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Introduction 

In this paper we will use the name safety systems to denote specially designed systems 
that serve to increase the efficiency or extend the lifetime of the system they were 
designed to protect. The type of connectivity between the safety system and the system it 
protects plays an important role in the performance of the compound system. Figure [1] 
represents a typical safety system together with its operating environment. This 
environment consists of 

1. A system, or function that is to be protected (block named "MAIN SYSTEM") 

2. A signal, or function that is to be protected from (block named "INITIATOR") 
3. The safety system itself (block named "SAFETY SYSTEM"), and 
4. Links between the blocks (connection protocols) 
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Figure 1. Safety System and Its Surroundings 

Safety system serves as an interface between the main system and the initiator, and is 
designed to respond to a signal from the initiator and to protect the main system. 
Occasionally the safety system may become unavailable, and as a result its average 
performance is reduced in comparison to an ideal safety system that cannot fail. In some 
cases, however, it is possible to link the safety system and the main system in such a way 
that, regardless of the state of the initiator, the main system switches from an operating to 
a suspended state whenever the safety system becomes unavailable — either in full or in 
part. In general, this is feasible if the main system is not "mission-critical" and if the 
overall cost/benefit ratio requirements are fulfilled. All blocks on Figure [1] may 
represent technological as well as non-technological (human) systems and must be 
considered in their proper context when associating them with a particular function. For 
example, in order to prevent the initiator of bypassing the safety system, an airplane flight 
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may be canceled if the maintenance crew is on strike regardless of the aircraft condition. 
However, if the pilot during the flight suffers a stroke, the safety system is bypassed since 
the system has entered the mission critical phase and thus may not be suspended. In these 
two cases the main systems, which include aircraft, passengers, and crew, are identical, 
the safety systems are different, and the initiators are intercrossed. This is depicted on 
Figure [2] where "SS A" represents the maintenance crew, and "SS B" represents the 
cockpit crew. The "defense in depth" is said to be attained if the main system is guarded 
against a particular initiator by multiple safety systems. In our case such an initiator is an 
engine failure, denoted by "INIT B" on Figure [2]. "SS B" is a mission critical part, while 
"SS A" is a non-mission critical part of the safety system. 
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Figure 2. Arrangement of the Safety System Components in 
Case of the "Airplane Flight" Example 

We want to show that the performance of the safety system capable of altering 
explicitly the state of the main system may be enhanced significantly in comparison to 
the performance of the identical safety system that cannot alter explicitly the state of the 
main system. In the case of the redundantly designed safety system better improvement in 
performance can be achieved by allowing the main system to be suspended when one of 
the redundant safety units fails to pass the test from the supervising unit (see Figure [3]). 
The safety system in this case remains fully operational. Thus, the tests are necessary. 
Compared to the power reactors, the advantageous cost/benefit considerations in the case 
of research reactors play an important role in terms of operational safety. Any detected 
fault in the safety system of a research reactor in general can and should be followed by 
the reactor shutdown. The reactor then should remain in the suspended state until the 
repair is done. 

It should be noted that the two cases mentioned above — with and without the 
capability of altering the state of the main system - differ in the communication protocol 
between the safety and the main system, and not necessarily in the design of either the 
safety or the main system alone. In addition, the blocks depicted on Figure [1] do not 
necessarily represent physical objects. Since the main system may fail because of 
external as well as internal causes, the initiator may 'physically' reside outside as well as 
inside the main system. Figure [3] depicts a (redundant) safety system that is capable of 
altering explicitly the state of the main system. We will call this compound system the 
"Responsive System of Protection" (henceforth RSP), emphasizing the fact that the safety 
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system rather than the main system is the focus of our investigation. Nevertheless, it is 
the main system and not the safety system that will determine whether the compound 
system may or may not operate in the RSP mode. 
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Figure 3. Responsive System of Protection (RSP) 
Utilizing Two Redundantly Connected Safety Units 

