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ABSTRACT 

Inferential sensing is a method which can be used to evaluate parameters of a 
physical system based on a set of measurements related to these parameters. The most 
common method of inferential sensing uses mathematical models to infer a parameter 
value from correlated sensor values. However, since inferential sensing is an inverse 
problem, it can produce inconsistent results due to minor perturbations in the data. This 
research shows that regularization can be used in inferential sensing to produce consistent 
results. The important example of monitoring nuclear power plant feedwater flow rate is 
given using data from Florida Power Corporation's Crystal River Nuclear Power Plant. 

1. INTRODUCTION 

Inferential sensing is the prediction of a plant variable through the use of 
correlated plant variables. A correct prediction of a variable can be used to monitor 
sensors which measure that variable, for drifts or failures making periodic instrument 
calibrations unnecessary. This move from periodic to continuous monitoring permits 
condition based maintenance that can reduce costs and increase the reliability of the 
instrument. Having accurate, reliable measurements is important for signals that may 
impact safety or profitability. One of these signals in nuclear power plants (NPP) is 
feedwater flow rate which is directly involved in the estimation of the thermal power of a 
reactor. Both PWRs and BWRs use venturi meters to measure feedwater flow rate to the 
steam generator and the pressure vessel, respectively. These meters are sensitive to 
measurement degradation due to corrosion products in the feedwater. Measurement error 
due to feedwater fouling, results in feedwater flow rate overestimation. Consequently, the 
thermal power of the reactor is also overestimated, and the reactor must be derated to stay 
within regulatory limits. 

To overcome this problem, an inferential sensing system is being developed at the 
University of Tennessee to infer the "true" feedwater flow rate. This system infers values 
of complex process variables by integrating information from multiple sensors. A least 
squares model (linear or nonlinear) can be "trained" to map appropriate input variables to 

REGULARIZATION OF FEEDWATER FLOW RA TE EVALUATION FOR 
VENTURI METER FOULING PROBLEM IN NUCLEAR POWER PLANTS. 

Andrei V. Gribok, Ibrahim Attieh, J. Wesley Hines, Robert E. Uhrig 
Nuclear Engineering Department 

The University of Tennessee 
Knoxville, TN 37996 

agribok@utk.edu iattieh@utkux.utcc.utk.edu hines@utkux.utcc.utk.edu ruhrig@utk.edu 

KEYWORDS 

Regularization, inferential sensing, venturi meter, fouling, least squares solution 

ABSTRACT 

Inferential sensing is a method which can be used to evaluate parameters of a 
physical system based on a set of measurements related to these parameters. The most 
common method of inferential sensing uses mathematical models to infer a parameter 
value from correlated sensor values. However, since inferential sensing is an inverse 
problem, it can produce inconsistent results due to minor perturbations in the data. This 
research shows that regularization can be used in inferential sensing to produce consistent 
results. The important example of monitoring nuclear power plant feedwater flow rate is 
given using data from Florida Power Corporation's Crystal River Nuclear Power Plant. 

1. INTRODUCTION 

Inferential sensing is the prediction of a plant variable through the use of 
correlated plant variables. A correct prediction of a variable can be used to monitor 
sensors which measure that variable, for drifts or failures making periodic instrument 
calibrations unnecessary. This move from periodic to continuous monitoring permits 
condition based maintenance that can reduce costs and increase the reliability of the 
instrument. Having accurate, reliable measurements is important for signals that may 
impact safety or profitability. One of these signals in nuclear power plants (NPP) is 
feedwater flow rate which is directly involved in the estimation of the thermal power of a 
reactor. Both PWRs and BWRs use venturi meters to measure feedwater flow rate to the 
steam generator and the pressure vessel, respectively. These meters are sensitive to 
measurement degradation due to corrosion products in the t'eedwater. Measurement error 
due to feedwater fouling, results in feedwater flow rate overestimation. Consequently, the 
thermal power of the reactor is also overestimated, and the reactor must be derated to stay 
within regulatory limits. 

To overcome this problem, an inferential sensing system is being developed at the 
University of Tennessee to infer the "true" feedwater flow rate. This system infers values 
of complex process variables by integrating information from multiple sensors. A least 
squares model (linear or nonlinear) can be "trained" to map appropriate input variables to 



the desired output. Because inferential sensing is an inverse problem, it is often an ill-
posed problem. Ill-posed problems suffer from lack of uniqueness and/or stability of the 
solution due to small perturbations in the data. This fact raises concerns about the 
consistency of inferential measurements. This paper shows that regularization techniques 
can be effectively used to provide a stable solution for inferential sensing, thus providing 
a stable, consistent estimation of feedwater flow rate. This estimation can then be used in 
the calculation of reactor thermal power to avoid unnecessary derating. 

