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Abstract- Nuclear reactors are in nature nonlinear and their parameters vary
with time as a function of power, fuel burnup, and control rod worth. Therefore, these
characteristics must be considered if large power variations occur in power plant
working regimes (for example in load following conditions). In this paper a Fuzzy
Adaptive Robust Optimal Controller (FAROC) based on a proposed modified
dynamic non-singleton fuzzy logic systems is presented. A Robust Optimal Self-
Tuning Regulator (ROSTR) response is used as a reference trajectory to determine
the feedback, feedforward and observer gains of the fuzzy controller. The fuzzy
controller displays good stability and performance for a wide range of operation as
well as considerable reduction in computation time in regard to ROSTR. It also
increases the load follow capability of nuclear reactor.
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1-INTRODUCTION 

Many investigations have been done in the field of nuclear reactor control. 
The design of controller for a nuclear power plant and its robustness to process and 
measurement noise for 10% variation of reactor power about nominal power (100%) 
has been reported (Akin and Altin, 1991). Edwards and his colleagues demonstrated 
improved robustness characteristic of SFAC (State Feedback Assisted Classical 
Control) to cope with changes of reactor parameters over that of CSFC (Conventional 
State Feedback Control)[1]. Ramaswamy and his colleagues have designed a fuzzy 
controller based on a fixed optimal controller [2]. In recent work Khajavi and his 
colleagues have designed and simulated a Robust Optimal Self-Tuning Regulator 
(ROSTR) for nuclear reactors [3 ]. In this paper a fuzzy logic controller based on the 
response of the ROSTR is designed and simulated aiming at improving overall system 
stability and performance as well as increasing load follow capability. Two cases of 
a) very large step change of power level from 100% to 10% and b) start-up/shut-down 
operation of reactor 100% to 10% and back to 100% power have been considered and 
some test simulations have been carried out. The results show that the response of the 
fuzzy controller follows very closely the reference response but the computation time 
is reduced by a factor of three. In section 2 the equations governing reactor are 
explained. Section 3 gives a brief review of the ROSTR method. In section 4 the 
design procedure of the proposed fuzzy logic controller is described. Section 5 
presents the simulation results. Conclusions are given in section 6. 

2 -Nuclear Reactor Model 

A fifth order nonlinear model, with one delayed neutron group and two thermal 
feedback mechanism (Edwards et a1,1992)[4], is the basis of designing a fuzzy logic 
controller for controlling power level of a PWR reactor. Point-kinetic equations are 
assumed for reactor neutronics. The governing equations are as follows 

do op —/3 
n + )..c (1) 

dt A 
and 

dc . 13  

dt 

n Az
(2) 

A 

where, 
n .. neutron density (n / cm' ) , 

c ...(neutron) precursor density (atom / cm' ) , 

), ...effective precursor radioactive decay constant (s-1) chosen to match the 
one group reactor transfer function to a six delayed neutron group transfer 
function as closely as possible (Schultz,1961), 

A ...effective prompt neutron lifetime (s), 
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A fifth order nonlinear model, with one delayed neutron group and two thermal
feedback mechanism (Edwards et al,1992)[4], is the basis of designing a fuzzy logic
controller for controlling power level of a PWR reactor. Point-kinetic equations are
assumed for reactor neutronics. The governing equations are as follows

              cn
dt

dn λβδρ +
Λ
−=                                                        (1)

and

              cn
dt

dc λβ −
Λ

=                                                                   (2)

where,
             ≡n neutron density )/( 3cmn ,
 
             ≡c (neutron) precursor density  )/( 3cmatom ,

              
             ≡λ effective precursor radioactive decay constant )( 1−s chosen to match the
                 one group reactor transfer function to a six delayed neutron group transfer
                 function as closely as possible (Schultz,1961),

 
             ≡Λ effective  prompt  neutron  lifetime (s),



J3 ...fraction of delayed fission neutrons, 

k ...kaff ...effective neutron multiplication factor, 

Sp ...
k —1 

...reactivity ( since k u1.000 , Sp LA —1 ; at steady state 

k =1 , Sp =0 ). 

