that the boundary conditions must be approximated 
by zero flux conditions on an extrapolated boundary. Moreover, the validity of Fick's law can 
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guy.marleau@polymtl.ca; elisabeth.varin@polymtl.ca

ABSTRACT

We have analyzed using diffusion and transport theory methods an axially infinite 2–D
representation of a CANDU reactor fueled with 37 element bundles. Our studies indicate that a
relatively fine mesh is required to ensure that the reactor model is spatially converged for both
diffusion and transport calculations. The effect of using the more physical annular boundary
condition in transport is very small while it leads to much higher errors in diffusion.

The power distribution computed using diffusion theory are more peaked towards the core
center than their transport counterpart with differences reaching 6 % near the core/reflector
interface. When full cell homogenization is considered, the differences in the coolant void
reactivity between a transport and a diffusion calculation show that the diffusion theory simu-
lates relatively well this effect. On the other hand, using the pin model in transport yields much
larger differences in coolant void reactivity.

I. INTRODUCTION

Most CANDU reactor simulations are realized in diffusion theory because it is believed
that this approximation is adequate to represent the neutron behavior inside the core. A 3–D
Cartesian model is generally considered and computer codes such as RFSP[3] or DONJON[4]

are used to evaluate the power distribution inside the core. Fuel cell properties depending
on the burnup are obtained from transport calculations using codes such as WIMS-AECL[1] or
DRAGON.[2] Those properties are generally condensed to a 2 energy group structure for cooled
and voided configurations. The properties could then be incorporated in a time-average model
of the reactor designed to reproduce an equilibrium state of the core or in any other burnup
distribution representative of the reactor at the time of the voiding. The coolant void reactivity
(CVR) is finally calculated in static theory from the two eigenvalues computed for the voided
and cooled reactor configurations.

The diffusion approximation implies that the boundary conditions must be approximated
by zero flux conditions on an extrapolated boundary. Moreover, the validity of Fick’s law can



be questioned at the core reflector interface where large changes in physical properties are 
observed. These two approximations could lead to large flux differences in the reflector and in 
the last radial fuel regions, thereby affecting the precision of the computed bundle powers and 
CVR. 

The solution to the transport equation will be obtained using the collision probability (CP) 
based transport code DRAGON. Here the main approximation consists in assuming that the 
source inside each region of the calculation mesh is flat. This means that a fine mesh dis-
cretization is required to ensure that a reliable transport solution is obtained. As a result, the 
amount of memory necessary to analyze the full 3—D reactor is considerable. We therefore 
propose to use an axially infinite 2—D model for the reactor. 

The simplified 2—D representation of the reactor will be presented and studied in the context 
of diffusion and transport calculations. Here we have validated the diffusion approximations 
using the transport equation on a reactor model. A comparison between the transport and 
diffusion power distributions quantifies the errors that can be associated with diffusion theory. 
Both cooled and fully voided representation of the core have been considered. The effect of 
different models and calculation approximations on the CVR have also been studied. 

II. MODELS 

HA. Cell Models 

Before discussing in details the 2—D reactor models considered in this analysis, it is im-
portant to discuss first the generation of the cell properties required in our calculations. Here 
the standard 37 element CANDU-6 fuel cell was considered. The burnup dependent cross sec-
tions required for our reactor calculations were generated using the DRAGON code where we 
assumed that the fuel depletes at a fixed power density of 31.97 kW/kg during 300 days with 
time steps of 1 day. 

At each time step, the DRAGON computed multi-group and multi-region flux distribution 
are used to evaluate 2-group homogenized cross sections. Here two different cell homogeniza-
tion procedures are considered. First, we performed a full cell homogenization following the 
standard procedure for CANDU reactor calculations. We also decided to generate separately 
the properties of the fuel, the pressure to calandria tubes and the moderator. These properties 
were generated in DRAGON using the SPH homogenization procedure that ensures that the 3 
region homogenized properties are totally coherent with the homogeneous fuel cell properties 
generated using the standard flux/volume homogenization method.L51

II.B. Time-Average Models 

The cell-average properties are then used for a 3—D reactor calculation in diffusion theory 
using the code DONJON. The goal of this calculation is to obtain a time-average burnup dis-
tribution in the core that can be used in our 2—D reactor model. Here we considered a coarse 
mesh (26 x 26 x 12) 3—D reactor model without reactivity control devices. Two combustion 
zones are then defined and an average exit burnup is computed in such a way as to maintain a 
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be questioned at the core reflector interface where large changes in physical properties are
observed. These two approximations could lead to large flux differences in the reflector and in
the last radial fuel regions, thereby affecting the precision of the computed bundle powers and
CVR.

The solution to the transport equation will be obtained using the collision probability (CP)
based transport code DRAGON. Here the main approximation consists in assuming that the
source inside each region of the calculation mesh is flat. This means that a fine mesh dis-
cretization is required to ensure that a reliable transport solution is obtained. As a result, the
amount of memory necessary to analyze the full 3–D reactor is considerable. We therefore
propose to use an axially infinite 2–D model for the reactor.

The simplified 2–D representation of the reactor will be presented and studied in the context
of diffusion and transport calculations. Here we have validated the diffusion approximations
using the transport equation on a reactor model. A comparison between the transport and
diffusion power distributions quantifies the errors that can be associated with diffusion theory.
Both cooled and fully voided representation of the core have been considered. The effect of
different models and calculation approximations on the CVR have also been studied.

II. MODELS

II.A. Cell Models

Before discussing in details the 2–D reactor models considered in this analysis, it is im-
portant to discuss first the generation of the cell properties required in our calculations. Here
the standard 37 element CANDU-6 fuel cell was considered. The burnup dependent cross sec-
tions required for our reactor calculations were generated using the DRAGON code where we
assumed that the fuel depletes at a fixed power density of 31.97 kW/kg during 300 days with
time steps of 1 day.

At each time step, the DRAGON computed multi-group and multi-region flux distribution
are used to evaluate 2-group homogenized cross sections. Here two different cell homogeniza-
tion procedures are considered. First, we performed a full cell homogenization following the
standard procedure for CANDU reactor calculations. We also decided to generate separately
the properties of the fuel, the pressure to calandria tubes and the moderator. These properties
were generated in DRAGON using the SPH homogenization procedure that ensures that the 3
region homogenized properties are totally coherent with the homogeneous fuel cell properties
generated using the standard flux/volume homogenization method.[5]

II.B. Time-Average Models

The cell-average properties are then used for a 3–D reactor calculation in diffusion theory
using the code DONJON. The goal of this calculation is to obtain a time-average burnup dis-
tribution in the core that can be used in our 2–D reactor model. Here we considered a coarse
mesh (26 × 26 × 12) 3–D reactor model without reactivity control devices. Two combustion
zones are then defined and an average exit burnup is computed in such a way as to maintain a
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super-critical core with keff = 1.020. This should account for the absence of the absorber rods 
(15 mk) and liquid zone controllers (5 mk) in our 3—D core model. 