2. FEEDWATER FLOW MEASUREMENTS IN U.S. NUCLEAR POWER 
PLANTS AND FOULING PROBLEM. 

In the United States, a nuclear power plant's operating limit is directly related to 
its thermal power production. The simplified energy balance equation can be written as 
(Chan and Ahluwalia, et al., 1992): 

= m,,„*(11, — h1 ) + Losses, (1) 

where Q is core thermal power, hs and 11,w are enthalpies of steam and feedwater, 
respectively, and rn,,, is feedwater flow rate. 

Since the enthalpies of steam and feedwater can be determined accurately, 
uncertainties in thermal power estimation often come from feedwater flow rate 
measurements (Chan and Ahluwalia, et al., 1992). The majority of PWRs and some 
BWRs utilize venturi meters to measure feedwater flow rate because of their ruggedness 
and precision. However, these meters are susceptible to measurement drift due to 
corrosion products in the feedwater building up on the meter's orifice. This increases the 
measured pressure drop across the meters, which results in an over-estimation of the flow 
rate. Consequently, the reactors' thermal power is also overestimated (Chan and 
Ahluwalia, et al. 1992). A schematic drawing of a venturi meter and its fouling zone, or 
region of corrosion product buildup, is shown in Figure 1. 

To stay within regulatory limits, reactor operators are forced to derate their plants. 
According to Chan and Ahluwalia, et al. (1992), venturi meter fouling is "the single most 
frequent cause" for derating in PWRs. The amount of derating, according to the report, 
varied from insignificant to 3% of full power. On average, the derating was between 1% 
and 2% of full power. A derating of 2% in an 800 MWe unit will cost the utility 
approximately $20,000 per day given the cost of electricity is $0.05/kWh. 
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Fig.1 Schematic of a venturi meter 

The most common practice at PWRs is to inspect and clean the venturi meters 
between fuel cycles. A major problem with this technique is that deposits can reappear as 
quickly as a month after achieving 100 % reactor power (Chan and Ahluwalia, et al., 
1992). To overcome this fouling problem, some utilities have developed a fouling 
coefficient or a correction factor to offset the degradation in the measurements' accuracy, 
and assume a linear increase for the first several months. Currently, ultrasonic flowmeters 
are considered to be a competitive alternative to venturi meters because they do not suffer 
from this fouling problem. However, they need further development to improve their 
accuracy and reliability. 

The primary goal of this paper is to show how inferential measurements can be 
used to estimate feedwater flow rate, and how regularization can be used to make this 
estimation robust and consistent. 

2.1 Inferential Measurements for Feedwater flow estimations. 

Despite the susceptibility of the venturi meter to fouling, it is still the most 
common flow measurement instrument used in nuclear power plants. The University of 
Tennessee's Nuclear Engineering Department has been researching the development of 
inferential measurement or inferential sensing systems since the late eighties. These 
inferential systems utilize statistical or artificial intelligence based methods for predicting 
variables that are difficult or expensive to measure. One paper that dealt with venturi 
meter fouling was published by Kavaklioglu and Upadhyaya (1994). The development of 
an inferential sensing system consists of collecting training and testing data, 
preprocessing the data to remove outliers, and scaling the data to allow the use of 
statistical signal evaluation techniques. Once the data is collected and preprocessed, the 
inferential model is developed and tested. Several predictive modeling techniques can be 
applied to inferential sensing including linear techniques such as regression, principal 
component regression, ridge regression, and partial least squares; and non-linear 
techniques, such as non-linear regression, non-linear partial least squares, and artificial 
neural networks. 
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Inferential measurements should not be confused with classical prediction where a 
parameter value is estimated at time t+1, based on information about other parameters at 
time t. In inferential measurements, a parameter is estimated at time t based on 
information about other parameters also at time t. Thus, the unknown value is "inferred" 
at the same time stamp. However, this does not make inference an easier problem than 
prediction. In fact, inferential measurement is often an ill-posed problem which requires 
special considerations. 

3. ILL—POSED PROBLEMS 

In 1923 the French mathematician Hadamard introduced the notions of well—
posed and ill—posed problems, (Hadamard, 1923). Hadamard defined a well—posed 
problem as a problem which satisfies the following three conditions: 

1. The solution for the problem exists (existence) 
2. This solution is unique (uniqueness) 
3. This solution is stable or smooth under small perturbations of the data, i.e. small 

perturbations in the data should produce small perturbations in the solution (stability). 

If one of these conditions is not met, the problem is said to be ill-posed and 
requires special considerations. The existence of the solution can be enforced by 
enlarging the solution space. An example is the solution of polynomial equations. It is a 
well known fact from the basic theorem of algebra that any polynomial equation of order 
n has exactly n roots, real or complex. However, not all polynomial equations have 
solutions in the real domain, but they do have solutions in the complex domain. Thus, to 
guarantee the existence of the solution we have to enlarge the space within which we are 
seeking the solution. 