For computational purposes, we will use equivalent normalized versions of Eqs (1) and 
(2): 

and 

where, 

dn,  

dt 

Sp 

A13 

— 13 
n +—c 

A 

dc, 
= An, — Acr

dt 

no ...initial equilibrium(steady-state) neutron density, 

co ...initial equilibrium(steady-state ) precursor density, 

n, ...n no , neutron density relative to equilibrium density, 

c,. ...c / co , precursor density relative to initial equilibrium density. 

(3) 

(4) 

Reactor temperatures vary as a function of power generation and heat transfer from 
(or to) the system. Using normalized point-kinetics equations for n, reactor power 
can be represented as 

and 

Pa (t)= Poa nr (t) .. reactor power at time t (MW) 

Poa ...initial equilibrium power level (MW) 

(5) 

The power P and power demand P d used in the block diagrams are assumed to be 

relative to the initial equilibrium power (i.e., P = PQ / Poa ) and are therefore equal to 

n, . The following thermal-hydraulic model represents a two-temperature feedback 
mechanism for a PWR. 
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             ≡β fraction  of  delayed  fission  neutrons,

 
             ≡≡ effkk effective  neutron  multiplication  factor,

 

              ≡−≡
k

k 1δρ reactivity  ( since  1,000.1 −≈≈ kk δρ   ;  at  steady  state

                                  0,1 == δρk  ).
 

For computational purposes, we will use equivalent normalized versions of Eqs (1) and
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             rr
r cn

dt

dn

Λ
+

Λ
−

=
ββδρ

                                                                                              (3)

and
 

              rr
r cn

dt

dc λλ −=                                                                                            (4)

 
where,
             ≡0n initial equilibrium(steady-state) neutron density,

              
  ≡0c initial equil ibrium(steady-state ) precursor density,

 
  ≡rn 0/ nn , neutron density relative to equilibrium density,

 
   0/ cccr ≡ , precursor density relative to initial equilibrium density.

  
Reactor temperatures vary as a function of power generation and heat transfer from
(or to) the system. Using normalized point-kinetics equations for rn , reactor power
can be represented as

 
              ≡= )()( 0 tnPtP raa reactor  power  at  time  t  (MW)                                   (5)

and

              ≡aP0 initial  equilibrium  power  level  (MW)

The power P  and power demand dP  used in the block diagrams are assumed to be

relative to the initial equilibrium power (i.e., aa PPP 0/= ) and are therefore equal to

rn . The following thermal-hydraulic model represents a two-temperature feedback
mechanism for a PWR.



and 

where, 

Pc (t) = C2(T f — Tc ) 

Pc(t) = M (Ti —Ti) 

(6) 

(7) 

Pc ...power transferred from fuel to coolant (MW), 

Pc ...power removed from the coolant (MW), 

f2 _heat transfer coefficient between fuel and coolant (MWrC) 

M mass flow rate times heat capacity of the water (MW/°C) 

Tf ...average reactor temperature (° C) 

...• temperature of the water leaving the reactor (°C) 

T ...temperature of the water entering the reactor (°C) 

••  average reactor coolant(water) temperature (T/ + Te ) 1 2 . 

The differential equations for the lumped fuel and coolant temperature are as follows: 

and 

where 

f fPc = p f 
dTf 

dt ± Pc (t) 

(1— f f )Pa (t)± Pc (t) = 11 (0 0'1 + Pc (t) 
dt 

f f ... reactor power fraction deposited in the fuel, 

pf ...total heat capacity of the fuel and structural material; 

WiCf ...weight of fuel times specific heat (MW.srC), 

(8) 

(9) 

pc .. total heat capacity of the reactor coolant; Wc Cc ... weight of the coolant 

times specific heat of the coolant (MW.s/°C). 
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              )()( cfc TTtP −Ω=                                                                                       (6)

and

              )()( ele TTMtP −=                                                                                       (7)

where,

             ≡cP power transferred from fuel to coolant (MW),

 ≡eP power removed from the coolant (MW),

 ≡Ω heat transfer coefficient between fuel and coolant )/( CMW
�

 ≡M mass flow rate times heat capacity of the water )/( CMW
�

 ≡fT average reactor temperature )( C
�

 ≡lT temperature of the water leaving the reactor )( C
�

 ≡eT temperature of the water entering the reactor )( C
�

 ≡cT  average reactor coolant(water) temperature 2/)( el TT + .

