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ABSTRACT 

The SCAN code designed as a CANDU-PHWR physics research and development 
tool in Korea is introduced. In an effort to validate the SCAN code, Wolsong unit 3 
phase-B reactor physics measurements are analyzed by 1.5 group and 2 group SCAN 
model. The results are compared with the corresponding RFSP model calculations. 

It is shown that the SCAN code can predict the CANDU-PHWR core neutronics 
parameters of major importance as accurately as the RFSP with much less CPU time 

and better convergence characteristics. 

1. INTRODUCTION 

The SCAN (Seoul National University CANDU-PHWR Neutronics) code has been 
developed as a research and development tool for neutronics design and analysis of 
CANDU-PHWR. It is evolved from the FDM3D(' ), a three-dimensional (3-D) finite 
difference diffusion equation solver, which can solve either the 1.5 group model of the 
original RFSP(2) (Reactor Fuelling Simulation Program) code or full 2 group model with 
successive over-relaxation (SOR)/Chebyshev iteration scheme. To facilitate inputing the 
geometric data for the full 3-D analysis of CANDU reactor, the SCAN is equipped with 

the automatic 3-D nodalization subroutine which divides the reactor core and reflector 
regions automatically into the desired number of spatial meshes fit for the intended 
finite difference calculation of the FDM3D. 

Previously, we incorporated the 1.5 group version of FDM3D into the original RFSP 
and examined the effectiveness of the FDM3D solver in comparison with that of the 
RFSP using Wolsung units 2 and 3 physics test data. In our continued efforts to examine 
the computational effectiveness of the FDM3D, e.g., the SCAN code now, we revisit the 
phase B physics tests of the Wolsung unit 3, analyze 95 test cases using both 1.5 group 
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and 2 group models of SCAN, compare the results with those of the new RFSP, and 
discuss the validity of the SCAN code. 

2. Finite Difference Diffusion Equation Solver, FDM3D 

The FDM3D is the 3-D solver for the full two group finite difference diffusion 
equations given by 

5 
1 E A lm'd ql ni — 01d ) -1- ( r ail + Ensl->2 )0- 1m — Z72,1-0-2m = 7, (vE710—im ± vr;20- 2m ) 

d=0 , ,.. of 

5 — — 
d n2 d EA2m. (02 -02 )-E E am 2 0-2 m + E  sm2-10- 2m — Z sm 1 - 0 0-1 m = 0

d=0 

where :21;'d = 
2D;Dgd 1 

n m A .,,,d j _. nd A ,m A x m 
.1-1 g  1-14. - F .Ll g  LIA, 

: the coupling coefficients 

Ei : i-type group macroscopic cross section (a=absorption, f=fission) 

EsG,_,g. : group transfer macroscopic cross section from g to g' 

In : spatial mesh index with d the six neighbor meshes 

(1.2) 

For speedy solution to Eq.(1), the FDM3D adopts either successive-over-relaxation 
(SOR)/two-parameter Chebyshev polynomial method or bi-conjugate gradient stabilization 
(BICG-STAB)P)/Wielandt method as the inner/outer iteration scheme. 

3. BENCHMARK PROBLEMS AND GEOMETRIC INPUT DATA 

The benchmark problems selected for the validation of the SCAN code are 95 cases 
of the phase B physics tests of the Wolsong unit 3. Table 1 summarizes the 95 test cases. 

The test cases require the calculations of the following core properties of Wolsung 
unit 3 reactor for the phase B(4)(5) conditions (less than 0.1% of full power). 

a. Boron reactivity worth and the concentration at first criticality 
b. Reactivity of control devices; individual rods and banks of adjusters 

and mechanical control absorbers, and individual shutoff rods 
c. Reactivity change following moderator system temperature change 

WIMS-AECL(6)/(MULTICELL)/SCAN and WIMS-AECL/(MULTICELL)/RFSP are 
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adopted for all these validation calculations. Figure 1 depicts the simple flowchart for 

the WIMS-AECL/SCAN code system for these calculations. 

For the analysis of the benchmark tests of Wolsung unit 3, the core and reflector 

region are divided into 42, 34 and 20 meshes in x, y and z directions ( 42 x 34 x 20 

mesh-model), respectively. This corresponds to the 44 x 36 x 22 mesh-line model used 

in RFSP composed of 21,696 meshes in total. All kinds of reactivity control devices and 

related structure materials are explicitly described in terms of incremental cross sections. 