Non—uniqueness usually arises when some of the information about the 
underlying model is lacking. Neural networks provide an excellent example of such non-
uniqueness. Neural networks are essentially devices for building models from a finite 
amount of data. Due to the use of nonlinear transfer functions, neural network's error 
surfaces may contain many local minima. Assuming random weight and bias 
initialization, neural network training algorithms can provide a number of solutions (sets 
of weights), each of which fits the training data very well. Each possible solution will 
correspond to a different minima in the error surface, and thus, neural network's error 
surface presents a set of non-unique solutions. From this set of non-unique solutions, we 
must complete the difficult task of choosing a solution which adequately represents the 
modeled system. 

Unstable solutions usually result when we are trying to reverse cause—effect 
relationships where the forward operator (the operator which solves the forward problem) 
is a smoothing operator. A smoothing operator attenuates high frequency oscillations in 
the input data. If the forward operator is a smoothing operator, then it is natural to expect 
that the inverse operator would be a "roughening" operator. A "roughening" operator 
amplifies high frequency oscillations, thus providing an unstable solution. An example of 
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solution instability can be found in convolution—deconvolution relations. Convolution is 
a smoothing operator, hence deconvolution is a "roughening" operator. Deconvolution is 
a classic ill-posed problem which is very difficult to tackle without special methods. In 
practical applications the last issue of stability is the primary concern, as the first two 
conditions are usually postulated. 

3.1 Inferential sensing is an ill—posed problem 

In inferential sensing, none of the conditions for a well-posed problem may be 
satisfied. First of all, the parameters related to feedwater flow may not provide all of the 
information which is necessary to estimate a true value of feedwater flow. Second, 
different parameters can provide different information about the true value of the 
feedwater flow rate, and finally, feedwater flow estimation can be unstable due to small 
perturbations in the input data or due to different preprocessing techniques. In the current 
study we assume that the plant variables selected to infer a true value of the feedwater 
flow rate do provide information about this value. We also assume that this information is 
full, and unambiguous, thus postulating existence and uniqueness of the solution for the 
feedwater inferential sensing problem. Our primary concern in the current study is the 
stability of the feedwater flow rate estimation, and we shall show that the problem of 
instability can be solved by regularization. 

3.2 Instability of inferential sensing for feedwater flow evaluation 

To demonstrate the difficulties caused by ill-posed problems, twenty-four 
variables were selected as predictor variables. These variables are listed in Table 1. These 
variables were selected based on engineering judgement and on their high correlation 
with feedwater flow. A linear regression model was then constructed using the predictor 
variables to estimate the feedwater flow rate'. The "training" region for the linear 
regression model was chosen to be the plant start-up and the first few days of the fuel 
cycle, when the venturi meter was assumed to be free from corrosion product fouling. 
Between fuel cycles the venturi meter is removed, acid cleaned, and calibrated; therefore, 
at the beginning of the fuel cycle, the measured flow rate coincides with the actual flow 
rate. The fouling during the operation of the NPP increases the pressure drop across the 
meter. This pressure drop increase results in an overestimation of the feedwater flow rate 
and thus, overestimation of the reactor's thermal power. The difference between the 
"true" (estimated) flow rate and the measured flow rate, referred to as drift, can be 
quantified by using a regression model. In addition, the actual (estimated) flow rate can 
be used to calculate the actual thermal power of the reactor, allowing the reactor to 
operate at full licensed power. To evaluate the drift, a check point at a time approximately 
6 months into the fuel cycle was chosen. 

Linear regression was chosen for this demonstration because it is simple to use and 
illustrates the issues associated with ill-posed problems. The same issues arise in non-
linear models, including neural network models. 
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Table 1 List of 24 variables used as predictor variables to evaluate feedwater flow.
Var. Num. Description Range Units 

1 FWP Speed 0-7500 RPM 
2 'A' OTSG EFIC HIGH LEVEL 0-100 PERCENT 
3 FEEDWATER PUMP A SPEED 0-7500 RPM 
4 LINEAR POWER CH NI-6 0-125 PERCENT 
5 HEATER 3A INLET COND TEMP 40-300 DEGF 
6 HEATER 3B OUTLET COND TEMP. 40-350 DEGF 
7 DEARATOR INLET COND TEMP 40-350 DEGF 
8 HEATER 6A INLET FW TEMP 40-500 DEGF 
9 FWP A DISCHARGE TEMP 40-500 DEGF 
10 FWP A SUCTION TEMP 40-500 DEGF 
11 HEATER 5B OUTLET FW TEMP 40-500 DEGF 
12 STEAM GEN B INLET FW TEMP 40-600 DEGF 
13 HEATER 6B OUTLET FW TEMP 40-600 DEGF 
14 STEAM GEN A LEVEL (OP) 0-100 PERCENT 
15 STEAM GEN A LEVEL (FULL) 40-640 INCHES 
16 STEAM GEN A LEVEL (START UP) 0-250 INCHES 
17 STEAM GEN B INLET FW TEMP 0-500 DEGF 
18 STEAM GEN B LEVEL (START UP) 0-250 INCHES 
19 STEAM GEN A INLET FW TEMP 40-600 DEGF 
20 STEAM GEN B INLET FW TEMP 40-600 DEGF 
21 REHEATER A COLD REHEAT PRESS. 0-200 PSIG 
22 REHEATER D COLD REHEAT PRESS. 0-200 PSIG 
23 REHEATER C COLD REHEAT PRESS. 0-200 PSIG 
24 NO. 2A EXTR LP TURB PRESSURE 0-20 PSIA 