The differential equations for the lumped fuel and coolant temperature are as follows:

          )()( tP
dt

dT
tPf c

f

faf += µ                                                       (8)

and

       )()()()()1( tP
dt

dT
ttPtPf c

l
ccaf +=+− µ                             (9)

where

            ≡ff   reactor power fraction deposited in the fuel,

 ≡fµ total heat capacity of the fuel and structural material;

≡ff CW weight of fuel times specific heat )/.( CsMW
�

,

≡cµ total heat capacity of the reactor coolant; ≡ccCW  weight of the coolant

          times specific heat of the coolant  )/.( CsMW
�

.



Reactivity input and feedback to the point-kinetics equations are represented by 

&Sp
r = G z, 

dt r r

and 

(10) 

Sp = op r +a f (Tf —Tf0)+ac (Tc — Tc0 ) (11) 

where, 

Sp, .. reactivity due to the control rod, 

zr .. control input, control rod speed (fraction of core length per second), 

Gr .. reactivity worth of the rod per unit length(with rod speed in units of 

fraction of core length per second, Gr is the total reactivity of the rod), 

af ...fuel temperature reactivity coefficient, 

a c ..coolant temperature reactivity coefficient, 

T10 ...initial equilibrium(steady-state) fuel temperature, 

To • • • initial equilibrium(steady-state) coolant temperature. 

Linearization of equations (3) through (11) about nominal working point nr
results in the following state-space representation of the reactor model (Edwards et 
a1,1992)[4]. 

= Ax 

y = Cx + Du 

where, 

13 

2 

nra f nrac nr E 

A 2A A 
—A 0 0 0 ❑ 

❑ 

A= 
J f iDOa 

0 
— f2 f2 

0 E
f µf 2µf❑ 

17 
17 

ff Woc 0 S2 (2m + f2) 0 17

❑ 11 /lc 2µc 1—
0 0 0 0 0 — 

(12) 
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Reactivity input and feedback to the point-kinetics equations are represented by

                 rr
r zG

dt

d =
δρ

                                                                                                                 (10)

and

                 )()( 00 cccfffr TTTT −+−+= ααδρδρ                                                                 (11)

where,

             ≡rδρ reactivity due to the control rod,

  ≡rz control input, control rod speed (fraction of core length per second),

  ≡rG reactivity worth of the rod per unit length(with rod speed in units of

           fraction of core length per second, rG  is the total reactivity of the rod),

   ≡fα fuel temperature reactivity coefficient,

   ≡cα coolant temperature reactivity coeff icient,

   ≡0fT initial equilibrium(steady-state) fuel temperature,

   ≡0cT  initial equil ibrium(steady-state) coolant temperature.

Linearization of equations (3) through (11) about nominal working point rn
results in the following state-space representation of the reactor model (Edwards et
al,1992)[4].
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B=[0 0 0 0 Gr ]T ; C=[1 0 0 0 0] ; D=[0] 

= Pnr OCr ST(' STd op r i ; y =[6nr ] ; u=[z] 

The symbol (5 indicates the deviation of a variable from an equilibrium value; 
e.g.,8nr (t) = n,.(t)—nrc, with /40 ...the nominal value of n,. at the equilibrium 

condition. 
The values of the constants used for controller design and simulations in this 

paper are summarized in Table I. These parameters are representative of a Three Mile 
Island-Type reactor at the middle of the fuel cycle. 