In the discussion to follow it is assumed that a safety system is redundant, 
consisting of two identical active parallel units. X represents the failure rate of one unit, 
and IA represents the repair rate of one unit. A,* represents the rate of failure of both units 
simultaneously and T is the time between the tests. Since the actual repair of the RSP 
safety system is performed while the main system is in suspended state only, the mean 
repair time 111 in this case represents the expected time between the failure of a unit and 
the first subsequent scheduled test of the unit (see Figure [4]). Thus, the mean repair time 
is the time span between the actual failure and the detection of the failure. Without a loss 
of 
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Figure 4. Timeline Diagram of RSP with Two Active Parallel Safety Units 
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generality, we may assume no delay in the transition of the RSP main system from active 
to suspended state once the failure of any of the safety units is detected. Hence, the 
`effective' repair rate (µ) of any of the safety units becomes a function of both failure 
rates of the unit (2, X*) and the rate at which the test of the unit is performed ((1). 
Although we cannot change the failure rates, by increasing the test rate we can alter the 
effective repair rate of the RSP safety system and thus increase its availability. If we 
assume that the units of the safety system cannot fail simultaneously, the availability of 
the redundant RSP safety system can be, in fact, brought arbitrarily close to unity. 
Clearly, the definition of the effective repair rate allows us to incorporate the tests, which 
are essentially deterministic events, into the memoryless stochastic transition rates, and 
thus to analyze the system transitions using the markov modeling techniques. 

Calculation of the Availability of the RSP Safety System 

In the case of a safety system that is allowed to alter the state of the main system, 
it is feasible to maximize the availability of a particular cut set of the RSP at the cost of 
sacrificing the continuity of the main system's operation. (For the definition of the cut 
set see Barlow-Prochan, 1975.) This is, for example, the case of the McMaster Nuclear 
Reactor (MNR) Safety Amplifier, a part of the MNR's safety system, where the system 
can be brought down at any time when any part of the Safety Amplifier is suspected to be 
inoperable. 

Let c2; be the sample space representing the state of unit i in the safety system. We 
only want to know whether the unit is working, so we may put f2;= {"unit i is working", 
"unit i has failed"}, or succinctly C2i={1g, F'}. Let teR± denote a time in a future and 
Xi(t): C-2ixR4---> {0,1} be the stochastic process representing the pure failure of the unit `i' 
at time T, where '0' represents the working and '1' represents the failed state, and let 'n' 
be the number of units in the safety system. As already indicated, the expectation of the 
time interval between the moment of failure, i.e. the time when the transition from the 
pure state Xo= {W1,...,Wn} to the markov state Xi = U{0)=((-01,• • • ,(0n), coi ef2i I Xi-F• • • 
+Xn=j) occurs, and the time when the information of the failure becomes available to the 
observer plays the role of the effective repair time E(Ateff(Xj)) =1.1-1(j—÷0) for the state Xj, 

j#0. When the failure is detected, the main system is automatically suspended until the 
repair is completed. 

The case we want to analyze includes 

1. actual repair during system shutdown only 
2. repair during up time replaced by checkout procedures 
3. possible external common cause (CCF) failures 

A system that is shutdown is assumed to be in a suspended state, and does not count as a 
down time. 
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Repair rates µ(X,X.*,T) for the system with (X+X*)T«1 can be determined from 
the following proposition that will be proven separately: 

Proposition 1. 

lim [µ(2 —› 0)](X, X,* , T) 3 = 
X.(1-+2)-0 [µ1 --> 0)](X,, A: , T) 2 

(1) 

Proposition [1], in the case of rare failures, yields the asymptotic value of the repair rate 
for "both units down" case relative to the "one unit down only" case. Only "both units 
down" will cause the safety system to fail. Proposition states that the ratio between the 
two (virtual) repair rates does not depend on failure rates (X,X*) nor on the testing 
frequency T. This gives the following transition rates for the system with frequent 
checkouts, i.e. for systems with (k+X,*)T<<1: 