A channel age pattern is then considered to determine the specific burnup of each fuel 
bundle based on the resulting time-average burnup distribution.L61 To obtain a 2—D burnup dis-
tribution, the 4560 values are averaged with respect to the bundle powers using: 

. • • 
B•• = E z Bi3Pi3 for j = 1, 380 (1) 

3 Ei Pii 

The burnup distribution is transformed into a depletion time pattern, each time step being 
rounded of to an integer number of days. This rounding off is convenient because it avoids 
interpolation in the fuel tables (the cross sections tables were tabulated with time steps of 1 
day). Since DRAGON does not have cross sections interpolation capability, this procedure 
guarantees that the DRAGON transport and DONJON diffusion calculations will be performed 
using exactly the same 2-group cross section library. 

II.C. 2—D Diffusion  Models 

Our 2—D model, illustrated in Figure 1, represents a mid-plane cut of a CANDU-6 at the 
location of maximal reflector width. It is defined by a Cartesian mesh in which virtual cells 
(empty boxes) represent the regions outside the annular boundary. At first, we chose the same 
Cartesian mesh as that used for the follow-up and analysis of Gentilly-2.rn The reflector shield 
is divided into 4 regions along the x and y axes. The fuel cells are also divided into 2 sub-
regions along the x direction around the control rod locations in order to be able to apply 
incremental cross sections to the half-cells these rods will affect. There is no mesh splitting in 
the y direction for the fuel cells. This then yields a 44 x 30 region model. The properties of each 
fuel cell in the reactor, which are homogenized over one lattice pitch, depend on fuel burnup. 
The reflector properties are assumed burnup independent. Cylindrical boundary conditions are 
applied on the last reflector cells at the annular boundary.L81

For all of our analysis we have used a mesh description which is more refined than that 
found in the reference geometry. In fact, each fuel cell has been subdivided into 2 sub-regions 
in each direction x and y. The reflector shield is also divided into 5 meshes, 4 of which are 
half a lattice pitch wide while the last mesh is 11.375 cm wide. The final model then contains 
54 x 54 regions of approximately the same volume. This model has the advantage that in the 
case where all the fuel cells have the same burnup, the resulting flux will be symmetric in both 
the x and y directions. 

Now, in order to obtain the neutron flux distribution inside the reactor, the boundary condi-
tions used in diffusion theory must simulate as well as possible zero re-entrant flux conditions 
on the annular boundary. In diffusion theory, this condition is approximated using: 

dcb 
~(x)x) ± 2D

dx 
0 (2) 

In diffusion codes, this approximate boundary condition can be simulated in several ways. One 
can show that this is equivalent to a zero flux (0(x) = 0) boundary condition at an extrapolated 
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super-critical core with keff = 1.020. This should account for the absence of the absorber rods
(15 mk) and liquid zone controllers (5 mk) in our 3–D core model.

A channel age pattern is then considered to determine the specific burnup of each fuel
bundle based on the resulting time-average burnup distribution.[6] To obtain a 2–D burnup dis-
tribution, the 4560 values are averaged with respect to the bundle powers using:

Bj =

∑
i BijPij∑

i Pij

for j = 1, 380 (1)

The burnup distribution is transformed into a depletion time pattern, each time step being
rounded of to an integer number of days. This rounding off is convenient because it avoids
interpolation in the fuel tables (the cross sections tables were tabulated with time steps of 1
day). Since DRAGON does not have cross sections interpolation capability, this procedure
guarantees that the DRAGON transport and DONJON diffusion calculations will be performed
using exactly the same 2-group cross section library.

II.C. 2–D Diffusion Models

Our 2–D model, illustrated in Figure 1, represents a mid-plane cut of a CANDU–6 at the
location of maximal reflector width. It is defined by a Cartesian mesh in which virtual cells
(empty boxes) represent the regions outside the annular boundary. At first, we chose the same
Cartesian mesh as that used for the follow-up and analysis of Gentilly-2.[7] The reflector shield
is divided into 4 regions along the x and y axes. The fuel cells are also divided into 2 sub-
regions along the x direction around the control rod locations in order to be able to apply
incremental cross sections to the half-cells these rods will affect. There is no mesh splitting in
the y direction for the fuel cells. This then yields a 44×30 region model. The properties of each
fuel cell in the reactor, which are homogenized over one lattice pitch, depend on fuel burnup.
The reflector properties are assumed burnup independent. Cylindrical boundary conditions are
applied on the last reflector cells at the annular boundary.[8]

For all of our analysis we have used a mesh description which is more refined than that
found in the reference geometry. In fact, each fuel cell has been subdivided into 2 sub-regions
in each direction x and y. The reflector shield is also divided into 5 meshes, 4 of which are
half a lattice pitch wide while the last mesh is 11.375 cm wide. The final model then contains
54 × 54 regions of approximately the same volume. This model has the advantage that in the
case where all the fuel cells have the same burnup, the resulting flux will be symmetric in both
the x and y directions.

Now, in order to obtain the neutron flux distribution inside the reactor, the boundary condi-
tions used in diffusion theory must simulate as well as possible zero re-entrant flux conditions
on the annular boundary. In diffusion theory, this condition is approximated using:

φ(x) + 2D
dφ

dx
= 0 (2)

In diffusion codes, this approximate boundary condition can be simulated in several ways. One
can show that this is equivalent to a zero flux (φ(x) = 0) boundary condition at an extrapolated
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distance R + 8r(E) where R is the core radius and 8r(E) an energy dependent extrapolation 
distance. One can first assume that the flux vanishes at the interface between the reflector and 
the virtual cells (8r(E) = 0), this is called the "ZERO" flux boundary condition. A second 
option consists in assuming that the flux vanishes at an extrapolated distances x + 8r(E) and/or 
y + 8r(E) inside the virtual cells. This option is called the "VOID" flux boundary condition. 
Finally, one can use angle dependent extrapolation distances 8x(0, E) and Sy(e , E) (here e is 
the cell angular location), called the cylindrical boundary condition.L81

Our second concern is associated with the validity of the diffusion approximation at the 
fuel-reflector boundary. In the case where an infinite array of fuel is considered, one expect 
the flux variations inside the core to be small since the cell cross sections vary weakly as a 
function of fuel burnup. On the other hand, the cross section associated with the reflector are 
very different from those associated with the fuel cell and large flux variations are expected 
in regions close to the fuel/reflector interface. To study this effect, our 2—D base model of 
54 x 54 Cartesian cells will be subdivided using a uniform n fold mesh splitting in both the x 
and y directions. Since the number of regions that can be considered in our transport calcula-
tions is limited, we decided to use only symmetric 1/4 and 1/8 core models where the burnup 
distributions were those found in the upper right corner of the reference core (see Figure 1). 

