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Abstract- Nuclear reactors are in nature nonlinear and their parameters vary
with time as a function of power, fuel burnup, and control rod worth. Therefore, these
characteristics must be considered if large power variations occur in power plant
working regimes (for example in load following conditions). In this paper a Fuzzy
Adaptive Robust Optimal Controller (FAROC) based on a proposed modified
dynamic non-singleton fuzzy logic systems is presented. A Robust Optimal Self-
Tuning Regulator (ROSTR) response is used as a reference trajectory to determine
the feedback, feedforward and observer gains of the fuzzy controller. The fuzzy
controller displays good stability and performance for a wide range of operation as
well as considerable reduction in computation time in regard to ROSTR. It also
increases the load follow capability of nuclear reactor.

Keywords. Modelling an simulation, Nuclea power plant, Control of power systems,
Fuzzy systems, Adaptive control



1-INTRODUCTION

Many investigations have been done in the field of nuclear reactor control.
The design of controller for anuclea power plant and its robustness to processand
measurement noise for 10% variation of reador power about nominal power (100%)
has been reported (Akinand Altin, 1991). Edwards and his coll eagues demonstrated
improved robustness charaderistic of SFAC (State Feedbadk Assisted Classcal
Control) to cope with changes of reador parameters over that of CSFC (Conventional
State Feadbadk Control)[1]. Ramaswamy and his colleagues have designed a fuzzy
controller based on a fixed optimal controller [2]. Inreceat work Khajavi and his
colleggues have designed and simulated a Robust Optimal Self-Tuning Regulator
(ROSTR) for nuclea reacors[3]. Inthis paper afuzzy logic controller based on the
response of the ROSTR is designed and simulated aiming a improving overall system
stability and performance @ well asincreasing load follow capability. Two cases of
a) very large step change of power level from 100% to 10% and b) start-up/shut-down
operation of reador 100% to 10% and badk to 100% power have been considered and
some test simulations have been carried out. The results show that the response of the
fuzzy controller follows very closely the reference response but the cmmputation time
is reduced by a fador of three In sedion 2 the ejuations governingreador are
explained. Sedion 3 gives a brief review of the ROSTR method. In sedion 4 the
design procedure of the proposed fuzzy logic controller is described. Sedion 5
presents the simulation results. Conclusions are given in sedion 6.

2 -Nuclear Reactor M oddl

A fifth order nonlinea model, with one delayed neutron group and two thermal
feadbadk mechanism (Edwards et al,1992)][4], isthe basis of designing afuzzy logic
controller for controlling power level of a PWR reador. Point-kinetic equations are
asumed for reador neutronics. The governing equations are & follows

@ = M n+Ac (1)
dt N

and
de _B n-Ac 2
a A

where,

n = neutron density (n/cm?),
¢ = (neutron) preaursor density (atom/cm®),

A = effedive preaursor radioadive decay constant (s™) chosen to match the

one group reactor transfer function to a six delayed neutron group transfer
function as closely as possible (Schultz,1961),

N\ =effedive prompt neutron lifetime (9),



B =fradion of delayed fission neutrons,

k =k, =effedive neutron multiplication fador,

op =kT_1£rea¢ivity (since k=1.000 , Jp=k-1; a deay Sate
k=1 , 9p=0).

For computational purposes, we will use equivalent normalized versions of Egs (1) and

(2):

and

where,
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n, =initial equilibrium(steady-state) neutron density,
C, =initial equilibrium(steady-state ) preaursor density,
n, = n/n,, neutron density relative to equilibrium density,

c, =clc,, preaursor density relative to initial equilibrium density.

Reacdor temperatures vary as afunction of power generation and hea transfer from
(or to) the system. Using normalized point-kinetics equations for n, , reador power
can berepresented as

and

P,(t) = B.n, (t) =reador power & time t (MW) (5)

P, =initial equilibrium power level (MW)

The power P and power demand P, used inthe block diagrams are assumed to be
relative to theinitial equilibrium power (i.e., P =P, /P,,) and are therefore equal to

n,. The following thermal-hydraulic model represents a two-temperature feedbadk
mechanism for a PWR.