M041) =2X X(142) = X+X.* X(042) = X,* 

11(140) =1.t 14241) =0 11(240) =3/211 

The transition matrix is 

- _ 
—(2A, + V) P. Y2 [t

M = 2X, —(A+ ?k, + V) 0 

V X + V _yll 2 

Initially, both safety units are considered to be operational, 
distribution P(t=0) = [ Pi(0)] of the system being in state tri is 

P(t = 0) = 

1 

o 
0 

(2) 

so that the probability 

(3) 

The Laplace transform of the rate equations, dP(t)I dt=MP(t), is sP(s)-P(0)=MP(s), or 
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sP2 (s) = 2A.P, (s) — (.1 + X + V )P2 (s) 

sP3 (s) = V PI (s) + (X + V )P2 (S) — 3 —2 µ P 3 ( s ) 

Solutions of the algebraic equations (4) are 
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The limiting availability can be found as a non-transient, or asymptotic, 
probability of the system being in the operating state 
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The unavailability of the RSP safety system is approximately two times bigger than the 
unavailability of the similar system that: a) is incapable of suspending the main system; 
b) operates under external common cause failures; c) has two repairmen available; d) has 
the same reliability parameters as the RSP per each unit. Nevertheless, as opposed to the 
limited increase of the repair rates achievable by the repairmen in the mission critical 
case, the effective repair rates of the RSP safety system can be made almost arbitrarily 
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large by increasing the frequencies of the checkout procedures. This explains why the 
RSP model ultimately can accomplish better safety performance in practice. 

The interval failure frequency m(ti, t2), defined as the expected number of times 
the system will fail in the time interval (ti, t2), can be calculated as 

1  t2
m(t, , t2 ) = [pi (t)X,. + P2 (t)(2  + X* )]dt 

t 2 — 
(9) 

Failure frequency Eris defined as the asymptotic value tu(0, 00), when this value exists. 
The failure frequency is 
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tTi= liM 0(0,T) = lim .1[19 I WA: + p2 (t)(k + )]cit 
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1.1 2 21,* + IA( X,* ) 2 ± 2 X,2 + 32a*p. 
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(X +µ+X*)(2X+1.t+X*) 
.tP3 (0°) 

(10) 

The mean time between failures MTBF is equal to zu-1. Taking into account only the 
predominant terms from the previous equation we have 

MTBF = 
2A.2 +1.1.Xs

In most cases of interest the external common mode failure rate X* satisfies the condition 
X.*»m(k*=0), so that the MTBF simply becomes (X*)-1, i.e. 

us( X* >> = 0)) = X,* 

Note that if we increase IA, then w— >X* even when X.*<<X,, i.e. 

(do > 0)(VX, > 0)(VX: > 0)(3M > 0)((.1 > M) = (110(µ,k,X*) — X.* 

(12) 

< 8)) (13) 

The convergence 0—>X* takes place from right to left, or written in compact form: 
1.1"r m,14,*, meaning "if IA increases then t approaches X* from the right (decreases)". 

The failure frequency m and MTBF are the same as for the mission critical case. 
However, as stated above, the expected duration of the safety system down time is twice 
as large, because of the unavailability differences. The following results for mission 
critical case suffices from the RSP case: 1) m(k*>>0(X*=0))=X*; 2) 1..C1 o1,X*. 

Conclusion 

According to cost/benefit calculations, the safety of a system may be increased, 
and thus the risk-associated cost reduced, at the expense of the increased cost of the more 
frequently performed tests of the safety components. This is not a serious disadvantage 
for experimental or research reactors because they do not produce revenues and, 
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In most cases of interest the external common mode failure rate 11, * satisfies the condition 
11, *»m(A-*=O), so that the MTBF simply becomes (11, *r1

, i.e. 