II.D. 2—D Transport Models 

Here three models are considered. The first model is similar to the 2—D CANDU model 
used for the diffusion calculation. Here, the virtual cells are replaced by voided cells. In 
this case the properties of each fuel cell in the reactor are homogenized over one lattice pitch 
and depend on fuel burnup while the reflector properties are burnup independent. The void 
boundary conditions are applied at the Cartesian cell limits and are identical to zero re-entrant 
flux at the reflector/void interface. The second model is similar to the first model with the 
exception that the annular reflector boundary is explicitly simulated as illustrated in Figure 2. 

Finally, the pin model presented in Figure 3 is also considered. In this case, each fuel cell 
is subdivided into 3 sub-regions that consists in an annular fuel/coolant region surrounded by 
an annular pressure-calandria tube region inside a Cartesian moderator. The properties of each 
fuel cell in the reactor, which are homogenized over 3 regions depend again on fuel burnup 
while the reflector properties are burnup independent. Using this model, one should be able to 
evaluate the errors in the power distribution inside the core due to the full cell homogenization. 
In addition, this model should be less sensitive to the spatial discretization at the interface 
between the fuel and reflector region because the properties of the reflector are similar to those 
of the cell moderator region. 

III. DIFFUSION-DIFFUSION ANALYSES 

ILIA. Calculation Methodology 

The diffusion equation will be solved using the DONJON code. The mesh centered fi-
nite difference (MCFD) method implemented in the TRIVAC module is used for most of our 
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distance R + δr(E) where R is the core radius and δr(E) an energy dependent extrapolation
distance. One can first assume that the flux vanishes at the interface between the reflector and
the virtual cells (δr(E) = 0), this is called the “ZERO” flux boundary condition. A second
option consists in assuming that the flux vanishes at an extrapolated distances x+δr(E) and/or
y + δr(E) inside the virtual cells. This option is called the “VOID” flux boundary condition.
Finally, one can use angle dependent extrapolation distances δx(θ, E) and δy(θ, E) (here θ is
the cell angular location), called the cylindrical boundary condition.[8]

Our second concern is associated with the validity of the diffusion approximation at the
fuel-reflector boundary. In the case where an infinite array of fuel is considered, one expect
the flux variations inside the core to be small since the cell cross sections vary weakly as a
function of fuel burnup. On the other hand, the cross section associated with the reflector are
very different from those associated with the fuel cell and large flux variations are expected
in regions close to the fuel/reflector interface. To study this effect, our 2–D base model of
54 × 54 Cartesian cells will be subdivided using a uniform n fold mesh splitting in both the x
and y directions. Since the number of regions that can be considered in our transport calcula-
tions is limited, we decided to use only symmetric 1/4 and 1/8 core models where the burnup
distributions were those found in the upper right corner of the reference core (see Figure 1).

II.D. 2–D Transport Models

Here three models are considered. The first model is similar to the 2–D CANDU model
used for the diffusion calculation. Here, the virtual cells are replaced by voided cells. In
this case the properties of each fuel cell in the reactor are homogenized over one lattice pitch
and depend on fuel burnup while the reflector properties are burnup independent. The void
boundary conditions are applied at the Cartesian cell limits and are identical to zero re-entrant
flux at the reflector/void interface. The second model is similar to the first model with the
exception that the annular reflector boundary is explicitly simulated as illustrated in Figure 2.

Finally, the pin model presented in Figure 3 is also considered. In this case, each fuel cell
is subdivided into 3 sub-regions that consists in an annular fuel/coolant region surrounded by
an annular pressure-calandria tube region inside a Cartesian moderator. The properties of each
fuel cell in the reactor, which are homogenized over 3 regions depend again on fuel burnup
while the reflector properties are burnup independent. Using this model, one should be able to
evaluate the errors in the power distribution inside the core due to the full cell homogenization.
In addition, this model should be less sensitive to the spatial discretization at the interface
between the fuel and reflector region because the properties of the reflector are similar to those
of the cell moderator region.

III. DIFFUSION-DIFFUSION ANALYSES

III.A. Calculation Methodology

The diffusion equation will be solved using the DONJON code. The mesh centered fi-
nite difference (MCFD) method implemented in the TRIVAC module is used for most of our
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analysis.L91 However, for verification purpose, the effect of higher order finite difference meth-
ods has also been studied. Finally a symmetric 1/4 core burnup distribution has been consid-
ered in all of our calculations. 

In order to compare the results, fluxes and powers are normalized to a total thermal power 
of 2061.4 kW. To compare different mesh splitting, a flux homogenization is also realized on a 
coarse 30 x 30 regions mesh, where each region is one lattice pitch wide. Void effect is studied 
for a full voiding of the core. 

IIIB. Spatial Effects 

First we analyze the effect of different boundary conditions using our 54 x 54 model, with 
a 1/4 core symmetric burnup distribution. We observe differences of up to 30% at the external 
boundary for the fast flux and up to 40% for the thermal flux when "VOID" are compared with 
cylindrical conditions. At the core/reflector interface, these differences reach 5% for the fast 
and 2% for the thermal fluxes. The fluxes differences inside the fuel regions remain within the 
1% margin. These large differences have an overall effect of underestimating the powers by 
nearly 4% in the peripheral region. When compared with "ZERO" conditions (demonstrated to 
be less adequate than "VOID" conditions),[10I these flux and power differences have the same 
overall pattern but the power decrease can now reach 5% at the periphery of the core. Figure 4 
shows the power distribution in a quarter of the core for the 54 x 54 model and the relative 
differences in power between "ZERO" and cylindrical boundary conditions. The powers are 
given in tens of kW and the differences are in %. 

Another way of improving the diffusion solution at the core/reflector interface consists 
in refining the model. The original 54 x 54 model is split by 2,3,4 and 5 in each direction. 
Comparisons have been made for every boundary condition with respect to the very fine 270 x 
270 mesh. In the case of "ZERO" boundary conditions, one observes that the flux spatial 
convergence is reached for a split 3 in each direction. However, the 4 % power differences 
with respect to the cylindrical conditions remain. In case of "VOID" boundary conditions, the 
differences in power distributions indicate that the spatial convergence is reached from split 3, 
but the power errors from the cylindrical boundary conditions stay at the 2% level at the core 
periphery. The mesh splitting seems to have more effect on fast than on thermal flux. 

Finally the model with cylindrical conditions was also refined using split levels of 2 and 
3 in each direction. The flux differences between the split 2 and 3 are under a few % and 
spatial convergence seems to be reached. The power differences between the coarse model 
and a 2 x 2 splitting are shown in Figure 5. Differences of up to 3% are observed at the 
core/reflector interface. This is expected because when a cell is divided into 4 sub-cells the 
boundary conditions are now applied independently on twice as many external surfaces. 