R =Q(T; -T.) (6)

and

PO =M(T -T.) (7)

where,

P. = power transferred from fuel to coolant (MW),

P, = power removed from the wolant (MW),

Q = hea transfer coefficient between fuel and coolant (MW/°C)
M = massflow rate times hea capacity of the water (MW/°C)
T, =average reador temperature ('C)

T, =temperature of the water leaving the reador (°C)

T, =temperature of the water entering the rea¢or ('C)

T, = average reacor coolant(water) temperature (T, +T,)/2.

The differential equations for the lumped fuel and coolant temperature ae & follows:

dT,
ffpa(t):l'lf?+l:)(:(t) (8)

and
(- 1P+ RO = 1.0 G-+ RO ©)

where

reacdor power fradion deposited in the fuel,

1:f
U, =total hea cgpacity of the fuel and structural material;
W, C, =weight of fuel times pedfic heat (MW.s/°C),

U, =total hea cgpacity of the reador coolant; W.C. = weight of the @molant
times gedfic hea of the wolant (MW.s/°C) .



Readivity inpu and feedbad to the point-kinetics equations are represented by

O
4% _g 2 (10)
dt
and
dp =3, +a,(T, -T,,)+a.(T, - T,) (11
where,

Jp, =readcivity dueto the control rod,
z, =control input, control rod spee (fradion of core length per second),

G, =readivity worth of the rod per unit length(with rod speed in units of
fradion of core length per seand, G, isthetotal readivity of the rod),

o, =fuel temperature reactivity coefficient,
o =coolant temperature reactivity coefficient,
T, =initial equilibrium(steady-state) fuel temperature,

T, = initial equilibrium(steady-state) coolant temperature.

Lineaizaion of equations (3) through (11) about nominal working point n,

results in the following state-spacerepresentation of the read¢or model (Edwards et
al,1992[4].

X =Ax+Bu (12)
y =Cx+Du
where,
O n.a n.a. n, C
0 -£ £ f —F
g A A A NG
o A -A 0 0 0F
|:| ffPOa _Q Q |:
A = 0 0 C
0y My 2u; .
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0 p, I8 2u, C
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B=[0 000 G]" ; C=[10000Q ; D =[0]
x=lgn, o, ot on o) i y=[m] ;i u=[z]

The symbol Jindicaes the deviation of a variable from an equilibrium value;
eg.,on (t)=n,(t)-n, with n, =the nominal value of n, a the eguilibrium
condition.

The values of the mnstants used for controller design and simulations in this
paper are summarized in Table I. These parameters are representative of a ThreeMile
Island-Type reacor at the middle of the fuel cycle.

TABLE |

Parametersfor ROSTR Design at the Middle of the
Fuel Cycle of a TMI-Type PWR

B =0.00601¢ G, =0.0145 A% T, =700 C
A =0.00002 sec A=0150 s* T,=305 C
P, =2500 MW f, =092
U, =263 MW.s/°C T.=290 C

Also u.,Q,M,a, and a . arenot constant but rather a function of the power
level n, asfollows:

un) =% +540220 mws'c (139)
59 0

Q(n)=Pn +4933] mwrc (130)
B O

M(n)=(280n +49333 MW/'C (130)

-5 5k °
a;(n)=(n —4.24)x10 ?/ C (13d)
-5 5k °
a.(n) = (-40n, ~173x10°  Erc (139)

Moreover parameters of matrix A  [Eq (12)], the lineaized state space
representation of reador equation about nominal power level n,, depends on power

level n, .



3 -Robust Optimal Self-Tuning Regulator

Self-Tuning Regulator (STR) is one of the methods for controlling plants with
time varying parameter [5]. The block diagram of a STRis shown in Fig. 1. We call
this controller a self-tuning regulator because it can tune it's own parameters. As can
be seen in Fig. 1 thiscontroller consists of the following two loops. The main loop
includes the process and alinear feedbadk controller. The second loop, the auxiliary
loop, has the task of adjusting the parameters of the main loop's controller. The
auxiliary loop consists of a reaursive parameter estimator and a control design
scheme. The design scheme box in Fig. 1 solvesthe design problem for the system
whose parameters have been estimated by the estimator in real time.

