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Introduction 

Nuclear power plants are highly complex systems that are operated and monitored by 
humans. When faced with an unplanned transient, such as a plant accident scenario, 
equipment failure or an external disturbance to the system, the operator has to carry out 
diagnostic and corrective actions. The anomalous operating conditions must be diagnosed 
and identified through the process' instrument readings. The sheer number of instruments 
can make the diagnosis process fairly difficult. The difficulty in the diagnosis process is 
compounded by the fact that these anomalies develop over time. Hence, depending on the 
severity of accident, instruments' readings might not give clear indication of an anomaly 
at its incipient stage. The operator's response may be too late to mitigate or minimize the 
negative consequences of such anomalies. The objective of this research is to develop a 
module based on artificial intelligence technologies that will assist the operator to 
identify the transients at the earliest stages of their developments. Early detection will 
help in minimizing or even mitigating the negative consequences of such transients. It is 
equally important to identify the type of transient correctly. Misidentification of 
transients might result in incorrect action by the operator. 

Transient detection can be classified as a pattern recognition problem. When a transient 
occurs starting from steady state operation, instruments' readings develop a time 
dependent pattern. These patterns are unique with respect to the type of accident, severity 
of accident, and initial conditions. For example, the system's response to a Main Steam 
Line break will differ from its response to a loss of coolant accident. Therefore, by 
properly selecting the variables used by the pattern recognition system, the relevant 
features will be extracted from the measurements. 

To tackle this problem, a number of linear and nonlinear pattern recognition techniques 
can be utilized. For this work, artificial neural networks will be utilized for transient 
identification. Their advantages are the following: adaptive learning, nonlinear 
generalization, faults tolerance, resistance to noisy data, and parallel processing. 
However, the standard pattern recognition techniques will classify any pattern to fit the 
closest matching pattern. However, since the neural network cannot be trained on all 
possible transients, it is important that it does not classify transients on which it has not 
been trained. Otherwise, the system will wrongly classify patterns that it does not know. 
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This will hinder the proper diagnosis of the problem by the operator. To overcome this 
problem, it was proposed by Bartal, Lin and Uhrig (1995) to use probabilistic neural 
networks. These networks have a parameter that will classify a pattern depending on its 
probability to matching a specific pattern. Hence, when a pattern has low probability of 
being any of the "learned" patterns, it will be classified as "Don't Know". For this work, 
to minimize the pitfall of false identification of transients on which the network has not 
been trained, a network is trained to identify each individual transient, each network has 
only one transient associated with it. Each network is not only trained to identify each 
transient, but it is also trained to reject the other transients as being that specific transient. 
In other words, the neural network that is trained to identify loss of coolant accidents is 
also trained to classify the other transients as "normal" operating condition to minimize 
transients' misidentification. 

Prior Work on Transient Detection 

The importance of transient detection and diagnosis is paramount in the nuclear power 
industry for the enhancement of the safe operation of reactors. For this reason, many 
research groups have studied the possibility of implementing on line fault diagnostic 
systems. A brief summary of the approaches taken by some of these groups will be 
summarized below. A more extensive list is provided in the reference section. 

It has been demonstrated by Uhrig (1992), Bartal, et. al. (1993, 1995), and Bartlet et.al. 
(1991) that neural networks can be utilized for fault diagnostic in nuclear power plants. 
This approach has been used to detect the transient at its incipient stage. If the transient is 
slowly developing, this may give the operator the time to carry out corrective action prior 
to reactor scram. In case the transient occurs rapidly and a reactor scram takes place, then 
the system is still able to identify the fault to assist in reducing the time to restart the 
reactor. On the other hand, other systems, such as Ohga, and Seki, (1993) identify 
transients after the reactor scram has taken place. The purpose of the identification at this 
stage is for operational support. From our perspective, the identification at the incipient 
stage is much more useful to the operator. It also enhances the safety of reactor operation. 
However, the experience gained from the development of the post-scram transient 
diagnostic system has been valuable for the development of our system. 

One major issue with use of neural networks is the uncertainty about the transient that is 
being identified. This problem is especially relevant when the network is exposed to a 
transient that it has not learned before. To overcome this problem, Ohga, and Seki (1993) 
have developed an expert system that compares the decision of the neural network to the 
actual status of the plant (including valve positions, pumps status, etc.). If the transient 
identified matches the patterns listed in the expert system database, the transient is 
confirmed. If that was not the case, then the transient identification is erroneous, and the 
operators do not rely on the system. The limitations of this system are that it requires a 
significant time to identify the transient, and the expert system database becomes very 
large as new configurations are added. 
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Cheon and Chang (1993) developed an approach that bypasses the need for an expert 
system. In this system, not only the state variables, such as flow rates, temperatures, and 
pressures, are used as inputs to the neural network, but also equipment and alarm status. 
Using this method, the network performs some of the work of the expert system is 
supposed to do. Therefore, the expected configuration of a system will also play a role in 
the identification of the transient. The authors found that their system is fault tolerant, in 
a sense that if an input signal is erroneous, or not all the data presented is proper, the 
system is still able to identify the transient properly. The system was also able to identify 
multiple transients simultaneously. This characteristic is very positive since sensors tend 
to be noisy and degrade with time. However, this system's performance suffers when the 
network is exposed to transients on which it has not been trained. This drawback is 
common to almost all systems because neural networks extrapolate beyond their training 
region poorly. 