Finally the TRIVAC solver provides high order finite difference methods that can be used 
to improve our solution.L111 Those methods, which are based on nodal collocation, have been 
chosen for the first order (equivalent to mesh centered finite differences), then for quadratic, 
cubic and quartic nodal collocations, in the case of "VOID" boundary conditions since the 
cylindrical correction was not implemented for high order finite difference methods. Fast flux 
in the reflector is up to 30% larger in the low order approach (MCFD 1) than in the highest 
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analysis.[9] However, for verification purpose, the effect of higher order finite difference meth-
ods has also been studied. Finally a symmetric 1/4 core burnup distribution has been consid-
ered in all of our calculations.

In order to compare the results, fluxes and powers are normalized to a total thermal power
of 2061.4 kW. To compare different mesh splitting, a flux homogenization is also realized on a
coarse 30× 30 regions mesh, where each region is one lattice pitch wide. Void effect is studied
for a full voiding of the core.

III.B. Spatial Effects

First we analyze the effect of different boundary conditions using our 54 × 54 model, with
a 1/4 core symmetric burnup distribution. We observe differences of up to 30% at the external
boundary for the fast flux and up to 40% for the thermal flux when “VOID” are compared with
cylindrical conditions. At the core/reflector interface, these differences reach 5% for the fast
and 2% for the thermal fluxes. The fluxes differences inside the fuel regions remain within the
1% margin. These large differences have an overall effect of underestimating the powers by
nearly 4% in the peripheral region. When compared with “ZERO” conditions (demonstrated to
be less adequate than “VOID” conditions),[10] these flux and power differences have the same
overall pattern but the power decrease can now reach 5% at the periphery of the core. Figure 4
shows the power distribution in a quarter of the core for the 54 × 54 model and the relative
differences in power between “ZERO” and cylindrical boundary conditions. The powers are
given in tens of kW and the differences are in %.

Another way of improving the diffusion solution at the core/reflector interface consists
in refining the model. The original 54 × 54 model is split by 2,3,4 and 5 in each direction.
Comparisons have been made for every boundary condition with respect to the very fine 270×
270 mesh. In the case of “ZERO” boundary conditions, one observes that the flux spatial
convergence is reached for a split 3 in each direction. However, the 4 % power differences
with respect to the cylindrical conditions remain. In case of “VOID” boundary conditions, the
differences in power distributions indicate that the spatial convergence is reached from split 3,
but the power errors from the cylindrical boundary conditions stay at the 2% level at the core
periphery. The mesh splitting seems to have more effect on fast than on thermal flux.

Finally the model with cylindrical conditions was also refined using split levels of 2 and
3 in each direction. The flux differences between the split 2 and 3 are under a few % and
spatial convergence seems to be reached. The power differences between the coarse model
and a 2 × 2 splitting are shown in Figure 5. Differences of up to 3% are observed at the
core/reflector interface. This is expected because when a cell is divided into 4 sub-cells the
boundary conditions are now applied independently on twice as many external surfaces.

Finally the TRIVAC solver provides high order finite difference methods that can be used
to improve our solution.[11] Those methods, which are based on nodal collocation, have been
chosen for the first order (equivalent to mesh centered finite differences), then for quadratic,
cubic and quartic nodal collocations, in the case of “VOID” boundary conditions since the
cylindrical correction was not implemented for high order finite difference methods. Fast flux
in the reflector is up to 30% larger in the low order approach (MCFD 1) than in the highest
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approach (MCFD 4), whereas thermal flux differences are under 10% in the reflector. In the 
fuel region, the flux differences are within 4%. The corresponding power differences are mainly 
located in the outer ring and remains under 2%. These differences are compatible to those 
obtained with our mesh splitting effort since the two approaches are comparable. One then has 
the choice of using a finer model or a higher order finite difference method. 

From these comparisons one can say that the cylindrical boundary conditions contribute to 
a power increase in the outer ring of the reactor compared to other boundary conditions. For 
such boundary conditions, refinement effort re-enforces this tendency, as shown in Figure 5. We 
then choose the 104 x 104 mesh model with cylindrical boundary conditions as the reference 
when comparing with the transport results. 

III.C. Void Effect 

Even if all of these models show considerable differences in fluxes and power distributions 
in the core, their eigenvalues are very similar, even identical. Boundary conditions or mesh 
splitting have almost no effect on eigenvalues either for cooled or voided case. The eigenvalue 
of the cooled reactor is keff = 1.03415 while the eigenvalue of the voided case is keff = 1.04906 
for the converged model. The coolant void reactivity, which is computed using 

k Voided — keCffooled 

P = 1000 (  eff 
k. Voided L.Cooled 
'' eff n, eff

(3) 

is p = 13.7 mk. 
For the different core configurations used in the previous section, voided calculations were 

also performed. The fluxes and powers are normalized to the same level for both the cooled 
and voided calculations. When the core is totally voided, the fast fluxes increase by about 4% 
at the center of the core and by up to 7% at the core/reflector interface. The thermal fluxes 
decrease in the core center by nearly 5% and by less than 2% in the reflector region. The power 
differences show an increase in the outer ring and almost no effects in the core center. The 
coolant voiding has no significant effect on the flux shape inside the fuel regions. The flux in 
the reflector increases as the neutron streaming outside the core region increase due to the lack 
of absorption in the coolant. The diffusion model developed here seems appropriate to follow 
those effects. 

IV. TRANSPORT-TRANSPORT ANALYSES 

N.A. Calculation Methodology 

The transport equation will be solved using the lattice code DRAGON. The CP option of 
DRAGON was selected even if a 2—D characteristic option is also available to perform such 
calculations. The main approximation that affects the precision of the results in both the CP 
and characteristics method is the requirement that the source must be flat inside each region of 
the calculation mesh considered. 
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approach (MCFD 4), whereas thermal flux differences are under 10% in the reflector. In the
fuel region, the flux differences are within 4%. The corresponding power differences are mainly
located in the outer ring and remains under 2%. These differences are compatible to those
obtained with our mesh splitting effort since the two approaches are comparable. One then has
the choice of using a finer model or a higher order finite difference method.

From these comparisons one can say that the cylindrical boundary conditions contribute to
a power increase in the outer ring of the reactor compared to other boundary conditions. For
such boundary conditions, refinement effort re-enforces this tendency, as shown in Figure 5. We
then choose the 104 × 104 mesh model with cylindrical boundary conditions as the reference
when comparing with the transport results.

III.C. Void Effect

Even if all of these models show considerable differences in fluxes and power distributions
in the core, their eigenvalues are very similar, even identical. Boundary conditions or mesh
splitting have almost no effect on eigenvalues either for cooled or voided case. The eigenvalue
of the cooled reactor is keff = 1.03415 while the eigenvalue of the voided case is keff = 1.04906
for the converged model. The coolant void reactivity, which is computed using

ρ = 1000

(
kVoided
eff − kCooled

eff

kVoided
eff kCooled

eff

)
(3)

is ρ = 13.7 mk.
For the different core configurations used in the previous section, voided calculations were

also performed. The fluxes and powers are normalized to the same level for both the cooled
and voided calculations. When the core is totally voided, the fast fluxes increase by about 4%
at the center of the core and by up to 7% at the core/reflector interface. The thermal fluxes
decrease in the core center by nearly 5% and by less than 2% in the reflector region. The power
differences show an increase in the outer ring and almost no effects in the core center. The
coolant voiding has no significant effect on the flux shape inside the fuel regions. The flux in
the reflector increases as the neutron streaming outside the core region increase due to the lack
of absorption in the coolant. The diffusion model developed here seems appropriate to follow
those effects.