(12) 

Note that if we increase µ , then m➔A-* even when 11, *«"-, i.e. 

(Vo > O)(VA. > O)(VA.
0 

> O)(:lM > O)((µ > M) ⇒ <llm(µ,A.,A.
0

)-A.
0

11 < 8)) (13) 

The convergence m➔A. * takes place from right to left, or written in compact form: 
µ t ⇒m.J,11, *, meaning "ifµ increases then m approaches 11, * from the right ( decreases)". 

The failure frequency m and MTBF are the same as for the mission critical case. 
However, as stated above, the expected duration of the safety system down time is twice 
as large, because of the unavailability differences. The following results for mission 
critical case suffices from the RSP case: 1) 'lu("-*»m(A-*=0))=11, *; 2) µt⇒m.J,11, *. 

Conclusion 

According to cost/benefit calculations, the safety of a system may be increased, 
and thus the risk-associated cost reduced, at the expense of the increased cost of the more 
frequently performed tests of the safety components. This is not a serious disadvantage 
for experimental or research reactors because they do not produce revenues and, 



consequently, any loss associated to the downtime is negligible. The expenditure 
associated with increased tests in terms of the increased operational cost is much smaller. 
In case of power reactors, on the other hand, any downtime is costly, and the shutdown is 
not always recommended. This is a safety drawback. As shown earlier, this safety 
variation is strictly connected to the mode of operation, i.e. reactor exploitation 
(profitable vs. non-profitable), and is not directly connected to the actual reactor design. 
The method we have used allow us to calculate, at least in principle, the maximum test 
rate that can reasonably be expected to cut down the unavailability to its limiting value 
below which the common cause failures will almost exclusively become responsible for 
any system failure. At this point no further safety improvement is achievable by 
increasing the testing frequencies. 

Proof of the Proposition (1) 

The reason why we used different letters for failure and repair rates, 2 and 1.1, 
instead of just using k(i--kj) for both i<j and i>j, is to indicate the difference in their 
nature: the failure transitions are spontaneous while the repair transitions are stimulated. 
In fact, both reliability and availability can be defined as (see Barlow-Prochan [1975]) 

A(t) = P[4(X(t)) = 1] = E[4(X(t))] (14) 

where Xa(X1,...,X,-,) is a state vector of the system, E stands for mathematical 
expectation, and (1)(X(0) denotes a structure function. For definition of the structure 
function see Barlow-Prochan [1975]. In case of reliability, the stimulated transitions, or 
repairs, are forbidden. 

From the principle of total probability it follows that the failure probability is 

F(t) = P(t = fail) 

= P(t = faint = fail) • Per = fail) (15) 

+ P(t = faillt = survive) • Per = survive) 

The shorthanded notation t = fail means (1)(X(0) = 1. Hence, for KT the forbidden 
transition in the second term yields zero probability, and 

F(t) = P(t = faill T = fail) • F(T) + 0. (1— F(T)) 

= F(tlt = fail) • F(T) 

Rearrangement gives the expression for conditional failure probability 

F(t1 T = fail) = 
F(t)

F(T) 

Unlike reliability, failure probability is a distribution function and it generates the 
probability density f Hence, the condition (17) transforms to the well-known equation 

(16) 

(17) 
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where X=(X1, ... ,Xn) is a state vector of the system, E stands for mathematical 

expectation, and <j>(X(t)) denotes a structure function. For definition of the structure 
function see Barlow-Prochan [1975]. In case of reliability, the stimulated transitions, or 
repairs, are forbidden. 