TABLE I 

Parameters for ROSTR Design at the Middle of the 
Fuel Cycle of a TMI-Type PWR 

/3 = 0.006019 Gr = 0.0145 Ak/k T10 = 700 TC 

A = 0.00002 sec = 0.150 s
_1

To = 305 TC 

Poc = 2500 MW f f = 0.92 

µ f =26.3 MW.s /TC T e =290 TC 

Also it , SZ, M, a and a c are not constant but rather a function of the power 

level nr as follows: 

—1-60 
tic (nr ) = 

9 
nr  + 54.022V MW.s/ TC 

El  4-1

S-1(nr )= -- 113 nr  + 4.933V MW/°C 

(13a) 

(13b) 

M(nr )= (28.0nr + 4.9333) MW/°C (13c) 

a f (nr ) = (nr — 4.24)<40-5 .1"5 / °C (13d) 

a c (nr )= (-4.0nr —17.3)<-10-5 .1"5 / °C (13e) 

Moreover parameters of matrix A [Eq (12)], the linearized state space 
representation of reactor equation about nominal power level nr , depends on power 

level nr . 
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]0[;]00001[;]0000[ === DCB T
rG

[ ]rlfrr TTCn δρδδδδ=x        ;           [ ]rnδ=y     ;       [ ]rz=u

The symbol δ indicates the deviation of a variable from an equil ibrium value;
e.g., 0)()( rrr ntntn −=δ  with ≡0rn the nominal value of rn  at the equilibrium

condition.
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CT f
°= 7000k

kGr
∆= 0145.0006019.0=β

CTc
°= 3050

1150.0 −= sλsec00002.0=Λ
92.0=ffMWP a 25000 =

CTe
°= 290CsMWf °= /.3.26µ

Also µ αc fM� � �Ω  and α c  are not constant but rather a function of the power

level nr  as follows:

             CsMWnn rrc
°





 += /.022.54

9

160
)(µ                                                      (13a)

           CMWnn rr

�
/933.4

3

5
)( 





 +=Ω                                                       (13b)

           CMWnnM rr

�
/)9333.40.28()( +=                                                 (13c)

           C
k

k
nn rrf

�
/10)24.4()( 5 δα −×−=                                                    (13d)

          C
k

k
nn rrc

�
/10)3.170.4()( 5 δα −×−−=                                               (13e)

Moreover parameters of matrix A  [Eq (12)], the linearized state space
representation of reactor equation about nominal power level rn , depends on power

level rn .



3 -Robust Optimal Self-Tuning Regulator 

Self-Tuning Regulator (STR) is one of the methods for controlling plants with 
time varying parameter [5]. The block diagram of a STR is shown in Fig. 1. We call 
this controller a self-tuning regulator because it can tune it's own parameters. As can 
be seen in Fig. 1 this controller consists of the following two loops. The main loop 
includes the process and a linear feedback controller. The second loop, the auxiliary 
loop, has the task of adjusting the parameters of the main loop's controller. The 
auxiliary loop consists of a recursive parameter estimator and a control design 
scheme. The design scheme box in Fig. 1 solves the design problem for the system 
whose parameters have been estimated by the estimator in real time. 

DESIGN 
SCHEME 

Regulation of 
Parameters 

Command  V

Signal 
CONTROLLER 

PARAMETER 
ESTIMATOR 

Control 
Signal u 

PROCESS 

Output y 

Fig. 1. Block diagram of a self-tuning regulator (STR) 

Edwards et al. [1] have shown the improved performance and stability 
robustness of the State Feedback Assisted Classical Control (SFAC) in controlling 
primary coolant temperature in a nuclear reactor over that of conventional state 
feedback control (CSFC). Figure 2 shows the SFAC configuration. 
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Fig. 2. State Feedback Assisted Classical Control configuration. 
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Khajavi et al. [3] used a self-tuning regulator based on optimal control theory in 
a SFAC configuration to obtain Robust Optimal Self-Tuning Regulator (ROSTR) to 
control reactor power in wide range of operations. Figure 3 shows the ROSTR 
configuration. . The ROSTR shows good performance over wide range of power 
level variations. Therefore, we use ROSTR response as a reference trajectory to tune 
our fuzzy logic controller. 

n d
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—0. G,. — t 
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RE CTOR 
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Fig. 3. Robust Optimal Self-Tuning Regulator configuration. 