IV. TRANSPORT-TRANSPORT ANALYSES

IV.A. Calculation Methodology

The transport equation will be solved using the lattice code DRAGON. The CP option of
DRAGON was selected even if a 2–D characteristic option is also available to perform such
calculations. The main approximation that affects the precision of the results in both the CP
and characteristics method is the requirement that the source must be flat inside each region of
the calculation mesh considered.
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For full reactor calculations (zero re-entrant flux conditions), the precision of DRAGON is 
only controlled by the size of the spatial calculation mesh considered. In lattice cell calculations 
the mesh is generally selected in such a way that it is smaller than the neutron mean free path 
inside each region. For our 2—D reactor model this implies a 2—D mesh size of about 1 cm2
and consequently around 600K individual regions in the model. The amount of memory that is 
required to execute DRAGON on such a large problem is around 9 Tbytes. This is clearly out 
of reach for current computer systems. With our computers, the amount of memory available 
is around 1 Gbytes corresponding to a problem involving 7000 unknowns per group. Since our 
study cannot be completed for the full reactor model, we have considered instead a simplified 
model corresponding to 1/4 or about 1/8 of the original model (note that the 1/8 model contains 
only 376 fuel cell as can be seen in Figure 1). 

For our 2—D reactor model, the cross section variations from fuel region to fuel region are 
relatively weak and, in principle, a coarse mesh model can be selected. The main errors then 
arise because of the presence of the reflector and even more importantly of the void region. 
Since there are no re-entering flux at the reflector/void interface, one expects the neutron flux 
distribution in the reflector region to decrease rapidly as the distance from the center of the core 
increases. As a result the diffusion sources in the reflector region are not flat. This should have a 
large effect on the flux distribution in the fuel cells located near the reflector zone. Accordingly, 
one should consider a fine radial mesh for the reflector zone as well as for the fuel region at the 
core periphery. 

N.B. Spatial Effects 

In order to study the spatial convergence of the transport solution, a series of transport 
calculations with different spatial meshes was performed. The 1/8 core 27 x 27 region model 
was subdivided into n = 2, 3 and 4 equal meshes in both the x and y directions resulting in an 
increase for the number of regions by factors of 4, 9 and 16 respectively. For the finer model 
(n = 4) this lead to a 2—D mesh size of 3.57 x 3.57 cm2 which can be compared with the 
original mesh (n = 1) of 14.3 x 14.3 cm2. 

Assuming that the reference solution is provided when the finer mesh (n = 4) is used, the 
relative error in the fluxes can be computed. The results are presented in Figure 6. As one 
can see, for n = 3 the maximum difference in the integrated flux inside the fuel zone is 1.2 % 
while in the reflector this error can reach 7.1 %. The error in the flux for the void zone past 
the reflector is somewhat larger since it can reach 18 % in the upper half corner of the core. 
Typically, this means that for the simple Cartesian description of the reactor, one can expect 
uncertainties in the computed power distribution errors of about 1% for the n = 3 model while 
for n = 2 and n = 1 the uncertainties will reach 2.5 % and 6.1 % respectively. The spatial 
convergence of the thermal flux along the x axis (see Figure 1) as a function of n can also be 
observed in Figure 7. The results with n = 1 show large errors both at the core center and at 
the fuel/reflector interface. On the other hand, convergence is clearly reached for n = 3. 

We also compared the results obtained using the pin model with those obtained with the 
Cartesian model with a fine mesh (n = 4). Here we observe that the maximum differences 
in power distribution inside the fuel region is about 3.0 % for a coarse mesh model while for 
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n = 2 this error is reduced to 1.5 %. This shows that both the pin and the homogenized cell 
models converge to the same answer. Moreover, as expected from the fact that the fuel pin 
model is inherently fine mesh, a relatively coarse mesh discretization of the fuel pin model is 
nearly equivalent to a fine mesh discretization of the Cartesian Model at least with respect to 
the precision of the power distribution in the core. 

Finally we have studied the effect of using annular boundary conditions in the transport 
calculation. Here we have compared the thermal flux distribution obtained using the Cartesian 
model with those obtained using the annular model. The mesh splitting that was selected in 
both calculations is n = 2. The relative differences in the flux distribution along the x axis 
increases rapidly as one approaches the boundary (see Figure 8). These differences always 
remain smaller than 1.5 % inside the fuel region and 2.5 % in the reflector. Note that a small 
part of these differences can be associated with the fact that the annular model generates a finer 
mesh than that used in the Cartesian model at the reflector/void interface. However, most of 
these differences can be attributed to the fact that the leakage in the annular model takes place 
through a surface which is around 25 % smaller than in the Cartesian case. 

While the 1/8 core model is useful for convergence studies it does not provide an adequate 
representation of the CANDU-6 reactor (the number of fuel regions in the core is reduced from 
380 to 376). The quarter core model is more appropriate and the convergence studies indicate 
that a mesh splitting of n = 2 for the pin model and n = 3 for the Cartesian model is adequate 
to maintain an upper limit of 2.0 % on the power distribution error in the core. 

N.C. Void Effect 

The transport calculations required for the CVR evaluation were performed for the three 
different transport models with different values for the mesh splitting parameter n. The CVR, 
computed using Eq. (3), are presented in Table 1. 

Table 1: Computed CVR for various transport models 

n Cooled Voided p (mk) 
Annular keff 2 1.0235 1.0388 14.4 
Cartesian keff 2 1.0232 1.0385 14.4 
Cartesian keff 3 1.0292 1.0444 14.1 
Pin keff 2 1.0144 1.0301 15.0 

The first observation is that contrarily to what is observed in the diffusion calculations, 
mesh splitting has a relatively large effect on keff where a difference of 6 mk is observed in the 
Cartesian case when n is increased from 2 to 3 . For the 1/8 core Cartesian model increases 
of 6.8 mk and 1.6 mk are observed in keff when passing from n=2 to 3 and from n=3 to 4 
respectively. As a result, a decrease of 0.3 mk in CVR is observed when passing from n=2 to 3 
in the Cartesian model. On the other hand, the effect of the boundary conditions on keff and p 
are weak (< 0.3 mk). The use of a pin instead of a homogeneous fuel model has a 15 mk effect 
on keff leading to a difference of up to 0.9 mk in the CVR. This suggests that homogenizing the 
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n = 2 this error is reduced to 1.5 %. This shows that both the pin and the homogenized cell
models converge to the same answer. Moreover, as expected from the fact that the fuel pin
model is inherently fine mesh, a relatively coarse mesh discretization of the fuel pin model is
nearly equivalent to a fine mesh discretization of the Cartesian Model at least with respect to
the precision of the power distribution in the core.