Prior to any statistical evaluation of the data, a number of preprocessing 
techniques should be applied to the raw data to ensure consistency of the results. The 
most common preprocessing techniques are filtering and scaling. It is a well-known fact 
that least squares models are very sensitive to outliers. To reduce measurement noise we 
used a median filter with different window sizes. Median filtering has well known outlier 
rejection and fast digital implementation properties. We are aware of the non-linear 
nature of median filtering, and precautions have been taken so that correlations between 
the signals are not changed significantly. Unfortunately, the size of the filter window 
changes the inferred value of feedwater flow, thus indicating inconsistency of drift 
evaluations using an ordinary least squares model. The dependence of the drift 
estimation, at the 6 month check point, on filtering window length is shown in Table 2. 
Due to different median filter window sizes, the inferred drift can change up to 8 %. 
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Table 2 Drift dependence on filter window size 
Window length, data points Drift at check point, klb/hr 

0 (no filtering) 39.50 

3 39.50 

5 39.46 

7 36.13 

11 38.72 

The second preprocessing technique used was data scaling. It is a well known fact 
that scaling can change both the ordinary least squares solution, and the regularized 
solution, for a given problem (Lawson and Hanson, 1974). In the current study we used 
only column scaling of data matrixes. Each of the 24 predictor variables was scaled based 
on its maximum anticipated value. These maximum anticipated values are shown in table 
1 in the column entitled "Range". For example, the data of variable 1 (feedwater pump 
speed) were divided by 7500, which is the maximum anticipated speed of the pump in 
normal regimes of operation. Prior to scaling, all variables were zero meaned to guarantee 
an unbiased least squares solution. 

After scaling and filtering, the data can be used to build a predictive model to 
infer feedwater flow rate. In the current study we used the common multivariable linear 
regression method to develop a predictive model. The 24 variables were regressed on to 
the response variable (feedwater flow rate) using data from several days at the very 
beginning of the fuel cycle. Having been estimated, these regression coefficients were 
used to infer the true value of feedwater flow during the first 7 months of the fuel cycle. 
The data points were sampled in 30 minute increments. Unfortunately, as it was found 
out, the value of the drift is very much dependent on the number of data points used to 
calculate the regression coefficients, again pointing to inconsistency of inference. This 
dependence is shown in Table 3. 

Table 3 Drift dependence on the number of data points used to estimate regression 
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an unbiased least squares solution. 
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The data points were sampled in 30 minute increments. Unfortunately, as it was found 
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900 (approximately 18 days of operation) 39.00 

As can be seen from this table, the drift value depends drastically on the number 
of "training" points used to estimate the regression coefficients. This is one more source 
of inconsistency in inferential measurements, which can lead to incorrect inferences about 
the true value of feedwater flow rate. 

The last source of inconsistency in inferential sensing is the data perturbations or 
noise. Under some conditions the noise can make inferential sensing extremely unstable. 
The inferential measurement of feedwater flow rate sensor drift is based on the inferred 
value of the actual feedwater flow rate. The actual flow is inferred based on its 
relationships to other correlated plants parameters. The problem with using these 
parameters as predictors is that they are not only highly correlated with feedwater flow 
rate, but they are also correlated with each other. If this degree of correlation is quite 
high, the data matrix becomes ill-conditioned and we face the problem which is 
commonly referred to in statistical literature as "collinearity". Two variables are collinear 
if the data vectors representing them lie on the same line (i.e., subspace of dimension 
one). More generally, k variables are collinear if the vectors that represent them lie in a 
subspace of dimension less than k; that is, if one of the vectors is a linear combination of 
the others. In practice, such "exact collinearity" rarely occurs due to noise. A broader 
notion of collinearity is therefore needed to deal with the problem as it affects statistical 
estimation. A less strict definition would be that two variables are collinear if they lie 
almost on the same line, or if the angle between them is small. In the event that one of 
the variables is not constant, this is equivalent to saying that they have a high degree of 
correlation between them. 

To evaluate the consistency of the inferential drift estimation system under small 
perturbations in the data, a bootstrap technique was used (Efron, 1982). The bootstrap 
technique is a statistical method used for evaluating the precision of the regression 
coefficients or fitted values. If we have n training data samples , the bootstrap technique 
randomly selects n values from both predictor and response variables with replacement, 
thus providing a bootstrap sample of size n but with some original values duplicated and 
some missing. This bootstrap sample is used to regress predictor variables onto the 
response variable using the same fitting procedure as for the original sample. When the 
method is repeated a large number of times, the bootstrap procedure provides a set of 
fitted values whose variability can be estimated and whose sampling distribution can be 
plotted. This graphical representation demonstrates the precision of the evaluated 
statistical parameter. 