4. RESULTS AND DISCUSSIONS 

Table 2 shows the average keff differences between 1.5 and 2 group SCAN and RFSP 
calculations for the 95 test cases. The keff(SCAN1.5) and keff(SCAN2) denote the 1.5 
group and 2 group SCAN calculations, while keff(RFSP1.5) and keff(RFSP2) the 1.5 and 
2 group RFSP calculations. The same group model being adopted, the SCAN and the 
RFSP calculations predict almost the same keff with the average difference of 0.008mk. 

On the other hand, the 1.5 group and 2 group SCAN calculations show large 

discrepancies, say, about 1.3mk difference in predicted keff values. The discrepancies of 

the similar magnitude in keff values are also observed between the 1.5 group and 2 group 

RFSP calculations. These discrepancies are ascribed to the differences in 1.5 group and 
2 group constants generated by WIMS-AECL code. 

For further comparison, the channel power distribution of the Wosung unit 3 core 

with control devices at normal positions and 45 % liquid zone controller level is 

calculated by SCAN and RFSP code. Figures 2 and 3 compare SCAN and RFSP 

calculations for the channel power distribution with 1.5 group and 2 group model, 

respectively. Again, the results in these figures show that two codes predict practically 

the same channel power distribution with the same group model. However, they show 

there are discrepancies between 1.5 group and 2 group predictions by the two codes on 

the channel power distribution. 

The above results indicate that the SCAN code can predict the key design parameters 

of the CANDU-PHWR as accurately as the RFSP code. But it must be noted that the 

SCAN code outperforms the RFSP code in terms of computing speed and convergence 
characteristics. Table 3 shows the total CPU times spent by the SCAN and RFSP codes, 
respectively, analyzing all of the 95 the test cases. It shows that SCAN calculation 

requires about 4 times less CPU time than the RFSP calculations by 2 group model. The 

CPU time reduction by SCAN code is more conspicuous with 1.5 group model. 

Table 4 and Table 5 summarize the flux convergence characteristics of SCAN code in 

comparison with that of RFSP code in terms of the parameter, OCON. OCON is a 
measure of the average value of flux differences at all meshes of the two consecutive 
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iteration steps when the SCAN or RFSP stops iteration by the given convergence 

criteria. Thus the smaller OCON is, the more convergent the resulting flux values are. 

From Table 4 and 5, therefore, it is noted that the SCAN solution for the fluxes is more 

convergent one than the RFSP solution, especially for the calculation with higher flux 

convergence criterion. 

Table 6 and Table 7 compare the Wolsung unit 3 phase B physics test results with 

predictions by the SCAN and RFSP code. Table 6 shows the comparison of 

measurements and calculations for the boron reactivity worth and the critical boron 

concentration at the first criticality. Both SCAN and RFSP code calculations with the 2 

group model underestimate boron reactivity worth than 1.5G calculations. This may 

stem from the differences between 1.5 group and 2 group constants generated by the 

AECL-WIMS code. Table 6 shows that both SCAN and RFSP underestimates the 

critical boron concentration also. 

Table 7 summarizes reactivity worth differences of variable devices between 

measurements and predictions by SCAN or RFSP code. It is shown that prediction 

accuracy of two codes is indistinguishable. There is one thing worthy to note. We do not 

know the exact cause but predictions by two codes on the moderator temperature 

coefficient are far off the measurements. 

5. CONCLUSION 

The SCAN code is designed as a CANDU-PHWR physics research and development 

tool in Korea. We demonstrated that the SCAN code can predict the CANDU reactor 

core neutronics parameters of major importance as accurately as the RFSP code. We 

also demonstrated that the SCAN code has better convergence characteristics, and 

requires less CPU time than the current RFSP. These are very encouraging results to 

merit further works for validating the qualification of the SCAN code as a research tool. 
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Table 1 DESCRIPTION FOR BENCHMARK TEST CASES 

Problem 
Type 

Number 
of Cases 

Meaning of 
Symbol # 

Device Condition Problem Usage 

<B#> 6 Boron 
Concentration 

Normal(ADJ in, SOR out, 
MCA out) 

Boron reactivity 
worth estimation 

<guesscb> 1 - MCA04 inserted 55% 
vertically, Other devices 

Normal 

Critical boron 
concentration 

search 

<ZL#> 11 # [%] of Average 
Zone Controller 

Normal Zone level worth 
estimation 

Level 

<ADJ#> 22 ADJ rod Unit ADJ# out, Other devices ADJ rod worth 
Number Normal calculation 

<MCA#> 5 MCA unit number MCA# or SOR# out, MCA and SOR 
<SOR#> 29 SOR unit number Other devices Normal worth calculation 

<MT#> 8 Moderator Normal MTC calculation 
Temperature 

* Additional 13 cases for ADJ bank and MCA bank calculations 

Table 2 AVERAGE Keff DIFFERENCES (95 Test Cases) 