Finally we have studied the effect of using annular boundary conditions in the transport
calculation. Here we have compared the thermal flux distribution obtained using the Cartesian
model with those obtained using the annular model. The mesh splitting that was selected in
both calculations is n = 2. The relative differences in the flux distribution along the x axis
increases rapidly as one approaches the boundary (see Figure 8). These differences always
remain smaller than 1.5 % inside the fuel region and 2.5 % in the reflector. Note that a small
part of these differences can be associated with the fact that the annular model generates a finer
mesh than that used in the Cartesian model at the reflector/void interface. However, most of
these differences can be attributed to the fact that the leakage in the annular model takes place
through a surface which is around 25 % smaller than in the Cartesian case.

While the 1/8 core model is useful for convergence studies it does not provide an adequate
representation of the CANDU-6 reactor (the number of fuel regions in the core is reduced from
380 to 376). The quarter core model is more appropriate and the convergence studies indicate
that a mesh splitting of n = 2 for the pin model and n = 3 for the Cartesian model is adequate
to maintain an upper limit of 2.0 % on the power distribution error in the core.

IV.C. Void Effect

The transport calculations required for the CVR evaluation were performed for the three
different transport models with different values for the mesh splitting parameter n. The CVR,
computed using Eq. (3), are presented in Table 1.

Table 1: Computed CVR for various transport models

n Cooled Voided ρ (mk)
Annular keff 2 1.0235 1.0388 14.4
Cartesian keff 2 1.0232 1.0385 14.4
Cartesian keff 3 1.0292 1.0444 14.1
Pin keff 2 1.0144 1.0301 15.0

The first observation is that contrarily to what is observed in the diffusion calculations,
mesh splitting has a relatively large effect on keff where a difference of 6 mk is observed in the
Cartesian case when n is increased from 2 to 3 . For the 1/8 core Cartesian model increases
of 6.8 mk and 1.6 mk are observed in keff when passing from n=2 to 3 and from n=3 to 4
respectively. As a result, a decrease of 0.3 mk in CVR is observed when passing from n=2 to 3
in the Cartesian model. On the other hand, the effect of the boundary conditions on keff and ρ
are weak (< 0.3 mk). The use of a pin instead of a homogeneous fuel model has a 15 mk effect
on keff leading to a difference of up to 0.9 mk in the CVR. This suggests that homogenizing the
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moderator with the fuel and coolant region reduces the effect of coolant voiding on the overall 
cell properties. 

V. TRANSPORT-DIFFUSION COMPARISON 

For the transport calculations we have selected the n = 2 pin model while for the diffusion 
calculations, the 104 x 104 Cartesian mesh with cylindrical boundary conditions has been 
considered. 

We first studied the relative effect of voiding on the power distribution obtained using diffu-
sion and transport theory which are presented in Figure 9. The main observation is that voiding 
flattens the power distribution inside the core. In diffusion, this means a reduction in power 
of nearly 1 % for the central fuel cells with an increase of up to 2.8 % at the core periphery. 
In transport this flattening effect is slightly lower. By comparing the CVR from diffusion and 
transport calculations a difference of 1.3 mk is obtained which corresponds to approximately 
10 % of its value. This difference is reduced to 0.4 mk if the Cartesian model (which is in fact 
similar to the diffusion model) is considered. 

Finally a comparison of the diffusion and transport power distributions can be found in 
Figure 10 for both the cooled and voided cases. Typically, the transport power distribution is 
flatter than that computed using the diffusion calculations. As expected, the power in the outer 
fuel rings is under-evaluated in diffusion theory where differences of up to 6.6 % are observed. 
This automatically leads to an over-estimation of the power in the center of the core. This effect 
is only slightly reduced when the core is voided. 

VI. CONCLUSIONS 

After revisiting the various approximations used in diffusion theory we have shown that the 
cylindrical boundary are the most precise. We also observed that a mesh of 104 x 104 regions 
is required to obtain a spatially converged diffusion solution. The boundary conditions and the 
mesh splitting have no effect on keff or the CVR. 

The main transport approximation we analyzed is the flat source approximation. We ob-
served that the transport solution is spatially converged only when a relatively fine mesh is 
selected. In fact the homogeneous Cartesian model requires a mesh with 162 x 162 regions 
while for the pin model a slightly coarser mesh can be considered (108 x 108). As in the case 
of diffusion, refining the mesh has a very small effect on the CVR. However, selecting a pin 
rather than a homogeneous fuel cell description increases the CVR by nearly 1 mk. 

Our results indicate that the power distribution in the outer fuel rings is slightly under 
estimated in diffusion theory. The voiding effect on power distribution is very similar for both 
transport and diffusion. A difference of 0.4 mk in the CVR is found between our best diffusion 
model and the finer Cartesian transport model. This difference increases to 1.3 mk when the 
coarser pin transport model is considered. Most of this difference can be attributed to the 
change in homogenization technique when passing to the pin model in transport and to the fact 
that the spatial mesh in this case is still relatively coarse. 
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[3] B. Rouben, “An overview of Current RFSP-Code Capabilities for CANDU Core Analy-
sis”, Atomic Energy of Canada Limited, Report AECL-11407 (1996).

[4] E. Varin, A. Hébert, R. Roy and J. Koclas, A User’s Guide for DONJON, Report IGE-208
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[9] A. Hébert, “TRIVAC, A Modular Diffusion Code for Fuel Management and Design Ap-
plications”, Nucl. J. of Canada, 1, 325 (1987).

[10] K.O. Ott and W.A. Bezella, Introductory Nuclear Reactor Statics, American Nuclear So-
ciety, La Grange Park (1983).

[11] A. Hébert, “Development of the Nodal Collocation Method for Solving the Neutron Dif-
fusion Equation”, Ann. Nucl. Energy, 14, 527-541 (1987).