From the principle of total probability it follows that the failure probability is 

F(t) = P(t = fail) 
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The shorthanded notation t = fail means <j>(X(t)) = 1. Hence, for t<'t the forbidden 
transition in the second term yields zero probability, and 
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= F(tj't =fail)· F('t) 

Rearrangement gives the expression for conditional failure probability 

F(tj't =fail)= F(t) 
F('t) 
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Unlike reliability, failure probability is a distribution function and it generates the 
probability density f. Hence, the condition (17) transforms to the well-known equation 



tf(t)dt 

@IT = fail) = 

f (t)dt 

The density of F(tIT=fail) is 

f (tit = fail) = 

{  f (t) ., 
y 0...t <T, 

if (t)dt 
0 

0 if c t 

(18) 

(19) 

All failure rates can be derived heuristically and do not need special explanation. 
They are: X,(0—>1)=2k, A,(0—>2)=X*, and X,(1-->2)=k+X*. We will need them as well as 
Equation (19) in order to find the repair rates µ(1—>0) and µ(2—>0). As it is self-evident, 
p,(2—>1) is zero. We can calculate p.(1—>0) by using Equation (19) knowing that initially 
po(0)=1 (recall that the index below "p" indicates markov state: zero means "as good as 
new", and the variable in parentheses indicates time). However, after the transition 
(0--->1) occurs at time t, the failed system at later time T will not remain in a pure markov 
state since the transition (1-42) can occur spontaneously. That is why we should not use 
Equation (19) in terms of X,(0—>1)=2X, but rather in terms of a conditional single unit 
failure disregarding the second unit that would, according to the condition at time T, 
never undergo any transition anyway. The rigorous proof of this fact requires Bayes' 
theorem - it is trivial, but lengthy, and will be omitted herein. Therefore, for a single 
failure we have 

dt 
1 — — kre-kt 

(t1 T = fail) = 

and hence for 1.41—>0) we have 

A,(1 — CA' ) 
fke-x clt 
0 

1 - e -kt
µ(1 - > 0) = [t — (tIT = = 

+ e-kt —1 

For ?a <<1 the following approximation can be derived 

--> 0) = —
2 

X-*0 
while for kt>>1 

(20) 

(21) 

(22) 

The density of F(tlt=fail) is 

t 

f if (t)dt 

(tit =fail)=...;;_~ -

f f (t)dt 
0 

f(t) 
t 

/(tit= fail) = 
ff (t)dt 
0 

0 

(18) 

if 0 ~ t < t, 

(19) 

if 

All failure rates can be derived heuristically and do not need special explanation. 

They are: 11,(0➔ 1)=211,, 11,(0➔2)=11,*, and 11,(1➔2)=11,+11,*. We will need them as well as 

Equation ( 19) in order to find the repair rates µ( 1 ➔0) and µ(2➔0). As it is self-evident, 

µ(2➔1) is zero. We can calculate µ(1➔0) by using Equation (19) knowing that initially 
po(0)=l (recall that the index below "p" indicates markov state: zero means "as good as 

new", and the variable in parentheses indicates time). However, after the transition 

( 0➔ 1) occurs at time t, the failed system at later time t will not remain in a pure markov 

state since the transition (1➔2) can occur spontaneously. That is why we should not use 

Equation ( 19) in terms of A(0➔ 1 )=2A., but rather in terms of a conditional single unit 

failure disregarding the second unit that would, according to the condition at time t, 
never undergo any transition anyway. The rigorous proof of this fact requires Bayes' 
theorem - it is trivial, but lengthy, and will be omitted herein. Therefore, for a single 
failure we have 

(20) 

and hence for µ( 1 ➔0) we have 

1 -At 

µ(1 ➔ 0) = [t-(tlt = fail)r 1 =A. · - ~A 
A.t+e ' -1 

(21) 

For At«l the following approximation can be derived 

while for A. t» 1 

limµ(l ➔ 0) = 2 
A➔O t (22) 



1 
limi.1(1 -> 0) = lim  1  = lim = 1 - 
x-. A.-. 1 x-*.9 T — MMTF 'C 

T — — 
A, 

We can interpret this as follows: 

(23) 

a) for frequent checkouts, or rare failures, the failure density remains constant 
throughout the checkout time window, so that in average the failure happens at the 
middle of the time interval between the checkouts (Equation (22)); 

b) for rare checkouts, or frequent failures, the failure will happen on average at time 1/X 
after the previous checkout, and from the right side of the time window, i.e. at the 
time of the last checkout, this time appears to be close to the point of the previous 
checkout (Equation (23)). 