4-FUZZY LOGIC CONTROLLER (FLC) 

As an alternative to model based controllers, fuzzy logic controllers neither relies on 
accurate description of plants, nor on the precise measurements. An introduction to 
the fundamental concepts of fuzzy logic has been given by Zadeh [6]. Figure 4 shows 
the structure of fuzzy inference system. 
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Fig. 4. Structure of fuzzy inference system 

Information used for fuzzy logic controller will be placed in two groups: 
a) quantitative information from measurements, 
b) qualitative information from expert operators. 

In neural network analysis only quantitative information will be used, but in fuzzy 
logic qualitative data can be used as well. Here we use a method for constructing rule 
base based on available quantitative and qualitative data. The controller used in this 
paper has 9 inputs and 11 outputs. For implementing this controller, we use 11 
parallel controllers each with 9 inputs and 1 output. Figure 5 shows the structure of 
the fuzzy controller used in this paper. For simplicity, we describe the design method 
for a controller with 2 inputs and 1 output, extension to 9 inputs and 1 output situation 
is straightforward. 
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4-1- FUZZY CONTROLLER DESIGN STEPS 

In this section the steps of fuzzy controller design is listed. The interested reader may 
refer to [7]. Here we consider a series of data consisting of two inputs and one output 
as input-output of the desired controller, (x 1) , x21) , y(1) (xf i) , x`) , y(i) ) , with 

xf i) , x2`) as inputs and y(i) as output.The method can be easily extended for multi-
input multi output systems. Our objective is to map the inputs to the desired output(s). 

The design procedure is summarized below: 

Step 1: Select the maximum fuzzy partitions and weighting coefficients (R, Q) in the 
cost function as below: 

J = (Euclidean norm of error )*R + (Number of partitions)*Q 

R, Q measure the amount of fuzziness of controller. These parameters will be selected 
by an expert familiar with the system. By increasing the error weighting coefficient R, 
response accuracy of the fuzzy controller will be increased. But this makes the 
number of linguistic terms grows up, which inturn increases the computation time. On 
the other hand by increasing the number of the fuzzy partitions the method becomes 
more crisp and noise rejection ability of the controller will decrease. To limit the 
amount of unnecessary rule generation, another term with coefficient Q has been 
added to the cost function. The next step is to construct membership functions. The 
interval of variables x , x z , y are considered as Lx , xi+ , [x; , x; 

and [y-,y+ ] in which the operating data exist more probably. 

Step 2: Initialize fuzzy partitions. We considered five primary fuzzy partitions with 
equal length. However in general each partition can have it's particular length. 

Step 3: Consider Gausian membership functions with the centers coincident with 
fuzzy partitions midpoints, and with spread equal to distance between neighborhood 
centers. 

(x) = expo (x m)2
- 0 

µ =Membership function 

o =Spread of membership functions 
m =Center of membership functions 

Different input/output intervals are labeled as follows: 
SN ,. . .,S, , CE,L, 

Fig. 6. shows the schematic of membership functions. 
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4-1- FUZZY CONTROLLER DESIGN STEPS

In this section the steps of fuzzy controller design is listed. The interested reader may
refer to [7]. Here we consider a series of data consisting of two inputs and one output
as input-output of the desired controller, 

� � � � � � � � 	 
 	 	 �� 
 � 
 � 
 � 
 � 
 � 

x x y x x yi i i� � � � � � �

, with

x xi i� �� � � �� as inputs and y i
� �

 as output.The method can be easily extended for multi-
input multi output systems. Our objective is to map the inputs to the desired output(s).

The design procedure is summarized below:

Step 1: Select the maximum fuzzy partitions and weighting coefficients (R, Q) in the
cost function as below:

J  =  (Euclidean norm of error )*R + (Number of partitions)*Q

R, Q measure the amount of fuzziness of controller. These parameters will be selected
by an expert famil iar with the system. By increasing the error weighting coeff icient R,
response accuracy of the fuzzy controller will be increased. But this makes the
number of linguistic terms grows up, which inturn increases the computation time. On
the other hand by increasing the number of the fuzzy partitions the method becomes
more crisp and noise rejection abil ity of the controller will decrease. To limit the
amount of unnecessary  rule generation, another term with coefficient Q has been
added to the cost function. The next step is to  construct membership functions. The
interval of variables x x y� �� �  are considered as [ ] [ ]+−+−

2211 ,,, xxxx

and [ ]+− yy ,  in which the operating data exist more probably.