Average Keff difference [mk] 

Average 1 Kett (SCAN1.5) - Kett (RFSP1  .5)1 0.008 

Average I Keff (SCAN2) - Keff (RFSP2) I 0.008 

Average I Keff (RFSP2) - Kett (RFSP1 .5)1 1.281 

Average I Keff (SCAN2) - KO (SCAN 1 .5)1 1.286 
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Table 3 TOTAL CPU TIME (95 Test Cases) 

1.5 Group 2 Group 

SCAN [s] RFSP [s] FACTOR 
SPEED UP SCAN [s] RFSP [s] SPEED UP 

FACTOR 

2381 12627 5.30 2378 10098 4.25 

* SPEED UP FACTOR = CPU Time of RFSP/CPU Time of SCAN 
* CPU : HP 9000/120 MHz 

Table 4 COMPARISON OF CONVERGENCE CHARACTERISTICS * 

OF SCAN AND RFSP 

1.5 Group 2 Group 
SCAN RFSP SCAN RFSP 

(̀= aig 3.000E-06 4.241E-06 2.991E-06 4.768E-06 

(a) 
OCON = 1  i f

M m=1 

or, gt+1 om ,gt 

g=1 

4)„,gt 

g=1 

Maximum relative flux error of 1.0e-5 used as convergence criterion. 

Table 5 FLUX CONVERGENCE CHARACTERISTICS 

Flux 
Convergence 

Criterion 

Total CPU 
Time

Total Number of Outer 
Iterations OCON 

RFSP SCAN RFSP SCAN RFSP SCAN 

1.00E-05 839 146 1822 435 3.75590E-06 3.33525E-06 
5.00E-06 934 178 2382 505 1.87475E-06 1.58293E-06 
3.00E-06 1266 184 4298 567 8.55955E-07 9.11438E-07 
1.00E-06 3396 222 15984 685 2.17654E-06 2.70275E-07 
1.00E-15 - 1495 - 6309 - 1.40953E-16 

* 8 cases of <ADJBNK REF>, <ADJBNK01>, ,<ADJBNK07> problems are tested. 

(a) Total CPU time for the 8 cases. 

(b) Total number of outer iterations for the 8 cases. 
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Table 6 BORON REACTIVITY WORTH AND CRITICAL BORON 

CONCENTRATION FOR PHASE-B CONDITON OF WOLSONG UNIT 3 

WIMS- 
AECL/ 

RFSP1.5 

WIMS- 
AECL/ 

SCAN1.5 

WIMS- 
AECL/ 
RFSP2 

WIMS-
AECL/ 
SCAN2 

Boron reactivity 
worth [mkippm] 

8.1724 8.1700 7.7274 7.7267 

C.B. (a) concentration 
measurement[ppm] 

8.9300 

Calculated C.B. 
concentration[ppm] 

8.3031 8.3030 8.1298 8.1294 

C.B. concentration 
diffr/01 (b)

-7.02 -7.02 -8.96 -8.97 

(a) Critical boron 

(b) (Calculation - Measurement)/Measurement x 100 [%] 

Table 7 TOTAL REACTIVITY WORTH DIFFERENCE 

FOR PHASE-B CONDITON OF WOLSONG UNIT 3 

WIMS- 
AECL/ 

RFSP1.5 

WIMS- 
AECL/ 

SCAN1.5 

WIMS- 
AECL/ 
RFSP2 

WIMS-
AECL/ 
SCAN2 

ADJ rods -6.34 -5.94 -5.83 -5.43 

ADJ banks -5.93 -6.04 -5.64 -5.73 

MCA rods 4.85 4.53 4.16 3.83 

MCA banks 13.64 13.33 11.75 11.66 

SOR 6.75 5.89 6.29 5.64 

MT 35-69r -45.46 -48.35 -47.45 -49.59 

* Value = (Calculation - Measurement)/Measurement x 100 [%] 
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SCAN 
RFSP 

Diff(%) 

0.5897 
0.5928 
-0.53 

0.6265 
0.6297 
-0.50 

0.6470 
0.6502 
-0.49 

0.5347 0 6560 0.7642 0.8335 0.8770 0 8905 
0.5379 0.6590 0.7670 0.8364 0.8799 0.8933 
-0.59 -0 45 -0.37 -0.34 -0.33 -0.32 

0.6063 0.7528 0.8880 0.9898 1.0554 1.0859 1.0841 
0.6091 0.7556 0.8906 0.9925 1.0579 1.0884 1.0865 
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Figure 2 NORMALIZED CHANNEL POWER DIFF. <B6-1.5G-45%ZL> 
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