Similarly, for a dual failure during time interval T, i.e. for p.(2-->0) calculation 
purposes, from 7k,(0->2)=X* and k(1->2)=I+k* we can calculate the exact system failure 
probability at time t taking into account dependencies as 

P(0 -› 2)(t) = Fsy, (t) = 1- 2C (X+X*)1  + e —(2X+X*)I

which gives the probability density function as 

f 
dF„ (t) 

(t) =  Y = 2(A. + X )e-(x÷x*)' - (22, + X*)e-(2x+xs)(
dt 

(24) 

(25) 

Using the previous equation and Equation (18), we can find the conditional expectation 
of dual failure time counting from the end of the previous inspection. Consequently, the 
repair rate becomes 

Hence 

and 

1.42 —› 0) = [T — (ti T = fail)]-1

1- 2e-(" xs)c + e-(2x+x*),

e -f-x*),  1 1 2 (26) 
T + 2  -(x e-(2X+X*)T + 

A, + V 2X + V 2X + V k + V 

lim. 1.1.(2 -› 0) = 3 
(x+x*)-0 T 

lim 142 0) = lim 
(x+A...)-. ( 2 

k-FV) 

1 

T X±X.* 2 

 )(A-FX*)--,co 

= lim  
1 

= 
1 

("X*)-") T — MMTF T 

1 

(27) 

(28) 

limµ(l ➔ 0) = lim-
1

-
1 

= lim 
1 = 1 

A➔OO A➔OO A➔OO 'C - MMTF 'C 
'[--

A 

We can interpret this as follows: 

(23) 

a) for frequent checkouts, or rare failures, the failure density remains constant 
throughout the checkout time window, so that in average the failure happens at the 
middle of the time interval between the checkouts (Equation (22)); 

b) for rare checkouts, or frequent failures, the failure will happen on average at time 1/"A 
after the previous checkout, and from the right side of the time window, i.e. at the 
time of the last checkout, this time appears to be close to the point of the previous 
checkout (Equation (23)). 

Similarly, for a dual failure during time interval -c, i.e. for µ(2➔0) calculation 
purposes, from "A(0➔2)="A* and "A(l➔2)="A+"A* we can calculate the exact system failure 
probability at time t taking into account dependencies as 

P(0 ➔ 2)(t) = Fsys (t) = 1- 2e-c:i.+:i.•>1 + e-cn+:i.•>1 

which gives the probability density function as 

(24) 

(25) 

Using the previous equation and Equation (18), we can find the conditional expectation 
of dual failure time counting from the end of the previous inspection. Consequently, the 
repair rate becomes 

µ(2 ➔ 0) = [-c -(tl-c = fail)r 1 

l _ 2e-(A+A •)t + e-(2A+A •)t 

=---------------------
2 -(:i.+:i. •)t 1 e-(2A+). •)t + 1 2 -c+--e - - - -

"A+ "A. 2"A + "A• 2"A + "A. "A+ "A. 

(26) 

Hence 

lim µ(2 ➔ 0) = i 
().+). •)➔O 'C (27) 

and 
lim µ(2 ➔ 0) = lim 

1 

(;l.+;l. •)➔oo ().+). •)➔oo ( 2 1 ) 
'C- -

"A+ "A• 2"A + "A• (28) 
1 1 = lim = 

().+). •)➔oo 'C - MMTF 'C 



Therefore, for rare failures the dual failure time in mean is shifted from the middle 
point between the checkouts towards the latest checkout time (Equation (27)). Nothing is 
changed in terms of rare checkouts (Equation (28)). Finally, Equation (27) together with 
Equation (22) gives Equation (1). 
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