In this study the input data matrix X is of size 600x24, where 24 is the number of 
predictor variables and 600 is the number of data samples. The output vector y is of size 
600x1, containing 600 corresponding samples of the response variable (feedwater flow 
rate). The condition number (the ratio of largest to smallest singular values) of the input 
data matrix is 705 which indicates ill-conditioning, or collinearity of the data. Most 
well-conditioned matrices have condition numbers well below 100. To check the 

900 (approximately 18 days of operation) 39.00 

As can be seen from this table, the drift value depends drastically on the number 
of "training" points used to estimate the regression coefficients. This is one more source 
of inconsistency in inferential measurements, which can lead to incorrect inferences about 
the true value of feedwater flow rate. 

The last source of inconsistency in inferential sensing is the data perturbations or 
noise. Under some conditions the noise can make inferential sensing extremely unstable. 
The inferential measurement of feedwater flow rate sensor drift is based on the inferred 
value of the actual feedwater flow rate. The actual flow is inferred based on its 
relationships to other correlated plants parameters. The problem with using these 
parameters as predictors is that they are not only highly correlated with feedwater flow 
rate, but they are also correlated with each other. If this degree of correlation is quite 
high, the data matrix becomes ill-conditioned and we face the problem which is 
commonly referred to in statistical literature as "collinearity". Two variables are collinear 
if the data vectors representing them lie on the same line (i.e., subspace of dimension 
one). More generally, k variables are collinear if the vectors that represent them lie in a 
subspace of dimension less than k; that is, if one of the vectors is a linear combination of 
the others. In practice, such "exact collinearity" rarely occurs due to noise. A broader 
notion of collinearity is therefore needed to deal with the problem as it affects statistical 
estimation. A less strict definition would be that two variables are collinear if they lie 
almost on the same line, or if the angle between them is small. In the event that one of 
the variables is not constant, this is equivalent to saying that they have a high degree of 
correlation between them. 

To evaluate the consistency of the inferential drift estimation system under small 
perturbations in the data, a bootstrap technique was used (Efron, 1982). The bootstrap 
technique is a statistical method used for evaluating the precision of the regression 
coefficients or fitted values. If we have n training data samples , the bootstrap technique 
randomly selects n values from both predictor and response variables with replacement, 
thus providing a bootstrap sample of size n but with some original values duplicated and 
some missing. This bootstrap sample is used to regress predictor variables onto the 
response variable using the same fitting procedure as for the original sample. When the 
method is repeated a large number of times, the bootstrap procedure provides a set of 
fitted values whose variability can be estimated and whose sampling distribution can be 
plotted. This graphical representation demonstrates the precision of the evaluated 
statistical parameter. 

In this study the input data matrix X is of size 600x24, where 24 is the number of 
predictor variables and 600 is the number of data samples. The output vector y is of size 
600x 1, containing 600 corresponding samples of the response variable (feedwater flow 
rate). The condition number (the ratio of largest to smallest singular values) of the input 
data matrix is 705 which indicates ill-conditioning, or collinearity of the data. Most 
well-conditioned matrices have condition numbers well below 100. To check the 



stability of drift inference, 100 bootstrap samples were generated from the original data. 
For each bootstrap sample, the regression coefficients were estimated using ordinary least 
squares and test data were used to infer the drift value at a check point approximately 6 
months into the fuel cycle. The predicted drift values were used to calculate a probability 
density function (PDF) of the drift estimates and their standard deviation. 

The PDF for the drift estimates is shown in Figure 2. The PDF for the drift value 
has a large variance, and even worse, it is multimodal. We can see that estimated drift 
values range from 20 up to nearly 60 klb/hr with a standard deviation of 6.51 klb/hr. 
These results indicate the instability of the solution using ordinary least squares, and the 
resulting inconsistency of the drift estimation. This inconsistency is due to the high 
sensitivity of the ordinary least squares solution to small perturbations in the data, which 
is a direct result of the ill-conditioned nature of the problem. To stabilize the drift 
prediction, a method of regularization should be used to alleviate the ill-conditioning 
problem. 
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Fig. 2 Instability of drift estimation due to perturbations in the data. 

4. REGULARIZATION 

Prior to considering regularization we have to understand what causes the 
instability of the ordinary least squares solution. To understand the essence of ill-posed 
problems for drift detection, let us consider the linear least squares problem. The 
objective of linear least squares is to find a linear combination of predictor variables that 
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Prior to considering regularization we have to understand what causes the 
instability of the ordinary least squares solution. To understand the essence of ill-posed 
problems for drift detection, let us consider the linear least squares problem. The 
objective of linear least squares is to find a linear combination of predictor variables that 



provides an accurate estimation of the response variable. Hence, we minimize the square 
of the difference between Xw and y, i.e. 

minI1Xw — 2 ' Xe R mXII , m (2) 