One possible method for minimizing the problem of misidentification is the use of 
modular networks. By using individual neural networks for each transient, the individual 
networks are then asked to identify if the transient to be detected fits a certain pattern 
without the need for the network to do extrapolation. For example, if a transient occurs, 
the output of each network is based on how well the pattern fits the transient it has been 
trained on. If the pattern fits the training data well, then the output of the network should 
be very close to the excepted output. On the other hand, if there is an uncertainty, then the 
output will not match the desired output well. Therefore, by placing very low tolerance 
on deviating from the expected output, only transients that could positively identified are 
announced and poorly defined transients would be labeled as "don't know". 

Kim and Bartlet (1993) proposed the use of some mathematical techniques that will 
quantify the error in the network's prediction. The methods they use are based on 
statistical techniques 

Ozaki, Suda, and Ozawa (1997) proposed a diagnosis system that is purely based on the 
use of expert system. The system utilizes plant alarms and configuration to diagnose a 
transient. This system performs identification, but not detection, after the fact that a 
transient has taken place. Another method proposed by Tamaoki, Sato, and Takahashi 
(1992) is to use sensor noise signatures to carry fault diagnostic. The limitation of such a 
system is that typical signatures for all abnormalities must be stored. This approach is 
impractical since it is impossible to obtain signatures for abnormalities for different all 
operating conditions. The last approach is based on the use of a model of the plant and 
compares the readings from the sensors to the model's prediction. 

Scope of the System 

The Nuclear Regulatory Commission requires that operators be able to identify about 
thirty-six accidents and transients. They are listed in Appendix A. We selected eight of 
these accident scenarios for use in this study. The selected transients are listed in Table 1. 
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Accident Scenarios to be Identified 
MAIN FEEDWATER LINE BREAK INSIDE CONTAINMENT LEAK 
MAIN FEEDWATER LINE BREAK OUTSIDE CONTAINMENT LEAK 
MAIN STEAM BREAK INSIDE CONTAINMENT LEAK 
MAIN STEAM BREAK OUTSIDE OF CONTAINMENT LEAK 
ROD EJECTION 
LOSS OF COOLANT ACCIDENT (LOCA) — HOT LEG 
LOSS OF COOLANT ACCIDENT (LOCA) — COLD LEG 
STEAM GENERATOR TUBE FAILURE LEAK 

Table 1: List of Accidents To Be Identified using Transient Detection System 

When designing a pattern recognition system, it is imperative to have data that is 
representative of a plant's response to all of the transients to be identified. This data was 
obtained from TVA's Watts Bar Nuclear Power Plant simulator. Data was collected for 
the eight specific accidents to be monitored. For each accident scenario, data was 
collected for three different levels of severity, and two power levels (100% and 50% of 
full power). This gave us a total of 48 transients. The sampling rate was 4 Hz., and the 
data was collected for a time period of steady state operation before the fault was 
introduced into the system. The collection process continued until a few minutes after the 
reactor tripped. The reading of 350 measurements were collected for all the transients. 

Variables Selection 

For any pattern recognition system to be successful, the pattern that it needs to identify 
must have distinct features that can be separable in the "feature" space. For this problem, 
the features are embedded in the signals that are input into the system. Therefore, it is 
imperative that variables that uniquely identify these transients are incorporated into the 
system. The variable selection process in transient detection includes identifying the 
signals that have the most relevant information about the specific transients. The criterion 
for selecting any variable is simply based on its level of response to any specific 
transient. For example, for the case of main steam line break, it is expected that the water 
level in the steam generator will change in a much more drastic manner then the change 
in the temperature on the primary coolant side. This is because the water level is much 
more related and "closer" to the event that is taking place. Therefore, all of the 350 
signals that were collected for each of the transients were classified as "Significant 
Change", "Minor Change", and "No Change". These three categories were used in the 
selection process. The signals with very minor changes or no changes at all were 
disregarded since they did not have significant information regarding the transients. This 
classification of signals resulted in 65 signals that had significant and necessary 
information for the detection of transients. Not all of these 65 signals responded to all 
eight transients. Hence, the sixty-five signals were also subdivided further into eight 
subgroups. Each group consisted of signals that responded to each specific transient. The 
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number of variables per group varied from eight to twenty one. Therefore, each of the 
transients had its own group of variables that were used for neural network training. 