10



A 

Color by region type 

Rod 
Reflector I= 
Fuel 

1/4 core 

1/8 core 

Figure 1: Cartesian 2—D model for the CANDU-6 reactor 

Color by regionswe 

Vold 
lkflector 
Fed 

Figure 2: Annular 2—D model for the CANDU-6 reactor 

11 

1/8 core

1/4 core

y

x

Color by region type

Void
Reflector
Fuel

Figure 1: Cartesian 2–D model for the CANDU-6 reactor

Color by region type

Void
Reflector
Fuel

Figure 2: Annular 2–D model for the CANDU-6 reactor

11



Color by region type 
Void 
Reector 
Fuel 
Tees 
Moderator I= 

 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 3: Cartesian 2-D model with fuel pins for the CANDU-6 reactor 

Power 
Model with cylindrical BC 

12 13 14 15 16 

A 260 231 231 

B 347 315 274 281 236 

C 408 421 363 342 298 

D 556 520 466 405 402 

E 653 608 604 541 482 

F 788 696 704 608 529 

43 892 820 803 733 634 

970 914 822 809 720 

J 972 992 892 854 768 

K 1069 1026 950 855 842 

L 1049 998 1014 936 864 

Relative differences 
"ZERO" - cylindrical BC 

17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 

-0.8 -0.9 -2.2 

208 -0.9 -1.0 -1.5 -2.5 -3.8 -5.3 

243 213 -0.2 -0.5 -0.8 -1.2 -2.0 -3.3 -5.2 

351 294 239 0.0 -0.2 -0.2 -0.5 -1.2 -2.0 -3.1 -5.0 

398 344 269 239 0.2 0.0 0.0 -0.2 -0.6 -1.3 -1.7 -3.0 -4.6 

496 431 312 281 0.4 0.4 0.3 0.0 -0.2 -0.4 -0.9 -1.3 -2.5 

549 495 381 322 255 0.6 0.5 0.4 0.4 0.2 0.0 -0.4 -0.8 -1.2 -2.0 

652 558 437 323 281 0.7 0.7 0.6 0.5 0.4 0.3 0.2 -0.2 -0.3 -0.7 

653 570 488 358 285 213 0.7 0.7 0.7 0.6 0.7 0.5 0.4 0.2 0.0 0.0 0.5 

745 637 507 387 282 236 0.7 0.8 0.7 0.7 0.7 0.5 0.5 0.4 0.5 0.7 0.8 

730 627 486 424 319 244 0.9 0.8 0.8 0.7 0.6 0.7 0.6 0.6 0.5 0.3 1.6 

Figure 4: Power differences between the 44 x 30 and 54 x 54 diffusion models. 
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L | 1049  998 1014  936| 864  730  627  486  424  319  244  | 0.9  0.8  0.8  0.7| 0.6  0.7  0.6  0.6  0.5  0.3  1.6  

Figure 4: Power differences between the 44 × 30 and 54 × 54 diffusion models.
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(Cylil-Cyli2)/Cyli2*100 
12 13 14 15 16 17 18 19 20 21 22 

A -0.8 -1.3 -2.1 

B 0.3 -0.6 -1,4 -1.1 -2.1 -2.8 

C -0.5 0.0 -0.3 -0.6 -1.0 -1.6 -3.2 

D 0.4 0.2 -0.2 -0.5 0.0 -0.3 -1.0 -2.8 

E 0.3 0.0 0.5 0.2 0.0 -0.3 -0.6 -1.5 -2.8 

F 0.6 0.0 0.3 0.0 -0.2 0.0 0.0 -1.3 -2.1 

G 0.6 0.2 0.6 0.4 0.0 -0.2 0.0 -0.5 -0.6 -2.7 

H 0.7 0.4 0.1 0.7 0.1 0.5 0.4 -0.2 -0.9 -1.4 

J 0.2 0.6 0.2 0.4 0.1 -0.2 0.0 0.0 -0.6 -1.0 -2.3 

A 0.8 0.5 0.3 0.1 0.5 0.5 0.5 0.0 -0.3 -1.1 -0.8 

L 0.5 0.2 0.7 0.4 0.6 0.1 0.2 -0.4 0.0 -0.3 -1.2 

Figure 5: Power differences in diffusion model with cylindrical boundary conditions for 
2 different mesh splitting 
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Figure 6: Relative differences in transport flux as a function of split level n. The reference 
values are for the Cartesian model with n = 4. 

13 

(Cyli1-Cyli2)/Cyli2*100
     12   13   14   15   16   17   18   19   20   21   22
A |-0.8 -1.3 -2.1   
  |                   |
B | 0.3 -0.6 -1,4 -1.1|-2.1 -2.8                   
  |                   |
C |-0.5  0.0 -0.3 -0.6|-1.0 -1.6 -3.2  
  |                   |
D | 0.4  0.2 -0.2 -0.5| 0.0 -0.3 -1.0 -2.8 
  |                   |
E | 0.3  0.0  0.5  0.2| 0.0 -0.3 -0.6 -1.5 -2.8 
  |                   |
F | 0.6  0.0  0.3  0.0|-0.2  0.0  0.0 -1.3 -2.1 
  |                   |
G | 0.6  0.2  0.6  0.4| 0.0 -0.2  0.0 -0.5 -0.6 -2.7 
  |                   |
H | 0.7  0.4  0.1  0.7| 0.1  0.5  0.4 -0.2 -0.9 -1.4 
  |-------------------|
J | 0.2  0.6  0.2  0.4| 0.1 -0.2  0.0  0.0 -0.6 -1.0 -2.3
  |                   |
K | 0.8  0.5  0.3  0.1| 0.5  0.5  0.5  0.0 -0.3 -1.1 -0.8
  |                   |
L | 0.5  0.2  0.7  0.4| 0.6  0.1  0.2 -0.4  0.0 -0.3 -1.2

Figure 5: Power differences in diffusion model with cylindrical boundary conditions for
2 different mesh splitting
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Figure 6: Relative differences in transport flux as a function of split level n. The reference
values are for the Cartesian model with n = 4.
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Figure 7: Thermal transport flux along the x axis as a function of split level n. 
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Figure 8: Effect of annular boundaries on the thermal flux distribution along the x axis. 
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Figure 7: Thermal transport flux along the x axis as a function of split level n.
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Figure 8: Effect of annular boundaries on the thermal flux distribution along the x axis.
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Diffusion 
100*(Voided-Cooled)/Cooled 

Transport 
100*(Voided-Cooled)/Cooled 

12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 

2.3 2.1 3.0 1.1 1.3 1.7 

1.2 0.9 1.1 2.5 2.5 3.3 0.8 0.3 0.3 1.4 1.2 1.9 

0.0 0.2 0.3 0.6 1.0 1.2 2.8 0.0 0.2 0.0 0.3 0.3 0.4 1.4 

0.0 0.0 0.0 0.0 0.5 0.9 1.4 2.4 0.0 -0.2 0.0 -0.2 0.2 0.6 1.0 1.2 

-0.3 -0.5 0.0 0.0 0.0 0.3 0.3 1.1 3.3 -0.2 -0.2 0.0 -0.2 -0.2 -0.2 0.0 0.4 2.1 
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-0.3 -0.7 -0.7 0.1 -0.4 0.2 0.5 0.2 0.3 2.5 0.1 -0.3 -0.5 0.4 -0.1 0.2 0.4 0.0 0.3 1.4 

-0.8 -0.6 -0.8 -0.6 -0.5 -0.5 -0.2 0.2 0.6 1.4 2.8 -0.4 -0.2 -0.5 -0.2 -0.3 -0.3 -0.2 0.0 0.0 0.7 1.3 

-0.7 -0.8 -0.8 -0.8 -0.5 0.0 0.0 0.0 0.3 0.7 2.1 -0.1 -0.3 -0.4 -0.5 0.0 0.1 0.2 -0.2 0.0 0.3 1.2 

-0.9 -0.9 -0.6 -0.8 -0.6 -0.5 -0.3 0.0 0.5 0.9 2.4 -0.5 -0.5 -0.1 -0.3 -0.2 -0.3 -0.3 -0.2 0.0 0.3 1.2 

Figure 9: Effect of voiding on transport and diffusion power distributions. 