With respect to the current application, X is a data matrix containing predictor variables 
related to feedwater flow rate, y is a vector of measured values of feedwater flow rate and 
w is a vector of regression coefficients. A very valuable tool in the analysis of ill-posed 
problems is singular value decomposition (SVD) (Golub and Van Loan, 1996). The SVD 
of data matrix X can be written as: 

X=UEVT= Eu •aivT i 
i=1 

(3) 

The components u; and v; are the left and right singular vectors of X, and a, are the 
singular values of the matrix X. Assuming that matrix X has a full rank of n, in terms of 
the SVD, the solution for problem (2) can be written as: 

n uT y 

w LS= I  1NT • 

• fa• i=1 I 

(4) 

Equation (4) gives insight into the essence of ill-conditioning. The division by small 
singular values results in the amplification of high-frequency oscillations of the right 
singular vectors of the data matrix X. To deal with ill-conditioned problems several 
methods have been developed which essentially damp or filter out these high frequency 
oscillations. These methods are called regularization methods because they regularize or 
smooth potentially unstable least squares solutions. The simplest regularization method 
is the truncated SVD (TSVD) method. This method truncates the sum in equation 4 at 
some value k<n, eliminating small singular values from the denominator. The two 
heuristics used in this method of regularization are as follows: 

1. The singular values have a distinct gap in their spectrum. The location of this gap on 
the singular values curve can be a natural choice for the truncation parameter k. 

2. The left and right singular vectors u; and v; tend to have more sign changes in their 
elements as the index i increases, i.e., as a, decreases (Hansen, 1997). 

Heuristic 2 is only guaranteed to hold for totally positive matrices (Hansen, 1995). 
A matrix is totally positive if all of its minors of any order are positive (Gantmacher, 
1959). Matrices that arise in most practical applications are usually totally positive, but it 
is important to verify this property prior to the application of any regularization method 
based on heuristic 2. TSVD regularization is especially appropriate for ill-conditioned 
problems which have a large gap (say two orders of magnitude) between two consecutive 
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singular values a, and a,,,. These kinds of problems are said to have a well-determined 
numerical rank. Not all real world problems have a well-determined numerical rank. If 
the singular value spectrum has no distinct gap, then the problem has an ill-determined 
numerical rank, and the choice of the truncation or regularization parameter is not as 
evident as in the former case. But as it was stressed in Hansen (1989), the success of 
TSVD depends on the satisfaction of the Discrete Picard Condition (DPC) (which assures 
that the regularized solution exists ), (Hansen, 1990) and not on the existence of a distinct 
gap in the singular value spectrum of the data matrix X. To deal with ill-conditioned 
problems having ill-determined numerical rank, the method of regularization proposed by 
Tikhonov (1963) can be used. In this method, the minimization problem (2) is replaced 
by the following augmented functional: 

min(11Xw — 4 22 + X2 11Lw112 ) (5) 

The regularization parameter X, controls the trade-off between the smoothness of the 
solution and its fit to the data. L is a well conditioned matrix; for example, a discrete 
approximation of the derivative operator. The main assumption behind Tikhonov 
regularization is that the solution should be smooth or non-oscillating. In the case of L=I, 
where I is identity matrix, the Tikhonov's functional (5) is said to be in standard form and 
is known in statistical literature as "ridge regression" (Hoerl and Kennard, 1970). In this 
case, we can write the regularized solution as: 

w =  vi
i=1 

6i
(6) 

The components u, and v, are the left and right singular vectors of the data matrix X, 6, 

6?
are the singular values of this matrix and f, =  I are the filter factors. The role of 

,_12 

filter factors is to suppress the contribution of minor components to the solution, thus 
providing a more stable non-oscillating solution. In Tikhonov regularization the filter 
factors for large a, are close to 1 and for small a, they tend toward zero, thus providing 
necessary filtering of minor components. In Tikhonov regularization heuristic 2 is the 
same as was previously stated for the TSVD method, thus ensuring the smoothness or 
stability of the regularized solution. However, heuristic 1 now states that the singular 
value spectrum decays to zero without any particular gap in the singular values. 

It should be noted that in any practical situation the singular value spectrum does 
not decay to zero but levels off at some index "i" due to unavoidable measurement errors 
or instrumentation noise. The noise level in both the right and left parts of Xw = y is a 
crucial factor for satisfaction of the Discrete Picard Condition and thus for the existence 
of a "good" regularized solution which is a reasonable approximation to a desired true 
solution. 
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With these theoretical considerations in mind we will now tackle the problem of 
drift detection in feedwater flow instrumentation. This problem of inferential or virtual 
measurements is an inverse problem, where the aim is to recover or "infer" about 
unknown parameters of a physical system from other correlated parameters which are 
corrupted by measurement noise. In this paper a linear approach to the drift detection 
problem was adopted because it allows a clear analysis of the regularized solution. 
Nonlinear methods, such as neural networks, are much more difficult to regularize due to 
the absence of a consistent, unifying theory of nonlinear regularization. 