DESIGN
SCHEME

Regulation of
Parameters

Command

Sign
CONTROLLER
—

Fig. 1. Block diagram of a self-tuning regulator (STR)

Edwards et a. [1] have shown the improved performance and stability
robustness of the State Feedback Asssted Classicd Control (SFAC) in controlling
primary coolant temperature in a nuclea reador over that of conventional state
feadbadk control (CSFC). Figure 2 shows the SFAC configuration.
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Fig. 2. State Feadback Assisted Classica Control configuration.



Khajavi et al. [3] used a sdlf-tuning regulator based on optimal control theory in
a SFAC configuration to obtain Robust Optimal Self-Tuning Regulator (ROSTR) to
control rea¢or power in wide range of operations. Figure 3 showsthe ROSTR
configuration. . The ROSTR shows good performance over wide range of power
level variations. Therefore, we use ROSTR response & areference trgjedory to tune
our fuzzy logic controller.

N, X N, z &0, | NONLINEAR
—» % —»@— G, —» Grj’dt 5 PLANT
A
REACTOR
> sTAE [
ESTIMATOR
k\ 47
\ PARAMETER
ADJUSTING
ALGORITHM

Fig. 3. Robust Optimal Self-Tuning Regulator configuration.

4-FUZZY LOGIC CONTROLLER (FLC)

As an alternative to model based controllers, fuzzy logic controllers neither relies on
acarate description of plants, nor on the predse measurements. An introduction to
the fundamental concepts of fuzzy logic has been given by Zadeh [6]. Figure 4 shows
the structure of fuzzy inference system.
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. .
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Fig. 4. Structure of fuzzy inference system

Information used for fuzzy logic controller will be placed in two groups:
a) quantitative information from measurements,
b) qualitative information from expert operators.

In reural network analysis only quantitative information will be used, but in fuzzy
logic qualitative data can be used as well. Here we use amethod for constructing rule
base based on available quantitative and qualitative data. The controller used in this
paper has 9 inputs and 11 outputs. For implementing this controller, we use 11
parallel controllers each with 9 inputs and 1 output. Figure 5 shows the structure of
the fuzzy controller used in this paper. For smplicity, we describe the design method
for a wntroller with 2 inputs and 1 output, extension to 9 inputs and 1 output Situation
is draightforward.

ith FLC

1th output

INPUT OUTPUT

11 th output

11th FLC

Fig. 5. 11 Fuzzy Logic Controllersin parallel



4-1- FUZZY CONTROLLER DESIGN STEPS

In this sedion the steps of fuzzy controller design is listed. The interested reader may
refer to [7]. Here we consider a series of data mnsisting of two inputs and one output

as input-output of the desired controller, (x,x{",y®), ... (x®,x7, y®), with
x" x{"as inputs and y" as output.The method can be easily extended for multi-
input multi output systems. Our objedive isto map the inputs to the desired output(s).

The design procedure is simmarized below:

Step 1. Seled the maximum fuzzy partitions and weighting coefficients (R, Q) in the
cost function as below:

J = (Euclidean norm of error )*R + (Number of partitions)* Q

R, Q measure the amount of fuzzinessof controller. These parameters will be selected
by an expert familiar with the system. By increasing the aror weighting coefficient R,
response acaracy of the fuzzy controller will be increased. But this makes the
number of linguistic terms grows up, which inturn increases the computation time. On
the other hand by increasing the number of the fuzzy partitions the method becomes
more aisp and noise rejedion ability of the wntroller will deaease. To limit the
amount of unnecessry rule generation, another term with coefficient Q has been
added to the @<t function. The next stepisto construct membership functions. The
interval  of variables x,,x,,y are considered as [xl',xfj : [xz',x;J

and [y' , y*J in which the operating data exist more probably.

Step 2: Initialize fuzzy partitions. We mnsidered five primary fuzzy partitions with
equal length. However in general each partition can have it's particular length.