Transient Identification 

As mentioned above, eight individual neural networks were utilized for identifying each 
of the eight accident scenarios. The reason for using eight networks is the added freedom 
in the selection of the variables. Also one large network would be difficult to train and 
manage. This gave us the ability to extract unique features that represent the events to be 
monitored. When features of events are distinguishable, then the probability of 
misidentification is negligible. 
Each neural network was trained on data for all the simulated transients and normal 
conditions. It was trained to give an output of one when it is exposed to the data of a 
specific transient, and zero for all other transients. This guaranteed that the network has 
been exposed to all other transients and it will not misidentify them. The networks were 
trained on data representing transients at both 100% and 50% full power levels. The 
objective here was to allow the networks to interpolate any accident scenario that occurs 
at power levels other between 50% and 100% power. 

The networks were able to distinguish between all the transients (Figure 1) except for the 
loss of coolant accidents in the hot leg and the cold leg. When the two networks were 
being trained on each of the transients, they were not able to reach adequate training 
goals. Upon reviewing the 350 signals available for each transient, it was observed that 
the signals were very similar. Hence, the neural networks were unable to distinguish 
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between the two. This observation was not surprising since both events were of similar 
nature. Because no differentiating information was present in the collected signals, the 
two transients are now considered as one. The system will now identify loss of coolant 
accidents without reference to the fact that it is in the cold or hot leg of the primary 
coolant system. Figure 1 shows the output network for all the simulated transients for the 
network that is trained to detect main feedwater break inside containment. 

Conclusion 

The preliminary results are excellent. The system was able to identify six of the eight 
original transients robustly. The two transients that it had difficulty to distinguish in 
between are grouped together to be identified as loss of coolant accident without 
specifying the hot leg or the cold leg. By merging the two transients into one event, the 
system will also be able to identify them robustly as a LOCA. The system has not been 
tested on "unseen", or noisy data. 

Future Work 

There are a number of issues that still have to be investigated. The primary one has to do 
with the minimal severity level that this system is able to detect and how quickly. The 
less the severity of the accident is the less likely that the signals will develop patterns 
indicating accident conditions. This is due to the fact the control system will compensate 
small perturbations to the system. The system still has to be tested on data that it has not 
seen at different power levels and of different severity levels. For identifying minor 
transients, it might be necessary to approach the problem from a different perspective. 
One possibility is to look at the control system's signals because it possible to monitor 
changes in signals at a much lower level. 
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Appendix A 

List of Accidents and Transients 
Operators are Required to Know by NRC Regulations 

Feedwater system malfunctions resulting in decrease in feedwater temperature 
Feedwater system malfunctions resulting in increase in feedwater flow 
Steam pressure regulator malfunctions or failures resulting in increase in steam flow 
Inadvertent opening of a steam generator relief or safety valve 
Spectrum of steam system piping failures inside and outside of containment 
Radiological consequences of main steam line failures outside of containment 
Loss of external load 
Turbine Trip 
Loss of condenser vacuum 
Steam pressure regulator failure (Closed) 
Loss of non-emergency A-C power to the station auxiliaries 
Loss of normal feedwater flow 
Feedwater system pipe brakes inside and outside containment 
Loss of forced reactor coolant flow including trip of pump and flow controller malfunctions 
Reactor coolant pump rotor seizure and reactor coolant pump shaft break 
Uncontrolled control rod assembly withdrawal from a subcritical or low power startup condition 
Uncontrolled control rod assembly withdrawal at power 
Control rod misoperation (system malfunction or operator error) 
Startup of an inactive loop or recirculation loop at the incorrect temperature 
Chemical and volume control system malfunction resulting in a decrease in boron concentration 
in the reactor coolant 
Inadvertent loading and operation of a fuel assembly in an improper position 
Spectrum of rod ejection accidents 
Radiological consequences of a control rod ejection accident 
Inadvertent operation of ECCS 
Chemical and volume system malfunction that increases reactor coolant inventory 
Inadvertent opening of pressurizer relief valve 
Failure of small lines carrying primary coolant outside containment 
Radiological consequences of steam generator tube failure 
Loss-of-coolant accidents resulting from spectrum of postulated piping breaks within reactor 
coolant pressure boundary 
Radiological consequences of a design basis loss-of-coolant accident: Containment leakage 
contribution 
Radiological consequences of a design basis loss-of-coolant accident: leakage from engineered 
safety features components outside containment 
Postulated radioactive releases due to liquid-containing tank failures 
Radiological consequences of fuel handling accidents 
Spent fuel cask drop accidents 
Anticipated transients without scram (ATWS) 
Radiological consequences of an ATWS event 
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