Cooled case 
100*(Diffusion-Transport)/Transport 
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Figure 10: Comparison of transport and diffusion power distributions for voided and 
cooled configurations. 
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  | Diffusion                                               | Transport
  | 100*(Voided-Cooled)/Cooled                              | 100*(Voided-Cooled)/Cooled
  |---------------------------------------------------------|------------------------------------------------------
  |  12   13   14   15   16   17   18   19   20   21   22   |  12   13   14   15   16   17   18   19   20   21   22 
  |                                                         |                                                    
A | 2.3  2.1  3.0                                           | 1.1  1.3  1.7                                         
  |                   |                                     |                   |                                 
B | 1.2  0.9  1.1  2.5| 2.5  3.3                            | 0.8  0.3  0.3  1.4| 1.2  1.9                          
  |                   |                                     |                   |                                  
C | 0.0  0.2  0.3  0.6| 1.0  1.2  2.8                       | 0.0  0.2  0.0  0.3| 0.3  0.4  1.4                    
  |                   |                                     |                   |                                   
D | 0.0  0.0  0.0  0.0| 0.5  0.9  1.4  2.4                  | 0.0 -0.2  0.0 -0.2| 0.2  0.6  1.0  1.2                 
  |                   |                                     |                   |                                  
E |-0.3 -0.5  0.0  0.0| 0.0  0.3  0.3  1.1  3.3             |-0.2 -0.2  0.0 -0.2|-0.2 -0.2  0.0  0.4  2.1    
  |                   |                                     |                   |                           
F |-0.1 -0.4 -0.3 -0.5|-0.4  0.2  0.5  0.6  1.7             | 0.1 -0.4 -0.1 -0.3|-0.4  0.0  0.2  0.0  1.0    
  |                   |                                     |                   |                           
G |-0.5 -0.6 -0.3 -0.3|-0.3 -0.2  0.0  0.5  1.2  2.7        |-0.1 -0.3 -0.1 -0.1|-0.3 -0.2  0.0  0.0  0.6  1.5
  |                   |                                     |                   |                             
H |-0.3 -0.7 -0.7  0.1|-0.4  0.2  0.5  0.2  0.3  2.5        | 0.1 -0.3 -0.5  0.4|-0.1  0.2  0.4  0.0  0.3  1.4
  |-------------------|                                     |-------------------|                             
J |-0.8 -0.6 -0.8 -0.6|-0.5 -0.5 -0.2  0.2  0.6  1.4  2.8   |-0.4 -0.2 -0.5 -0.2|-0.3 -0.3 -0.2  0.0  0.0  0.7  1.3  
  |                   |                                     |                   |                                   
K |-0.7 -0.8 -0.8 -0.8|-0.5  0.0  0.0  0.0  0.3  0.7  2.1   |-0.1 -0.3 -0.4 -0.5| 0.0  0.1  0.2 -0.2  0.0  0.3  1.2  
  |                   |                                     |                   |                                   
L |-0.9 -0.9 -0.6 -0.8|-0.6 -0.5 -0.3  0.0  0.5  0.9  2.4   |-0.5 -0.5 -0.1 -0.3|-0.2 -0.3 -0.3 -0.2  0.0  0.3  1.2  

Figure 9: Effect of voiding on transport and diffusion power distributions.

  | Cooled case                                             | Voided Case
  | 100*(Diffusion-Transport)/Transport                     | 100*(Diffusion-Transport)/Transport
  |---------------------------------------------------------|------------------------------------------------------
  |  12   13   14   15   16   17   18   19   20   21   22   |  12   13   14   15   16   17   18   19   20   21   22
  |                                                         |                                                    
A |-0.8 -1.7 -0.4                                           | 0.4 -0.8  0.8                                          
  |                   |                                     |                   |                                  
B |-2.3 -3.7 -3.8 -1.4|-0.8  1.4                            |-2.0 -3.0 -3.1 -0.3| 0.4  2.8                           
  |                   |                                     |                   |                                  
C |-2.1 -3.0 -4.2 -4.2|-4.2 -3.1  0.9                       |-2.1 -3.0 -3.9 -3.9|-3.5 -2.4  2.3                      
  |                   |                                     |                   |                                  
D |-0.7 -1.9 -2.9 -4.0|-3.6 -3.0 -2.0  2.1                  |-0.7 -1.7 -2.9 -3.8|-3.3 -2.7 -1.6  3.3                 
  |                   |                                     |                   |                                  
E | 0.8 -0.2 -1.1 -2.4|-3.2 -3.6 -3.4 -2.5  2.5             | 0.6 -0.5 -1.1 -2.2|-3.0 -3.1 -3.1 -1.8  3.7            
  |                   |                                     |                   |                                  
F | 2.8  1.2  0.1 -1.0|-2.4 -3.1 -3.1 -4.0 -0.7             | 2.5  1.2  0.0 -1.1|-2.4 -2.9 -2.9 -3.4  0.0            
  |                   |                                     |                   |                                  
G | 4.1  2.8  1.7  0.6|-0.8 -1.6 -2.4 -3.8 -3.6  0.4        | 3.8  2.4  1.5  0.4|-0.8 -1.6 -2.4 -3.3 -3.0  1.5       
  |                   |                                     |                   |                                  
H | 4.9  3.4  2.1  1.8| 0.4 -0.6 -1.6 -3.5 -4.7 -3.1        | 4.5  3.1  1.9  1.5| 0.1 -0.6 -1.4 -3.3 -4.7 -2.0       
  |-------------------|                                     |-------------------|                                  
J | 4.5  3.7  2.4  1.9| 0.9 -0.3 -1.6 -3.6 -5.3 -6.2 -4.0   | 4.1  3.3  2.1  1.6| 0.7 -0.5 -1.6 -3.4 -4.7 -5.5 -2.6  
  |                   |                                     |                   |                                  
K | 4.7  4.1  3.0  2.4| 2.1  0.8 -1.1 -3.4 -5.6 -6.6 -5.6   | 4.1  3.6  2.6  2.0| 1.6  0.7 -1.2 -3.2 -5.4 -6.2 -4.7
  |                   |                                     |                   |                                  
L | 4.1  4.0  4.0  3.2| 2.5  0.7 -1.6 -3.9 -5.1 -6.2 -5.4   | 3.7  3.6  3.5  2.8| 2.2  0.4 -1.6 -3.8 -4.7 -5.6 -4.2  

Figure 10: Comparison of transport and diffusion power distributions for voided and
cooled configurations.
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