Step 3: Consider Gausian membership functions with the aenters coincident with
fuzzy partitions midpoints, and with spread equal to distance between neighborhood
centers.

o H )
u(X)—eng 5 @
u =Membership function

o =Spread of membership functions
m =Center of membership functions

Different input/output intervals are labeled as follows:
Sy>-S,,CEL,,...,L

Fig. 6. shows the schematic of membership functions.

10
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Fig. 6. Schematic of membership functions

Step 4: Membership degree of each pair of givendata (x{,x{”, y®) in different
partitions are specified and then X, ,Xx,,y are asigned to the partitions with
maximum membership degree At last one rule from the input-output pair will be
produced. For example for the given triple (x”, x{”,y®), we have:

If Maximum membership of x"isin L, and

If Maximum membership of Xg)isin S, and
If Maximum membership of y isin CE
Then we conclude following rule:

IF x¥ isL, and X" is S, THEN y is CE.

Step 5: Assign a degree of credit to eadrule. Since there ae many data pairs and
each pair makes arule, there may be overlapping rules (rules with the same if-part and
different then-part). To overcome this problem a degreeof credit is assgned to every
rule, which is equal to the product of membership functions of that rule. Among the
overlapping rules, those with greder degreeof credit are dhosen and will be placed in
the rule base.

Step 6: Construct a compound rule base.The rule base is constructed based on rules
resulted from numeric data and rules gated by expert operator. Eadch rule expressed by
expert operator will be stated in a anditional form, and a degreeof credit is assgned
to it. Then thisrule will be added to the rule base.

Step 7: Evaluate the 1/0O mapping. For defuzzification COA is used and we proceal as
follows to find a aisp output. First the if parts of the ith rule will be combined to find

the degreeof firing of the ith rule based on inputs X, , X, . We use the product method
for combination:

m, =mg (X).m; (X,)

11



where O;and T, denote respedively output and input region.
Then center of area(COA) is applied:

k
> (ms, *y)
e
m
1=1
Inthe &ove, y'indicaes center of region O, and k is the number of rules.

For the purpose of leaning, output of fuzzy controller and its error will be computed
and the st function will be determined. The learning algorithm terminates if the cost
function increases and the number of fuzzy partitions obtained so far is considered as
the optimum number of partitions. Otherwise we will increase the number of fuzzy
partitions by one and return to step 3.

i
O;

5-SIMULATION RESULTS

The nuclear reador system, as well as the three different controllers FOSFAC,
ROSTR, and FAROC have been simulated by MATLAB/SIMULINK((ver 5.2)[8].
Simulation results for the most stressed power level change (100% t010%) as well as
start-up/shut-down operation (100% — 10% — 100%) have been shown in figures
7-14. Asobserved from Fig.7 the response of FOSFAC shows geady-error in the cae
of a) 100% to 10% power level change. Also from Fig. 12it is apparent that FOSFAC
can ot tradk the desired power level trajedory in the cae b) 100% to 10% to 100%
(start-up/shut-down operation of reador). The proposed methods ROSTR and
FAROC both perform well. In order to compare better these two methods, Table 2
shows the number of floating point operations (FLOPS for ROSTR and FAROC
methods for (100% to 10%) case. It is apparent from thistable that FAROC is more

than 3 times faster than ROSTR, and therefore one can consider the proposed FAROC
as the superior method.

Table 2: complexity with respect to number of floating point per operations for case a)
100% to 10% power level change.

METHOD FLOPS
FAROC 3.442e+6
ROSTR 10.806e+6

6-CONCLUSIONS

A Fuzzy Adaptive Robust Optimal Controller (FAROC) based on the response of a
Robust Optimal Self-Tuning Regulator (ROSTR) has been designed and simulated.
The simulation results shows good performance of this controller for wide range
power regulation and good load follow capability. FAROC is aso threetimes faster
than ROSTR.

12
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Fig. 9. Reactor average wolant temperature for
100% to 10% power level change
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Fig. 10. Reactor exit coolant temperature for
100% to 10% power level change
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Fig. 14. Reactor exit codant temperature for start-
up/shut-down operation100% — 10% — 100%%.
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