Step 2: Initialize fuzzy partitions. We considered five primary fuzzy partitions with
equal length. However in general each partition can have it's particular length.

Step 3: Consider Gausian membership functions with the centers coincident with
fuzzy partitions midpoints, and with spread equal to distance between neighborhood
centers.

( )
µ

σ
� � � � �
x

x
= −

−











� �

µ =Membership function
σ =Spread of membership functions� =Center of membership functions

Different input/output intervals are labeled as follows:� � � � � � � �  ! " # $ % % % $ #& &' '
Fig. 6. shows the schematic of membership functions.



S2 S1 CE L1 L2 

0.9 

0.8 

0.7 

o. 
0.6 

eq.) 
.o 0.5 
E 

0.4 

0.3 

0.2 

0.1 

r I r 
-20 -10 0 10 20 

Variable 

Fig. 6. Schematic of membership functions 

Step 4: Membership degree of each pair of given data (41), 4), y (1) ) in different 

partitions are specified and then x1 , x2 ,y are assigned to the partitions with 
maximum membership degree. At last one rule from the input-output pair will be 

, . produced. For example for the given triple (xf1) jx 1) y(i) ) we have: 

If Maximum membership of xf1) is in L1 and 

If Maximum membership of 4 ) is in S1 and 
If Maximum membership of y is in CE 

Then we conclude following rule: 

IF 4 1) is L1 and 4 ) is S1 THEN y is CE. 

Step 5: Assign a degree of credit to each rule. Since there are many data pairs and 
each pair makes a rule, there may be overlapping rules (rules with the same if-part and 
different then-part). To overcome this problem a degree of credit is assigned to every 
rule, which is equal to the product of membership functions of that rule. Among the 
overlapping rules, those with greater degree of credit are chosen and will be placed in 
the rule base. 

Step 6: Construct a compound rule base.The rule base is constructed based on rules 
resulted from numeric data and rules stated by expert operator. Each rule expressed by 
expert operator will be stated in a conditional form, and a degree of credit is assigned 
to it. Then this rule will be added to the rule base. 

Step 7: Evaluate the I/O mapping. For defuzzification COA is used and we proceed as 
follows to find a crisp output. First the if parts of the ith rule will be combined to find 
the degree of firing of the ith rule based on inputs x1 , x2 . We use the product method 
for combination: 

M ai =n1 Tii (x).  M Ti, (.7C2 ) 
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Step 4: Membership degree of each pair of given data ),,( )1()1(
2

)1(
1 yxx  in different

partitions are specified and then x x y( )* *  are assigned to the partitions with
maximum membership degree. At last one rule from the input-output pair will be
produced. For example for the given triple + * * ,- . - . - .

x x y( ( ) ( (
,   we have:

If Maximum membership of x ( (- .
is in / (  and

 If Maximum membership of x0 12 3
is in 4 5  and

If Maximum membership of y  is in 6 7
Then we conclude following rule:

IF  x 5 58 9
 is : 5  and x; <= 3

 is 4 5  THEN y is CE.

Step 5: Assign a degree of credit  to each rule. Since there are many data pairs and
each pair makes a rule, there may be overlapping rules (rules with the same if-part and
different then-part). To overcome this problem a degree of credit is assigned to every
rule, which is equal to the product of membership functions of that rule. Among the
overlapping rules, those with greater degree of credit are chosen and wil l be placed in
the rule base.

Step 6: Construct a compound rule base.The rule base is constructed based on rules
resulted from numeric data and rules stated by expert operator. Each rule expressed by
expert operator will be stated in a conditional form, and a degree of credit is assigned
to it. Then  this rule wil l be added to the rule base.

Step 7: Evaluate the I/O mapping. For defuzzification COA is used and we proceed as
follows to find a crisp output. First the if parts of the ith rule will be combined to find
the degree of firing of the ith rule based on inputs x x5 >? . We use the  product method
for combination:
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where 0 and denote respectively output and input region. 