4.1 Regularization of feedwater flow evaluation 

A standard form of Tikhonov regularization, known in statistics as ridge 
regression, was used to regularize the problem. Prior to applying this form of 
regularization, the regularization parameter X must be chosen to resolve the subtle 
compromise between the smoothness of the regularized solution and the solution bias. 
This biasing towards small regression coefficients is the "price" paid for the smoothness 
of the regularized solution. We want to obtain the smoothest solution possible, without 
significantly biasing our solution. 

Several methods were proposed to determine the optimal regularization 
parameter. The principle of discrepancy by Morozov (1966), requires the knowledge of 
the right hand side error e of the equation Xw=y+e. When a good estimation of e is 
available, this method yields a good regularization parameter. Two other highly regarded 
methods for regularization parameter selection do not assume any knowledge about the 
error level, but are based on the extraction of information from the data. The generalized 
cross-validation method, (Golub, Heath and Wahba, 1979) is based on the assumption 
that if an arbitrary element y; (of the right-hand side y) is removed, then the 
corresponding regularized solution should predict this observation well (Hansen, 1994). 
However, the most common method of determining the regularization parameter is the L-
curve method (Hansen, 1992). This method proposes that the optimal regularization 
parameter occurs at the "corner" of a plot of solution norm vs. residual norm. After 
evaluating the above methods, we found the L-curve to be the most reliable and simple 
and it was adopted as the method for choosing the regularization parameter in our study. 
The truncated SVD regularization was also used to assure that different regularization 
methods provide similar regularized solutions. 

The L-curve for the ill-posed problem of drift detection is plotted in Figure 3, for 
a data matrix containing 600 data points. It should be noted that Figure 3 is a log-log plot 
because the singular values span three orders of magnitude. An analysis of the curve 
shows that the best X, corresponding to the "corner" of the L-curve, is 0.1275. It should 
be pointed out that the proper choice of regularization parameter is a tough problem, and 
the "optimal" value provided by an L-curve should not be taken blindly. We found that 
for the drift detection problem the L—curve provided a slightly underregularized solution, 
so we used a slightly higher value of the regularization parameter than that prescribed by 
the L-curve. We want to stress that the regularization parameter is a function of the data 
matrix and should be recalculated each time the training data matrix is changed. The filter 
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factors for A..0.1275 are shown in Figure 4. As can be seen from this figure, the 
contribution of minor components will be heavily damped through filter factor weighting, 
allowing only the first principal component to remain unfiltered. 
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Having chosen the optimal regularization parameter we can now calculate the 
regularized solution, and repeat the tests we performed on the unregularized solution; 
namely, check the drift dependence on the size of the median filter window, the number 
of training points and data perturbations. The drift dependence on median filter window 
size after regularization is shown in Table 4. 
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Having chosen the optimal regularization parameter we can now calculate the 
regularized solution, and repeat the tests we performed on the unregularized solution; 
namely, check the drift dependence on the size of the median filter window, the number 
of training points and data perturbations. The drift dependence on median filter window 
size after regularization is shown in Table 4. 



Table 4 Drift dependence on filter window size after regularization 

Window length, data points Drift at the check point, klb/hr 

0 (no filtering) 39.68 

3 39.68 

5 39.68 

7 39.90 

11 39.82 

This table should be compared with Table 2 where drift dependence on filtering 
window for the unregularized solution is shown. Comparison of these tables shows that 
regularization decreased the variability of drift estimation. The changes after 
regularization are even more dramatic for the drift dependence on the number of training 
points and on data perturbations. The drift dependence on the number of training points is 
shown in Table 5. 

Table 5 Drift dependence on the number of training points for two regularization 
methods. 

Number of data 
points 

Ordinary least 
squares solution 

(no 
regularization), 

drift, klb/hr 

Tikhonov 
regularization 
drift, klb/hr 

Regularization 
parameter X for 

Tikhonov 
regularization 

Truncated SVD 
regularization, 
regularization 

parameter k=1, 
klb/hr 

200 25.08 39.73 0.2 40.53 

300 16.25 39.65 0.25 39.99 

400 9.82 39.41 0.25 39.98 

500 11.98 39.13 0.35 39.11 

600 39.46 39.68 0.35 39.50 

700 42.86 39.68 0.35 40.07 

800 42.02 39.23 0.35 39.74 

900 39.00 39.06 0.35 39.69 

For convenience, in the second column we show the results of drift inference 
without regularization. Analysis of Table 5 reveals that regularization drastically reduced 
the drift estimation's variability due to using different numbers of training points to 
calculate the regression coefficients. In fact, regularization made the drift evaluation 

Table 4 Drift dependence on filter window size after regularization 

Window length, data points Drift at the check point, klb/hr 

0 (no filtering) 39.68 

3 39.68 

5 39.68 

7 39.90 

11 39.82 

This table should be compared with Table 2 where drift dependence on filtering 
window for the unregularized solution is shown. Comparison of these tables shows that 
regularization decreased the variability of drift estimation. The changes after 
regularization are even more dramatic for the drift dependence on the number of training 
points and on data perturbations. The drift dependence on the number of training points is 
shown in Table 5. 