Then center of area (COA) is applied: 
k 

(mo *Y) 
i = 1

Y = k 

mo
i=1 

In the above, yi indicates center of region 0 and k is the number of rules. 

For the purpose of learning, output of fuzzy controller and its error will be computed 
and the cost function will be determined. The learning algorithm terminates if the cost 
function increases and the number of fuzzy partitions obtained so far is considered as 
the optimum number of partitions. Otherwise we will increase the number of fuzzy 
partitions by one and return to step 3. 

5-SIMULATION RESULTS 

The nuclear reactor system, as well as the three different controllers FOSFAC, 
ROSTR, and FAROC have been simulated by MATLAB/SIMULINK(ver 5.2)[8]. 
Simulation results for the most stressed power level change (100% to10%) as well as 
start-up/shut-down operation (100% • 10% • 100%) have been shown in figures 
7-14. As observed from Fig.7 the response of FOSFAC shows steady-error in the case 
of a) 100% to 10% power level change. Also from Fig. 12 it is apparent that FOSFAC 
can not track the desired power level trajectory in the case b) 100% to 10% to 100% 
(start-up/shut-down operation of reactor). The proposed methods ROSTR and 
FAROC both perform well. In order to compare better these two methods, Table 2 
shows the number of floating point operations (FLOPS) for ROSTR and FAROC 
methods for (100% to 10%) case. It is apparent from this table that FAROC is more 

than 3 times faster than ROSTR, and therefore one can consider the proposed FAROC 
as the superior method. 

Table 2: complexity with respect to number of floating point per operations for case a) 
100% to 10% power level change. 

METHOD FLOPS 
FAROC 3.442e+6 
ROSTR 10.806e+6 

6-CONCLUSIONS 

A Fuzzy Adaptive Robust Optimal Controller (FAROC) based on the response of a 
Robust Optimal Self-Tuning Regulator (ROSTR) has been designed and simulated. 
The simulation results shows good performance of this controller for wide range 
power regulation and good load follow capability. FAROC is also three times faster 
than ROSTR. 
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where L M and N O P denote respectively output and  input region.

Then center of area (COA) is applied:
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In the above, y i indicates center of region V W and k is the number of rules.
For the purpose of learning, output of fuzzy controller and its error will be computed
and the cost function will be determined. The learning algorithm terminates if the cost
function increases and the number of fuzzy partitions obtained so far is considered as
the optimum number of partitions. Otherwise we will increase the number of fuzzy
partitions by one and return to step 3.

5-SIMULATION RESULTS

The nuclear reactor system, as well as the three different controllers FOSFAC,
ROSTR, and FAROC have been simulated by MATLAB/SIMULINK(ver 5.2)[8].
Simulation results for the most stressed power level change (100% to10%) as well as
start-up/shut-down operation ( )%%% 10010100 →→  have been shown in figures
7-14. As observed from Fig.7 the response of FOSFAC shows steady-error in the case
of a) 100% to 10% power level change. Also from Fig. 12 it is apparent that FOSFAC
can not track the desired power level trajectory in the case b) 100% to 10% to 100%
(start-up/shut-down operation of reactor). The proposed methods ROSTR and
FAROC both perform well . In order to compare better these two methods, Table 2
shows the number of floating point operations (FLOPS) for ROSTR and FAROC
methods for (100% to 10%) case. It is apparent from this table that FAROC is more

than 3 times faster than ROSTR, and therefore one can consider the proposed FAROC
as the superior method.

Table 2: complexity with respect to number of floating point per operations for case a)
100% to 10% power level change.

METHOD FLOPS
FAROC 3.442e+6
ROSTR 10.806e+6

6-CONCLUSIONS

A Fuzzy Adaptive Robust Optimal Controller (FAROC) based on the response of a
Robust Optimal Self-Tuning Regulator (ROSTR) has been designed and simulated.
The simulation results shows good performance of this controller for wide range
power regulation and good load follow capabil ity. FAROC is also three times faster
than ROSTR.
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Fig. 11. Relative reactor power for start-up/shut-down 
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