Table 5 Drift dependence on the number of training points for two regularization 
methods. 

Number of data Ordinary least Tikhonov Regularization Truncated SVD 
points squares solution regularization parameter ').,, for regularization, 

(no drift, klb/hr Tikhonov regularization 
regularization), regularization parameter k= 1, 

drift, klb/hr klb/hr 

200 25.08 39.73 0.2 40.53 

300 16.25 39.65 0.25 39.99 

400 9.82 39.41 0.25 39.98 

500 11.98 39.13 0.35 39.11 

600 39.46 39.68 0.35 39.50 

700 42.86 39.68 0.35 40.07 

800 42.02 39.23 0.35 39.74 

900 39.00 39.06 0.35 39.69 

For convenience, in the second column we show the results of drift inference 
without regularization. Analysis of Table 5 reveals that regularization drastically reduced 
the drift estimation's variability due to using different numbers of training points to 
calculate the regression coefficients. In fact, regularization made the drift evaluation 



consistent and invariant under changes in the number of training data points. Based on 
the unregularized solution (column two), it is practically impossible to draw any 
conclusion about the inferred drift value. On the other hand, the regularized solutions 
provide highly consistent results. It should be pointed out that both regularization 
methods give similar results indicating that the true drift value can be inferred based on 
the current data. 

To show how regularization works to stabilize drift measurements under data 
perturbations we repeat the bootstrap test for the regularized solution. The results of the 
application of the bootstrap technique using regularization are shown in Figure 5. As can 
be seen from this figure, the standard deviation of the drift estimation was reduced more 
than 40 times. The stability of the regularized drift is clearly seen from the unimodal 
nature of the PDF. This figure should be compared with Figure 2. The mean value of the 
regularized drift was found to be 39.48 klb/hr. This corresponds to 0.73 % drift in the 
first six months of operation. This value coincides with previous studies of feedwater 
flow rate drift estimation and is reasonable from an engineering point of view. The 
measured and estimated feedwater flow rates are shown in Figure 6. The measured 
feedwater flow is the upper curve which is maintained stationary to be within regulatory 
limits. The lower curve is the inferred feedwater flow which is clearly decreasing, 
indicating fouling of the venturi meter. The true value of feedwater flow rate is 
represented by this lower curve, which shows that the reactor is losing some power due to 
derating. Knowledge of this true value would allow the operator to avoid derating and 
still be within regulatory safety limits. 
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5. CONCLUSIONS 

9000 

Inferential sensing is an ill—posed problem which suffers from solution instability 
when applied to feedwater flow rate estimation. This instability is caused by the ill-
conditioning of the data matrix and manifests itself as a non-smooth least squares 
solution, which is overly sensitive to noise in the data. Regularization is a method which 
can be used to provide a stable and consistent drift estimation that does not depend on the 
noise in the data. The regularized solution also remains invariant when different 
preprocessing techniques are applied, and when different data sets are used to build the 
predictive model. Thus, the use of regularization in inferential measurements provides an 
inexpensive, competitive alternative to existing methods for the accurate evaluation of the 
feedwater flow rate. 

NOMENCLATURE 

Qc core thermal power 
mfw feedwater flow rate 
hs steam enthalpy 

feedwater enthalpy 
X data matrix of predictor variables 
y response variable (feedwater flow) 
w vector of regression coefficients 
U matrix of left eigenvectors of data matrix X 
✓ matrix of right eigenvectors of data matrix X 
• diagonal matrix of singular values of data matrix X 
u; left singular vector 
v, right singular vector 
0, singular value 
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5. CONCLUSIONS 

Inferential sensing is an ill-posed problem which suffers from solution instability 
when applied to feedwater flow rate estimation. This instability is caused by the ill­
conditioning of the data matrix and manifests itself as a non-smooth least squares 
solution, which is overly sensitive to noise in the data. Regularization is a method which 
can be used to provide a stable and consistent drift estimation that does not depend on the 
noise in the data. The regularized solution also remains invariant when different 
preprocessing techniques are applied, and when different data sets are used to build the 
predictive model. Thus, the use of regularization in inferential measurements provides an 
inexpensive, competitive alternative to existing methods for the accurate evaluation of the 
feedwater flow rate. 

NOMENCLATURE 

Qc core thermal power 
mrw feedwater flow rate 
h, steam enthalpy 
hrw feedwater enthalpy 
X data matrix of predictor variables 
y response variable (feedwater flow) 
w vector of regression coefficients 
U matrix of left eigenvectors of data matrix X 
V matrix of right eigenvectors of data matrix X 
1: diagonal matrix of singular values of data matrix X 
u; left singular vector 
v right singular vector 
cr; singular value 



A, regularization parameter for Tikhonov regularization 
f filter factors 
e noise 
L well—conditioned matrix 
PWR pressurized water reactor 
BWR boiling water reactor 

Subscripts 

c core 
s steam 
fw feedwater 
LS least squares 
X - regularized least squares solution using regularization parameter X 
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